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PARCAT is a computer program which implements alternative tests for average partial association in three-way contingency 
tables within the framework of the product multiple hypergeometric probability model. Primary attention is directed at the rela- 
tionship between two of the variables, controlling for the effects of a covariable. This approach is essentially a multivariate exten- 
sion of the Cochran/Mantel-Haenszel test to sets of (s X r) tables. A set of scores such as uniform, ridits, or probits can be assigned 
to categories which are ordinaUy scaled. In particular, if ridit scores with midranks assigned for ties are utilized, this procedure is 
equivalent to a partial Kruskal-Wallis test when one variable is ordinally scaled, and is equivalent to a partial Spearman rank corre- 
lation test when both variables are ordinally scaled. 
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1. Introduction 

For research situations in which the basic data are 
measured in terms of  discrete categories (based on 
nominal or ordinal as opposed to interval scales) the 
primary question of  interest frequently involves the 
relationship between a set o f s  categories which corre- 
spond to distinct sub-populations (as defined in terms 
of  pertinent independent variables) and a set of  r cat- 
egories which correspond to the response profiles 
associated with the specific dependent variables under 
study. In addition, the distribution of  the response 
profiles may also be influenced by the effects o f  a 
secondary set of  q categories which correspond to dis- 
tinct levels of  relevant covariables such as investiga- 
tors, hospitals, clinics, or pretreatment states. As a 
result, the data obtained from such studies can be 
summarized in a set of  q: (s × r) contingency tables 
which will be indexed by h = 1,2 ..... q. In this for- 
mulation, the basic hypothesis can then be expressed 
in terms of  'no partial association' between the sub- 
populations and the response profiles, after adjusting 
for the possible effects of  the covariables. For exam- 
ple, suppose either treatment A or B is assigned at 
random to subjects within a series o f q  clinics and the 
response to treatment is classified as either improved 

or not improved. In this situation, the resulting data 
can be displayed in a set of  q: (2 × 2) tables for 
which the primary question is whether, on the aver- 
age, across the clinic subgroups, the improvement 
rates are the same for the two treatments or are con- 
sistently different. 

Cochran [ 1 ] proposed a test statistic for this hy- 
pothesis with respect to a set of  (2 X 2) tables from 
the point of  view of  asymptotic binomial model 
results (which require moderately large sample sizes, 
e.g., nh ~> 20 for h = 1,2 ..... q). Alternatively, Mantel 
and Haenszel [2] noted that this same problem could 
be approached within the framework of  a hyper- 
geometric model which requires only the overall sam- 
ple size n = ~hnh to be large for asymptotic methods 
to be applicable. In fact, their procedure is appropri- 
ate for matched case-control studies with only two 
subjects in each of  the q tables. More specifically, this 
method utilizes expected values and variances for a 
specified cell (pivot cell) in each of  the (2 × 2) tables 
but is invariant among which of  the four cells is 
selected. However, since the structure of  their statis- 
tic differs from Cochran's statistic only by a factor of  
[(nh - 1)/nh] in the variance term for the pivot cell 
of  each of  the q tables and by a continuity correc- 
tion, the results obtained from these two methods are 
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essentially equivalent when the sample sizes in each 
table are moderate to large (e.g., nh >~ 20 for h = 
1, 2 ..... q). For other cases, the Mantel-Haenszel 
method is preferred because it only requires asymp- 
totic considerations on an across-table basis rather 
than both across and within tables. 

More generally, Mantel and Haenszel [2] indicated 
that their procedure could be extended to investigate 
the concept of'average partial association' for a set of 
q: (2 X r) contingency tables. This method involves 
computing the expected values and the covariance 
matrix for (r - 1) pivot cells under the multiple 
hypergeometric probability model for each of the 
tables. These quantities are then summed across the 
q tables and a quadratic form test statistic is gener- 
ated. This same procedure was also discussed by Birch 
[3] and more recently by Sugiura and Otake [4]. 
However, in Mantel and Haenszel [2] the specific 
computations for this method were outlined only for 
a set of(2  × 3) contingency tables. Rather than devel- 
oping the details for an (s - l)(r - 1) degree of free- 
dom test statistic in general, Mantel [5] presented 
such results for the situation in which the response 
profiles are ordinally scaled with progressively larger 
intensities. For this case, he discussed various scoring 
techniques and proposed a test statistic based on the 
resulting mean scores. Moreover, if both dimensions 
of  the (s X r) contingency tables are ordinally scaled, 
Mantel [5] recommended score correlation-type test 
statistics. Otherwise, the multivariate Mantel-Haenszel 
procedure involving (s - 1)(r - 1) pivot cells has been 
used in recent years in the analysis of highway safety 
data, as demonstrated in [6]. 

In a recent paper, Landis, Heyman and Koch [7] 
summarized various alternative approaches for inves- 
tigating the underlying concept of 'average partial 
association' in three-way contingency tables. In par- 
ticular, they presented a unified notation and matrix 
formulation for the Generalized Cochran]Mantel- 
Haenszel (CMH) approach to the analysis of q: (s × r) 
contingency tables in terms of the corresponding mul- 
tiple hypergeometric probability model. The purpose 
of this paper is to describe a new computer program 
PARCAT which implements this generalized CMH hy- 
pothesis testing framework for the analysis of  three- 
way contingency tables. The statistical methodology 
for this procedure is outlined in section 2 and the 
possible scoring options for ordinally scaled variables 

are discussed in section 3. Specifically, if ridit scores 
with midranks assigned for ties are utilized, this pro- 
cedure is equivalent to a partial Kruskal-Wallis test 
when the response variable is ordinally scaled and is 
equivalent to a partial Spearman rank correlation test 
when both dimensions of each (s X r) contingency 
table are ordinally scaled. 

The specific details associated with data input are 
outlined in section 4 and the description of the con- 
trol cards used in the execution of PARCAT is sum- 
marized in considerable detail in section 5. Finally, 
the analyses of two typical data sets using PARCAT 
are presented in section 6 with particular attention 
given to the required control cards. 

Several analyses of a given data set can be per- 
formed in the same computer run by specifying addi- 
tional sets of scores for either the row or column 
dimensions. Furthermore, multiple data sets can be 
processed in the same computer run by simply repeat- 
ing the appropriate sequence of control cards, 
together with new data, as described further in sec- 
tion 5. 

2. Methodology 

Let h = 1,2 ..... q index a set of(s  × r) contin- 
gency tables which correspond to distinct levels of  a 
covariable or combinations of several pertinent 
covariables. Let i = 1, 2 ..... s index a set of sub- 
populations which are to be compared with respect to 
a particular response variable for which the outcome 

t 

categories are indexed b y / =  1,2 ..... r. Then letnh = 
(nhll, ..., nhlr . . . . .  nhsl ..... nhsr), where nmj denotes 
the number of subjects in the sample who are jointly 
classified as belonging to the h-th table, the i-th sub- 
population and the/-th response category. These fre- 
quency data, corresponding to the h-th level of  the 
covariable set, can be summarized as shown in 
table 1, where Nm. denotes the marginal total number 
of subjects classified as belonging to the i-th sub- 
population, Nn. /deno tes  the marginal total number 
of subjects classified as belonging to the ]-th response 
category, and Nh.. denotes the overall marginal total 
sample size in the h-th table. 

The basic hypothesis under investigation involves 
the relationship between the response variable and 
the sub-populations adjusted for the levels of the 
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Table 1 
Observed contingency table for level h of the covariables 

Sub- 
population 
1 

Response variable categories Total 

1 2 ... r 

1 nh l  1 nh l  2 ... n h l r  N h l .  

2 nh21 nh2 2 ... nh2 r Nh2. 

s nhs I nhs 2 ... nhs r Nhs.. 

Total Nh. 1 Nh. 2 ... Nh, r Nh.. 

covariable set. Under the assumption that the mar- 
ginal totals (Nm.} and {Nh.j) are fixed (either by 
design or conditional distribution arguments), the 
overall null hypothesis of 'no partial association' can 
be stated as 

Ho: For each of the separate levels of the covariable 
set h = 1, 2 ..... q, the response variable is distrib- 
uted at random with respect to the sub-popula- 
tions, i.e., the data in the respective rows of the 
h-th table can be regarded as a successive set of 
simple random samples of sizes (Nm.} from a 
fLxed population corresponding to the marginal 
total distribution of the response variable 
(Nh.j) (2.1) 

On the basis of this hypothesis, it can be shown from 
stratified sampling arguments that the vector n h fol- 
lows the product multiple hypergeometric distribu- 
tion given by the probability model: 

$ 

l-I Nh . ! Nh./  
i=1  j = l  

Pr(nh I H0) - 

Nh..] [I f i  nhifl 
i=1 j=l 

(2.2) 

Given this background, the types of applications 
where the general model (2.2) is of interest include: 

a. Observational and/or historical data from 
restricted populations as obtained in, e.g., 
retrospective studies, prospective non-random- 
ized studies and case-control studies. Here, of  

course, all of the frequency counts are fixed 
from a strict point of view because of the his- 
torical nature of the data. On the other hand, 
one can argue that there is still interest in the 
hypothetical question of whether or not the ob- 
served distribution of response is at random 
with respect to the sub-populations which are 
to be compared. Thus, it is through the inher- 
ent nature of this hypothesis itself that the 
(nhij} are regarded as random variables for such 
situations. 

b. Experimental design data from a strict random- 
ization model point of view. Here, the marginal 
distributions of sub-populations are regarded as 
fixed in principle by the nature of the experi- 
mental design (but may actually be subject to 
some inherent variability because of missing 
data). In addition, the marginal distribution of 
response is regarded as fixed for the situation 
where there is no relationship between sub- 
population and response (since the response of 
each subject is not affected by the randomly 
assigned sub-population) which implies that the 
distribution of their responses as a whole when 
combined across sub-populations, is the same 
for all realizations of the treatment randomiza- 
tion process. 

c. Product multinomial model data as discussed in 
Landis et al. [7] from either stratified simple 
random samples or stochastic processes with 
respect to a conditional distribution point of 
view. 

For each table indexed by h = 1,2 ..... q, let Phi" = 
(Nhr/Nh..) denote the marginal proportion of sub- 
jects classified as belonging to the i-th sub-population 
(row) and let Pn'i = (Nh.j/Nh..) denote the marginal 
proportion of subjects classified as belonging to the 
/-th response category (column). These proportions, 
which are assumed to be fixed, can be summarized in 
vector notation for h = 1,2 ..... q as P~,. = (Phi', .... 
Phs')  and P~., = (Ph.1 . . . . .  eh 'r)"  Then by computing 
the first and second moments of the probability dis- 
tribution in (2.2), it can be shown that the expected 
value of nhij under Ho in (2.1) is mmj = Nh..Pm.Ph.j. 
Thus, the expected value ofnh can be expressed in 
vector notation as: 

mh = E{nh I H o } = Nn.. [Ph'* QPh* .l (2.3) 
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where ® denotes Kronecker product multiplication. 
Furthermore, the covariance between nhij and nhi, j '  

under Ho in (2.1) is: 

Vh,i],i '  j ' = N h r N h . j ( 6 i f N h . .  - Nhi,. ) 

X (6jj ,Nh..  - N h.i,)/N2h,. (Nh.. -- 1) 

where 6 , ,  = 1, i f / =  i', = 0, otherwise and 6 H, = 1, if 
j =/ ' ,  = 0, otherwise. Thus, the covariance matrix of 
na under Ho in (2.1) can be expressed in matrix nota- 
tion as: 

N~.. 
V a r ( n h l H o }  - (Nh.. - 1) ( [ n P h ' *  -- Ph'*Ph'*] 

® [O/a*- - Ph* .Ph*. l } (2.4) 

where Dpa ,. and DPh. .  are diagonal matrices with ele- 
ments of  the vectors Ph*- and Ph. * on the main diag- 
onal. 

2.1. Multivariate test." case I 

For the situation in which both dimensions of  the 
(s × r) table represent data measured on nominal 
scales, the basic hypothesis in (2.1) can be tested in 
terms of  (s - 1)(r - 1) linearly independent functions 
o f n  h. Without loss of generality, let: 

, 4  = ([h,_l), %-1)]® [I<s-,, (2.5) 

where lu denotes a (u × u) identity matrix and 0u 
denotes a (u X 1) vector of  O's. Thus for h = 1,2 ..... q, 
the quantities: 

Gh = A(nh  - mh)  (2.6) 

represent the differences between the observed and 
expected frequencies under Ho for the (s - 1)(r - 1) 
cells in table 1, after eliminating the last row and col- 
umn. From (2.3) and (2.4) it follows that: 

E~GhIHo } = 0(s_ O(r-  1) (2.7) 

Var(GhlHo} (Nh.. - 1) ([OPh'* --Ph'*J~;r*] 

® [OPh*. - ~'h* .Ph*.] ) (2.8) 

where P'a*. = (Ph r ,  .... P h , ( s - O )  and P;r* = (Ph'l . . . . .  
/Oh.,(r- 1)). 

Given this framework in (2.6)-(2.8) ,  it can be 

shown that: 

Qh = G~ [Var(GhlHo} ] - '  G h 

(nhi / - -  rnhi/) z 

Nh ~. i=l /= 1 mh 6 

_ (Nh.. -- 1 ) 
~Vh~ " QP, h for h = 1,2 ..... q (2.9) 

where QP, h denotes the Pearson chi-square statistic 
for testing independence in the h-th table. Under Ho 
in (2.1), Qh asymptotically has the chi-square distri- 
bution with d . f  = (s - 1)(r - 1). As a result: 

q 

QT = ~ G,~ [Var{Gh IHo }] --1 Gh 
h=l 

N h . . - - 1  (nhi j - m h q )  2 
= (2.10) 

h=l C mhi j  a 

represents an appropriate test statistic for Ho. In par- 
ticular, if each of  the respective Nh..  for h = 1,2 ..... q 
is sufficiently large that all of  the {Qh} have approx- 
imate chi-square distributions, then QT has an approx- 
imate chi-square distribution with d . f  = q(s - 1) X 
(r - 1) under (2.1). 

On the other hand, if the overall sample size N = 
~.#Vh.. is large but the individual sample sizes ~Nh.. } 

for many tables are small, then the statistic QT in 
(2.10) is no longer useful for testing H0 in (2.1). In 
this case, it is more appropriate to investigate H0 in 
terms of  the sum of  corresponding differences 
between the observed and expected frequencies 
across the q tables denoted by: 

q 

G = ~ G h  (2.11) 
h=l 

From (2.7) and (2.8) it follows that: 

E{GIHo} = 0 

q 

Vat {G I Ho } = ~ Vat (Gh I Ho } (2.12) 
h=l 

Consequently, a Generalized Cochran/Mantel- 
Haenszel statistic for testing Ho can be obtained as: 

QCMH = G' [Var { G I Ho } ] - I G (2.13) 
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which asymptotically has the chi-square distribution 
with d.f. = (s - 1)(r - 1). This test statistic is directed 
at 'average partial association' alternatives in the sense 
that if certain observed frequencies consistently 
exceed (or are exceeded by) their corresponding 
expected frequencies, across the tables indexed by 
h = l ,  2 ... . .  q, then these quantities reinforce one 
another when combined to form QCMH. Also, the fact 
that the significance of  QCMH is evaluated relative to 
d.f. = (s - 1)(r - l )  rather than q(s - 1)(r - 1) repre- 
sents another aspect of  this method that potentially 
permits gains in statistical power, relative to the over- 
all partial association statistic QT in (2.10). Finally, 
the range of  applications for QCMH is broader since 
its asymptotic chi-square distribution is linked to the 
overall sample size N, while that of  QT is linked to 
the sample sizes (Nn-.) for each of  the respective 
tables. 

For the special case in which s = r = 2, the result- 
ing data can be summarized in a set of  q: (2 X 2) 
tables. In particular, Gh in (2.6) simplifies to: 

Gn = (nhll Nhl'Nh'I] (2.14) 
Nn.. ! 

and the covariance matrix in (2.8) simplifies to the 
hypergeometric variance: 

A~ w . 
Var{Gh]H° } = (N~.. - 1) Phi"(1 - Phl")P~'I (1 - Pn. 1) 

_Nnl.Nt,2.Nn.lNh.: 
(2.15) 

Ann.. ( U n . . - 1 )  

Thus, the test statistic for average partial association 
in (2.13) simplifies to: 

QCMH - (2.16) 

{ ~ Nhl'Nh2"Nh'INh'2 I 
n=l Aah. . (Nn. . -1)  ; 

This result in (2.16) differs from the test statistic pro- 
posed in Cochran [1] only by a factor of  [(Nh-. - 1)/ 
Nh.. ] in the variance term for each table and is iden- 
tical (except for the lack of  a continuity correction) 
to the statistic recommended in Mantel and Haenszel 
[21. 

2.2. Mean score test: case H 

For situations where the response categories 
j = 1,2 ... . .  r are ordinally scaled with progressively 
larger intensities, it is often useful to test Ho in terms 
of mean scores based on an appropriate vector of  
scores for the h-th table which can be denoted by 

! 

an = (an1, an2 ..... ant) for h = 1,2 ..... q. The particu- 
lar choice of  scores will not be discussed further here, 
but a detailed summary of  various scoring procedures 
is outlined in section 3. In this context,  let the (s × 1) 
vector of  mean scores for the h-th table be denoted 
b y F ~  = (Fnl,Fh2 , ...,Fro), where: 

r 

_ 1 /~1 (2.17) Fhi - ~mi. "= a h j n h i j  

is the mean score with respect to an for the i-th sub- 
population in the h-th table. Similarly, let the corre- 
sponding mean score on the column marginal propor- 
tions be denoted by: 

r 

{th = ~ahjPh' i  (2.18) 
j=l 

Then from (2.3) it follows that: 

E (FhIHo ) = (~h(~ ls) (2.19) 

where I s is a vector o f s  l 's. Moreover, let the total 
variance of  the response variable in the overall popu- 
lation for the h-th table with respect to ah be denoted 
by: 

r 

S~ h = ~ (ahj -- {th )2Ph./ (2.20) 

Then from (2.4) it follows that: 

S~a,h ( D ~ I , . -  l s l ; )  (2.21) Var{FhlH°} = (Nn.. - 1) 

Given this framework in (2 .17)-(2.21) ,  Ho in 
(2.1) can be tested in terms o f ( s  - 1) contrasts 
among the s elements of  Fh. Without loss of  general- 
i ty , le t  C = [ / ( s - i ) ,  - l ( s - O ]  be a basis for the space 
of  contrasts among the estimators Fn. Consequently, 
from (2.19) and (2 .21) i t  follows that: 

E(CFhFH o) = 0 (2.22) 
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- S2a'n { C D ~ . . C ' }  (2.23) Var ( CFn l H° } (Nh.. - 1) 

Thus, an appropriate test statistic for Ho which is 
directed at alternatives pertaining to differences 
among the sub-populations with respect to the mean 
scores based on a n is: 

QMS,h = (CFn )' [Var ( CFh l Ho } ] - 1CFn 

_ (Nn.. - 1) 

_ (Nh.. - 1)S~,h for h = 1 ,2  ... . .  q (2.24) 

where 

3 

s ,n --Z; 
i=1 

(Fhi --  {ln)2eni . . 

Under Ho in (2.1), QMS,h asymptotically has the 
chi-square distribution with d.f. = (s - 1). As formu- 
lated in (2.24), QMs,n can be viewed as essentially a 
one-way ANOVA test statistic for Ho in the sense of  
being the ratio of  the 'Among sub-populations sums 
of  squares' versus the 'Total sums of  squares'. As a 
result, an overall test statistic for the sumultaneous 
comparison of  the mean scores within all q tables is: 

q 

QMS = ~ QMS,n (2.25) 
h = l  

I f  each of  the respective Nn.. for h = 1,2 ... . .  q is suf- 
ficiently large that all of  the {QMs,n} have approx- 
imate chi-squares distributions, then QMS has an 
approximate chi-square distribution with d . f  = 
q(s - 1) under Ho. 

On the other hand, if the overall sample size N is 
large but the individual sample sizes (Nn..} for many 
tables are small, then the statistic QMS in (2.25) is no 
longer useful for testing Ho in (2.1). In this case, it is 
more appropriate to investigate Ho in terms of  a Gen- 
eralized Cochran/Mantel-Haenszel strategy with 
respect to the mean scores {Fn} based on (an}. For 
this purpose, let the weighted sum of  the mean scores 
across the q tables be denoted by: 

q 

F = ~ Nh..DI, h . . F  n (2.26) 
h = l  

Then it follows that: 

q 

E(FIHo}  = ~Nh. . c tnPa . .  (2.27) 
h = l  

q h ( D e n , .  - eh*'1%" } V a r ( r l H o }  = n=l ~ (N~.. -- 1) ' 

(2.28) 

Due to the implicit matrix singularity in (2.28) which 
follows from the results that: 

q 

E{I~" IHo}  = ~ N n - . a h  
h = l  

Var (I~FIHo} = 0 

the matrix C can be used as a basis for the space of 
contrasts among the estimators F. Consequently, by 
le t t ingD = C [ F -  E{FI  Ho}] be the corresponding 
[(s - 1) × 1 ] vector of  differences between the mean 
scores and their expected values under Ho, the Gener- 
alized Cochran/Mantel~Haenszel statistic for Ho in 
terms of  mean scores with respect to (an) is obtained 
a s :  

QCM MS = O'  (C[VaI" {FI Ho } ] C'} - a D (2.29) 

Under H0, QCMMS asymptotically has the chi-square 
distribution with d . f  -'- (s - I). This test statistic is 
directed at location shift alternatives which corre- 
spond to the extent to which the mean scores for cer- 
tain sub-populations consistently exceed (or are 
exceeded by) the mean scores for other sub-popula- 
tions; and thus it is directed at the average across the 
q tables of  such differences. In particular, for s = 2, 

QCMMS in (2.29) is identical to the extended Mantel- 
Haenszel test statistic proposed in Mantel [5]. Fur- 
thermore, for the case where all the scores are either 
0 or 1 and s = 2, QCMMS simplifies to the Cochran/ 
Mantel-Haenszel statistic in (2.16) which corresponds 
to the collapsed set of  (2 X 2) tables which are ob- 
tained by pooling the response categories which are 
assigned '0 '  and those which are assigned '1 '. Finally, 
it should be noted that if  marginal rank or ridit-type 
scores are obtained from each table with midranks 
assigned for ties, the statistic QCMMS in (2.29) can be 
viewed as essentially equivalent to a partial Kruskal- 
Wallis ANOVA test on ranks, conditioning on the lev- 
els of  the covariable set. Otherwise, the same types of  
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comments could be made about power properties and 
central limit theory considerations for these statistics 
as were made for the multivariate test in section 2.1, 
except that the concept of power is stronger relative 
to the location shifL alternatives at which they are 
targeted and sample size requirements are weaker 
because fewer degrees of freedom are involved. 

2.3. Correlation test." case I I I  

For situations were both the response categories 
j = 1,2 ..... r and the sub-population categories 
i = 1,2 ..... s are ordinally scaled with progressively 
larger intensities, it is often useful to test Ho in terms 
of composite mean scores which correspond to the 
respective products of an appropriate vector of 
response scores a~ = (ahl, ah2 . . . . .  ahr) and an appro- 

t 
priate vector of sub-population scores ch = 
(Chl, Ch2 . . . . .  Chs) for h = 1,2 ..... q. Specifically, let 
Whij = cmahj be the score assigned to the joint out- 
come corresponding to the i-th sub-population and 
j-th response category in the h-th table which can be 
summarized in vector notation by letting w~ = 
( W h l  1 . . . .  , Whi r . . . . .  Whs 1 . . . . .  Whsr). Then let the com- 
posite mean score function for the h-th table be 
defined by: 

Fh = w'hnh/Nh.. (2.30) 

Moreover, let the mean score on the row marginal pro- 
portions be denoted by: 

$ 

= Z ch Phi" (2.3 l )  
i = l  

and let the mean score on the column marginal pro- 
portions be as defined in (2.18). Also, let the total 
variance of the sub-population variable in the overall 
population for the h-th table with respect to eh be 
denoted by: 

s 

S2c, h = ~ ( c h i -  Ch)2Phi • (2.32) 
i=1 

and let the corresponding total variance of  the response 
variable be given as in (2.20). In addition, let: 

g 

Sac, h = ~ (ah/-- ~h)(Cm -- C.h)(nhi]/Nh..) (2.33) 
i = l j = l  

be the covariance between the response scores and the 
sub-population scores in the h-th table. Then from 
(2.3) and (2.4) it follows that: 

E{Fh IH0 ) = (lhCh (2.34) 

War(FhlHo) = S2a, hS2c, h/(Nh .. -- 1) (2.35) 

Furthermore, from (2.30) and (2.33) it can be shown 
that: 

Fh - E ( Fhl Ho ) = Sac, h (2.36) 

Given this framework in (2.30)-(2.36), Ho in 
(2.1) can be tested in terms of a test statistic which is 
directed at alternatives pertaining to the association 
between the response variable and the sub-population 
variable under the composite scores (Whii). In partic- 
ular, let: 

IF h - E ( F h l H o } ]  2 
QMA,h = Var(FhlH0) 

_ (Nh.. - I ) S L h  
2 2 S hSc, h 

= (Nh.. -- 1)R2ac, h (2.37) 

where R2ac, h denotes the squared Pearson correlation 
coefficient corresponding to the observed bivariate 
distribution for the (ahi) and the (Chi) in the h-th 
table. Under Ho in (2.1), QMA,h asymptotically has 
the chi-square distribution with d.f. = 1. As def'med in 
(2.37), QMA,h is essentially a standard correlation 
analysis test statistic for Ho. As a result, an overall 
test statistic for the simultaneous test of the measures 
of association (Fh) in (2.30) across all q tables is: 

q 

Q M A  = ~ QMA,h ( 2 . 3 8 )  
h = l  

I f  each of the respective Nh.. for h = 1,2 ..... q is suf- 
ficiently large that all of the (QMA,h) have approxi- 
mate chi-square distributions, the QMA has an 
approximate chi-square distribution with d.f. = q 
under Ho in (2.1). 

Alternatively, if the overall sample size N is large 
but the individual sample sizes (Nh-.) for many tables 
are small, then the statistic QMA in (2.38) is no longer 
useful for testing Ho in (2.1). Instead it is more 
appropriate to investigate Ho in terms of a General- 
ized Cochran/Mantel-Haenszel strategy with respect 
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to the measures of association {Fh} in (2.30) based 
on the composite mean scores (wh}. For this pur- 
pose, let the weighted sum of the composite mean 
scores across the q tables be denoted by: 

q 

F = ~Nh. .Fh (2.39) 
h = l  

From (2.34) and (2.35) it follows that: 

q 

E(FI Ho} = ~ Nh..?*hCh (2.40) 
h = l  

q 

- - r~ . .  2 2 
Var{FIHo) = h=, ~ (Nh -7.-- 1) Sa, hSc, h (2.41) 

Consequently, the Generalized Cochran/Mantel- 
Haenszel statistic for Ho in terms of composite mean 
scores with respect to w h is obtained as: 

QCMMA: { ~Nh"Sac'h}2/ ~ 1)"a'heZ S 2 
NL 

h=l h=l (Nh" - e,h) t 

(2.42) 

Under Ho, QCMMA asymptotically has the chi-square 
distribution with d.f = 1. This test statistic is directed 
at the extent to which there is a consistent positive 
(or negative) association between the response scores 
and the sub-population scores in the respective tables. 
Thus, it is directed at 'average partial association' 
alternatives across the q tables between the response 
scores {ah} and the sub-population scores {ch}. In 
particular, for the case where all the scores are either 
0 or 1, QCMMA in (2.42) simplifies to the Cochran/ 
Mantel-Haenszel statistic in (2.16) which corresponds 
to the collapsed set of(2  X 2) tables which are ob- 
tained by pooling the categories which are assigned " 
'0 '  and those which are assigned '1'  separately for the 
response categories and the sub-populations. Finally, 
if marginal rank or ridit-type scores are obtained from 
both the rows and columns of each table with mid- 
ranks assigned for ties, the statistic QCMMA in (2.42) 
is essentially equivalent to a partial Spearman rank 
correlation test, conditioning on the levels of the 
covariable set. Otherwise, the same types of com- 
ments could be made about power properties and 
central limit theory considerations for these statistics 
as were made for the multivariate test in section 2.1 

and the mean score test in section 2.2, except that 
the concept of power is stronger relative to the asso- 
ciation structure at which they are targeted and sam- 
ple size requirements are minimal because only one 
degree of freedom is involved. 

2.4. Summary 

The general CMH procedure represents a flexible 
approach for investigating average partial association 
from several points of view. However, since the mul- 
tiple hypergeometric model is only induced through 
the consideration of the basic hypothesis Ho, other 
types of statistical analysis like the estimation of 
parameters and standard errors and the construction 
of confidence intervals cannot be undertaken in this 
framework because once the hypothesis Ho is rejected 
the multiple hypergeometric model no longer is appli- 
cable. Thus, an alternative framework such as the fit- 
ting of log-linear models is necessary for such pur- 
poses. However, the test of H0 in (2.1) within the 
log-linear model framework as discussed in Bishop, 
Fienberg and Holland [8] requires that the model for 
'no second-order interaction' fits the data. 

In contrast, the concept of 'no second-order inter- 
action' is not a direct assumption of the CMH proce- 
dures because it is incorporated within the hypothesis 
being tested. Thus, such interaction is within the 
scope of the alternatives against which this method is 
directed, provided that such alternatives have a non- 
null average component. It should be noted that this 
concept involves the testing of a broad hypothesis by 
a method targeted at a narrow alternative. In other 
words, the Cochran/Mantel-Haenszel method is con- 
cerned with the broad hypothesis of no partial asso- 
ciation and no interaction simultaneously. Thus, it 
can be rejected if contradicted in the direction of 
some type of narrow alternative. Thus, if the broad 
hypothesis is not true in an average sense because cer- 
tain quantities exceed (or are exceeded by) their 
expections in the respective tables, then the Cochran/ 
Mantel-Haenszel test statistic will have power to 
detect it when targeted accordingly. Moreover, this 
statement applies whether or not such alternatives to 
Ho involve interaction. Thus, the Cochran/Mantel- 
Haenszel procedure is valid in the presence of second- 
order interaction because the absence of such second- 
order interaction is incorporated within the overall 
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hypothesis which is being tested, and this implies that 
the presence of such interaction is within the scope of 
the alternatives against which the hypothesis is being 
tested, provided that such alternatives have a non-null 
average component. 

However, the presence of interaction does tend to 
cause a loss of power in detecting partial association 
since some alternative other than the average is 
involved for such situations. Aside from this limita- 
tion, Birch [3,9] has indicated that if the hypothesis 
of 'no second-order interaction' does hold, then the 
Mantel-Haenszel test and its various appropriate gen- 
eralizations have certain optimal test properties. Fur- 
thermore, because of the sample size requirements for 
testing the 'no interaction' hypothesis, the Cochran/ 
Mantel-Haenszel strategy and its various appropriate 
generalizations is essentially the most flexible strategy 
available for testing for 'average partial association' 
when there are small sample sizes in many of the 
cells. 

3. Specification of  scores 

The tests for average partial association in terms of 
mean scores discussed in section 2.2 and in terms of 
rank correlation coefficients in section 2.3 all require 
the specification of appropriate scores for the ordi- 
nally scaled variables. The choice of a particular set of 
scores depends on a variety of substantive and statisti- 
cal issues which will not be elaborated further here. 
For such considerations, the reader is referred to 
Yates [10], Williams [11], Mantel [5], Bross [12], 
Bhapkar [13] and Koch et al. [14]. In most applica- 
tions, there are essentially six basic types of scores 
which may be of interest. Each of these choices will 
be discussed in the following sections. 

3.1. Natural scores 

For some situations, the levels of an ordinal vari- 
able may represent well-defined intervals of an under- 
lying quantitative variable such as age. Thus, a natural 
choice of scores may be the corresponding midpoints 
of the intervals. Otherwise, the specific physical or 
biological phenomenon may indicate a natural choice 
of scores. In such cases, Ho in (2.1) can be investi- 
gated under these natural scores by choosing the (an} 

and/or the ~ch) to reflect these substantive considera- 
tions. 

3.2. Binary partition scores 

If the major question of interest is focused on the 
comparison of a particular combination of the levels 
of the response variable with the remaining levels, this 
implied binary split of the response variable can be 
investigated within the scope of mean scores as out- 
lined in section 2.2 by assigning either 0 or 1 to each 
of the elements of the (ah}. In particular, let R = 
{rl, r 2 ..... rk} denote the set of the k levels to be 
selected. Then for h = 1,2 ..... q let: 

= (1, i f j e R  (3.1) 
ahj 0, otherwise 

This choice of  scores simply collapses the r levels of 
the response variable into a dichotomous variable 
with one category determined by the union of the k 
levels in R and :the other category determined by the 
union of the remaining (r - k) levels. 

Furthermore, if one set of sub-populations is to be 
compared with the remaining set, this implied binary 
split among the sub-populations can also be created 
by the appropriate choice of the ~ch}. Specifically, 
let S = (Sl, s2, ..., s~} denote the set of sub-popula- 
tions to be selected. Then for h = 1, 2 ..... q let: 

= ( 1 '  i f i e S  (3.2) 
chi 0, otherwise 

This choice of scores in (3.2) simply collapses the 
selected sub-populations into one group and the 
remaining (s - ~) sub-populations into the other 
group. 

3.3. Uniform scores 

As outlined in section 3.2, the binary partition 
scores do not require that the dimensions of the con- 
tingency table represent underlying continuous vari- 
ables. However, if the response variable is ordinally 
scaled with progressively larger intensities, uniform 
(or equal-increment) scores specified for h = 
1,2 ..... q by letting: 

ahj =] (3.3) 
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for/" = 1,2 ..... r can increase the statistical power in 
detecting differences among the sub-populations for 
progressive effects in the response variable. Similarly, 
if the sub-populations are ordinally scaled, uniform 
(or equal-increment) scores defined by: 

c m = i (3.4) 

for i = 1,2 ... . .  s and h = 1,2 ... .  , q can be assigned. 
These scores in (3.3) and (3.4) can be obtained alter- 
natively as sums of successive binary partitions of  the 
corresponding levels of  the response variable (or sub- 
populations) as outlined in Koch et al. [14]. Thus, 
these scores do not necessarily imply that the actual 
levels of  the column (or row) variables are equally 
spaced in some sense. 

3.4. Marginal rank scores 

The analysis of  contingency table data involving 
ordinally scaled variables can also be approached 
from the point of  view of  various non-parametric 
rank procedures. In particular, for the h-th level of  
the covariable set, all subjects who are jointly classi- 
fied as belonging to the i-th sub-population and the 
/'-th response category can be assumed to be tied for 
the corresponding levels of  each variable. Conse- 
quently, by assigning mid-ranks to tied observations, 
the rank for the/.-th level of  the response variable in 
the h-th table is obtained as: 

/ ' -1  

Rh*j = ([(Nh./ + 1)/21 + ~ Nh.g) (3.5) 
k= l  

These ranks can then be utilized as the set of  scores 
a~h = ( R h , l , R h , 2 ,  ...,Rh*r) for the h-th table. For this 
choice of  scores in (3.5), it can be shown that the 
mean score procedures outlined in section 2.2 (case 
II)  correspond to the Kruskal-Wallis method of 
ANOVA for each of  the h tables. Thus, the General- 
ized Cochran/Mantel-Haenszel statistic QcMMs in 
(2.29) using the scores in (3.5) can be viewed as 
essentially equivalent to a partial Kruskal-Wallis 
ANOVA on ranks, conditioning on the levels of  the 
covariable set. 

I f  the sub-populations are also ordinally scaled, the 
rank for the i-th sub-population in the h-th table can 
be denoted by: 

i--1 

Rhi* = { [(Nm. + 1)/2] + ~ ]  Nhk. } (3.6) 
k = l  

These ranks can then be utilized as the set of  scores 
c~ = (Rhl . ,  Rh2*, .... Rhs.  ) for the h-th table. Using 
these rank scores in (3.5) and (3.6), it can be shown 
that the composite mean score procedures outlined 
in section 2.3 (case III)  correspond to a Spearman 
rank correlation analysis for each of  the h tables. 
Thus, the Generalized Cochran/Mantel-Haenszel sta- 
tistic QCMMA in (2.42) using the joint set of  ranks 
from (3.5) and (3.6) can be viewed as essentially 
equivalent to a partial Spearman rank correlation test, 
conditioning on the levels of  the covariable set. 

3.5. Marginal ridit-type scores 

An alternative set of  scores based on ranks can be 
proposed by expressing the ranks obtained in section 
3.4 relative to the total sample size in the correspond- 
ing table. Specifically, for h = 1,2,  ..., q , / =  1, 2 ..... r 
and i = 1, 2 ..... s, let: 

Uh*j = Rh*//Nh.. (3.7) 

Uhi* = Rhi*/Nh.. (3.8) 

where the (Rh./} and {Rhi*} are as defined in (3.5) 
and (3.6). These scores in (3.7) and (3.8) closely 
resemble the ridit scores due to Bross [12] and have 
also been proposed by Mantel [5]. The basic differ- 
ence between these ridit-type scores and those out- 
lined in Bross [12] is that the scores in (3.7) and 
(3.8) are obtained from the observed data in each of  
the h tables, as opposed to being derived from a rela- 
tively identified distribution (reference population). 

The test statistics for partial association in case II 
and case III using the ridit-type scores in (3.7) and 
(3.8) will be equivalent, but not necessarily identical, 
to those under the corresponding rank scores in (3.5) 
and (3.6). Furthermore, under case II these scores 
give rise to average ridits for each row of a given table 
and can be interpreted as probabilities that randomly 
selected individuals from the respective sub-popula- 
tion for a particular level of  the covariable set have 
more extreme responses than a corresponding ran- 
domly selected subject from the marginal reference 
population of  that table. 

3. 6. Combined ridit-type scores 

As discussed in the previous two sections, both the 
rank and ridit-type scores are computed separately 



J.R. Landis et al., Testing average partial association in three-way contingency tables (PAR CA T) 233 

for each of  the q tables. This choice of  scores has the 
advantage that the test statistics such as (2.24) and 
(2.37) utilize the marginal distributions o f  each table. 
Moreover, the Generalized Cochran/Mantel-Haenszel 
statistics such as (2.29) and (2.42) are also based on 
the specified margins of  each table; and thus they 
represent appropriate tests for partial association. 

On the other hand, it may also be of  interest to 
perform these tests using the same set of  ridit-type 
scores for each table. One approach to selecting such 
scores is to consider the combined data set obtained 
by summing the corresponding marginal distributions 
across the q tables. In particular, let N. i. = ~ l~h i"  

denote the total number of  subjects classified as 
belonging to the i-th sub-population and let N.. i = 
E~Nh. j denote the total number of  subjects classified 
as belonging to the ]-th response category. Then the 
overall rank for the ]-th level o f  the response variable 
can be expressed as: 

] -1 

R * * / :  {[(N..i+ 1)/2] + ~ N . . k }  (3.9) 
k=l 

Similarly, the overall rank for the i-th sub-population 
is obtained as: 

structured in the form of s  rows and r columns as 
shown in table 1. Each of  the q tables corresponds to 
one of  the levels of  the covariable set. The observed 
frequencies are handled in one of  two different ways, 
depending on the size of  s • r as discussed in the fol- 
lowing sections. 

If  the data are not already summarized in contin- 
gency table form, a general purpose statistical analysis 
package such as SAS described in Barr et al. [15] or 
SPSS discussed in Nie etal .  [16] can be used to cross- 
classify the raw data into frequency counts according 
to the appropriate levels of the covariable set, the 
sub-populations, and the response profiles to conform 
to the structure indicated in table 1. 

4.1. Frequency data: type 1 

I f s  • r ~< 100, the observed frequencies in the 
format of  table 1 (except for the row and column 
totals) are entered in row order for the tables indexed 
by h = 1,2 ..... q. Thus, there are q .  s records of  data 
each containing r frequency counts. 

4.2. Frequency data: type 2 

i--1 

R , i ,  = ([(N. i. + 1)/2] + ~ N.k.} (3.10) 
k = l  

From these quantities a set of  overall ridit-type scores 
can be proposed by expressing these ranks in (3.9) 
and (3.10) relative to the overall total sample size N. 
Specifically, for ] = I, 2 ..... r and i = 1,2 ..... s, let: 

U**j = R ,  ,]/iV (3.11 ) 

U,i* = R *i*/N (3.12) 

Consequently, the tests for partial association out- 
lined in sections 2.2 and 2.3 can be computed under 
the same set of  overall ridit-type scores with the 
appropriate choices from either (3.11) and/or (3.12). 

I f s  • r is in the range of  100-2500,  the observed 
frequencies are still entered in row order for the 
tables indexed by h = 1, 2 ..... q. However, the data 
need to satisfy the following two constraints: 
(i) s < 100; 
(ii) The measurement scale for the response variable 

must be at least ordinal so that a set of  scores can 
be applied directly to the column categories to 
create a mean score function for each row of  the 
table. 

Under this type of  data entry, the multivariate test 
statistics with (s - 1)(r - 1) degrees of  freedom 
under case I discussed in section 2.2 are not com- 
puted. Either case II or case III statistics are available 
as discussed in sections 2.3 and 2.4. 

4. Data input 

The data input options for PARCAT are quite 
flexible, permitting the data set to be read from any 
input device such as cards, tape or disk files. The data 
are read as a sequence o f  q: (s × r) contingency tables 

5. Use of PARCAT 

The following sets of  cards are used to enter the 
contingency table data and the parameters which 
determine the type of  analysis to be performed: 

(0) JOB CONTROL CARDS 
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(1) BASIC PARAMETER CARD 
(2) TITLE CARD 
(3) SCORE CARDS 
(4) DATA INPUT CARDS 5 

Several analyses of  a given data set can be performed 
in the same computer run by specifying different sets 
of scores. This can be accomplished by repeated use 
of  as many sets of cards (1)-(3)  as desired. 10 

5.1. Description o f  the cards 

(1) BASIC 

Columns 

14-15 Since the program is written in FORTRAN, all 
integer-valued parameters must be right-justified in 
their fields on the input cards. All FORMAT state- 
ments must be enclosed in parentheses and should be 18-20 
left-justified in their fields. In addition, the input data 21-22  
must be read according to floating-point specifica- 23-24  
tions involving either F, E or G, e.g., 8F10.0, 6E13.5 
or 10G8.0. Fixed-point specifications involving inte- 26 
ger (I) format are not permissible. 

(0) JOB CONTROL CARDS 

These cards are necessary to access and to execute 
the load module of PARCAT. Because they will vary 
from one computer system to another, the user will 
need to determine the specific commands which are 
required at his/her computer installation. For exam- 
ple, under MTS at the University of  Michigan, the 
required card is as follows: 

$RUN SJS6:PARCAT 5=*SOURCE * 6=*SINK * 
7=*SINK * 9 = - T  

Otherwise, a prototype of the required cards for a hy- 
pothetical IBM 360/370 installation is as follows: 

//PARCAT JOB USER123 CLASS=F 
//JOBLIB DD DSN=NAME,DISP=SHR,VOL=ABC 
// EXEC PGM=PARCAT 
//FTO6F0¢I DD SYSOUT=A 
//FTO7FOOl DD SYSOUT=A 
//FT09FOOl DD DSN=&&TEMP,DISP=NEW, 
// UNIT=SYSDA,SPACE=(TRK(1,2)), 
// DCB=(RECFM=VBS,BLKSIZE=3000) 
//FTO5F001 DD* 

Further discussion of job control language cards is 
given in section 5.2 within the context of instructions 
for loading and executing the program. 

28 

30 

31 

PARAMETER CARD 

Information contained 

Status of data set: 
5 = new data; 
6 = reanalysis of data saved from previous 

step 

Type of input data (skip if columns 5 :# 5): 
1 =(s , r )~<  100; 
2 = s ~< 100 and 100 <~ (s • r) ~< 2500 

Device number from which input data are 
to be read (skip if column 5 :# 5). [Do 
not use 06, 07, or 09] 

Number of tables in data set (q) 

Number of rows per table (s) 

Number of columns per table (r) 

Type of test statistics requested: (statistics 
for cases of lower numbering will auto- 
matically be provided): 
1 = case I: Multivariate test 

(see section 2.1); 
2 = case If: Mean score test 

(see section 2.2); 
3 = case III: correlation test 

(see section 2.3) 

Type of scores for columns 

Type of scores for rows 

Type of scores available for coding in 
column 28 and/or 30: 
1 = Binary partition scores 

(see section 3.2 and specify scores on 
(3) SCORE CARD); 

2 = Uniform or equal increment scores 
(see section 3.3); 

3 = Natural or user-specified scores 
(see section 3.1 and specify scores on 
a (3) SCORE CARD); 

4 = Combined ridit-type scores (see section 
3.6); 

5 = Marginal rank scores (see section 3.4); 
6 = Marginal ridit-type scores (see section 

3.5) 

Print option: 
0 = Print individual table results and sum- 

mary statistics; 
I = Print only summary statistics. 
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32 

33-80  

Save option: 
0 = Do not save data for reanalysis; 
1 = Save data for reanalysis 

Format by which each row of the con- 
tingency tables will be read [Default = 
(8FlO.O)] 

(2) TITLE CARD 

This card follows immediately after the (1) BASIC 
PARAMETER CARD, regardless of whether or not 
one or more (3) SCORE CARDS are required. The 
title can be any set of alphanumeric characters to 
describe the particular analysis specified by the pre- 
ceding (1) BASIC PARAMETER CARD. This 80 
character title will be printed at the head of the sum- 
mary table. If no title is desired, a blank card must 
still be included for the (2) TITLE CARD. 

(3) SCORE CARD(S) [Skip if column 28 4:1 or 3 
and column 30 4= 1 or 3 o f ( l )  
BASIC PARAMETER CARD] 

This card is used to enter either binary partition 
scores (type 1) or user supplied scores (type 3) for 
the columns and/or the rows of the contingency 
tables. If scores are requested for both columns and 
rows, i.e., column 28 and column 30 of the (1) 
BASIC PARAMETER CARD have either a 1 or 3, the 
SCORE CARD for columns must precede the SCORE 
CARD for rows. The format and score information is 
entered as follows, depending on whether the scores 
are type 1 or 3: 

(1) Enter the number of columns (or rows) in 
the specified binary partition followed by 
the column (or row) numbers included in 
the partition using the format specification 
(2014); 

(3) Enter the user-specified scores according to 
the (10F8.0) format specification. 

(4) DATA CARDS 

Regardless of the input device, the contingency 
table frequencies are entered with each sub-popula- 
tion (row) beginning on a new record according to 
the format specified either by the default (lOF8.0) or 
in columns 33-80  of the (1) BASIC PARAMETER 
CARD. 

5.2. Instructions for loading and executing PARCA T 

In order to load PARCAT on the computer sys- 
tem, it is necessary to compile, link-edit, and place 
the load module in a member of  a partitioned data 
set. Usually such permanent data sets must be 
requested from installation personnel. Since the 
amount of space required for the partitioned data set 
depends on the storage device, the user is advised to 
seek aid from the appropriate installation personnel 
in determining the desired size. 

The program is written in IBM 360/370 FOR- 
TRAN IV level G. The usual method of loading (on 
IBM equipment) is to use the IBM catalogued proce- 
dure FTGCL which utilizes the FORTRAN G com- 
piler and linkage editor. 

5.2.1. Sample compilation and loading 
Suppose a partitioned data set called NAME has 

already been allocated and placed on disk volume 
ABC and that the source program for PARCAT is on 
a labelled tape volume NOTTI on the first f'fle called 
PARCAT. The load module can be placed in a mem- 
ber named PARCAT by using the following proce- 
dure: 

//COMPILE JOB ACCTI.ABC,COOPER,T=(0,45), 
MSGLEVEL= 1 ,CLASS=B 

// EXEC FTGCL 
//FORT.SYSIN DD UNIT=TAPE VOL=NOTT1 

DSN=PARCAT 
//LKED.SYSLMOD DD DSN=NAME(PARCAT), 

DISP=OLD,VOL=ABC 

5.2.2. Assignment of  I/O devices 
Unit 5 Input for parameter cards 
Unit 6 Output of individual tables and their associ- 

ated statistics 
Unit 7 Output of summary statistics and CMH-statis- 

tics 
Unit 9 Used as temporary storage of data for reanaly- 

sis. The records are of variable length and are 
written and read with unformatted I /0  state- 
ments. Recommended block size is 3000 
bytes, since most record lengths will not 
exceed this order of  magnitude. Record 
lengths could be as small as 104 bytes or as 
large as 40008 bytes if the largest possible 
problem was run. It is also important that rec- 
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Unit I 

ords be spanned across blocks; otherwise, a 
great deal of space may be wasted. Storage 
should be on any direct access unit the system 
chooses to assign. 
The unit number I is specified in columns 14-  
15 on the (1) BASIC PARAMETER CARD to 
indicate the input unit from which the contin- 
gency table data will be read. This unit may 
be any permissible unit number except for the 
three reserved for output, viz. 06, 07, and 09. 
The user may specify •=5, in which case the 
data are read from the same card stream as the 
parameter cards. If a unit other than 5 is 
selected, a separate DD statement for the data 
file is required. For example, if 25 is specified 
in column 14-15 on the (1) BASIC PARAM- 
ETER CARD, the following DD statement 
must be included with the other JCL state- 
ments: 

and that the load module has been stored as outlined 
in section 5.2.1, the following JCL statements illus- 
trate a sample run of PARCAT: 

/ /PARCAT JOB ACCT1 .ABC,COOPER, 
MSGLEVEL=I,T=2,CLASS=F 

//JOBLIB DD DSN=NAME,DISP=SHR,VOL=ABC 
// EXEC PGM=PARCAT 
//FT06F0¢I DD SYSOUT=A,DCB=(RECFM=VBA, 

LRECL=133,BLKSIZE=137) 
//FT07 F0O 1 DD SYSOUT=A,DCB=(RECFM=VBA, 

LRECL=133,BLKSIZE= 137) 
//FT09F0Ol DD DSN=&&TEMP,DISP=NEW, 

UNIT=SYSDA,SPACE=(TRK,(1,2)), 
DCB=(REC FM=VBS,BLKSIZE=3O00) 

//FT05F001 DD *, DCB=BLKSIZE=80 
These cards are followed by the program and data 
cards as outlined in section 5.1. 

//FT25F001 DD DSN=DATA,DISP=OLD, 
UNIT=DISK,VOL=ABC 

for reading the contingency table data which 
are stored on a disk file called DATA. 

5.2.3. Sample JCL for  execution o f  PARCA T 
Assuming that the user's input data are on cards 

6. Examples and sample input cards 

This section presents two representative examples 
of the use of PARCAT with primary attention 
directed at the preparation of control cards discussed 
in section 5. More complete analyses of each of these 
data sets can be found in the papers cited in the cor- 
responding sections. 

Table 2 
Deaths from leukemia observed at ABCC (1950-1970) 

Age Survival status a Not in city Dose (rads) 

0-9 10-49 50-99 100-199 200+ 

0-  9 LD 0 
NLD 5015 

10-19 LD 5 
NLD 5973 

20-34 LD 2 
NLD 5669 

35 -49 LD 3 
NLD 6158 

50+ LD 3 
NLD 3695 

7 3 1 4 11 
10752 2989 694 418 387 

4 6 1 3 6 
11811 2620 771 792 820 

8 3 1 3 9 
10828 2798 797 596 624 

19 4 2 1 10 
12645 3566 972 694 608 

7 3 2 2 6 
9053 2415 655 393 289 

a LD denoted death from leukemia 
NLD denotes non-death from leukemia 
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6.1. Leukemia mortality data 

The following data in table 2 which appeared in 
Sugiura and Otake [4] show the numbers of  deaths 
from leukemia (LD) observed at the Atomic Bomb 
Casualty Commission (ABCC) and the numbers of  
individuals who did not die from leukemia (NLD) 
during 1950-1970  according to age at the time of  
the atomic bomb and the estimated radiation dosage. 
Given the framework outlined in section 2, these data 
in table 2 involve s = 6 sub-populations (dose), r = 2 
response categories (survival status) and q = 5 levels 
of  the covariable (age at exposure). For convenience, 
the data are displayed in transposed form from the 
structure denoted in table 1. 

The primary objective in the analysis of  these data 
is to study historically a sample of  persons who died 
from leukemia and to evaluate the extent to which 
death was related to the estimated radiation dosage 
adjusting for age at exposure. In a strict sense, all of  
the frequency counts in table 2 are fixed constants 
(as opposed to random variables) because of  the his- 
torical nature o f  the data. On the other hand, there is 
still interest in the hypothetical question o f  whether 
or not the observed distribution of  leukemia deaths is 
at random with respect to the estimated radiation 
dosage for each of  the age groups. Consequently, the 
basic framework for this investigation is the multiple 
hypergeometric model in (2.2). For these data, the 
generalized CMH statistic in (2.13) yields QCMH = 
461.7, which asymptotically has a chi-square distribu- 
tion with d.f. = 5 under Ho in (2.1). Equivalently, the 
mean score test in (2.29) under the scores a~ = (1,0) 
for h = 1,2 ..... 5 also yields QCMMS = 461.7. This 
equality between QCMH and QCMMS results from the 

fact that the response variable has only r = 2 levels 
and holds for any non-trivial choice ofah. 

Furthermore, since the levels of  radiation dose 
have an underlying continuous distribution, various 
sets of  scores can be applied to these categories to 
investigate order partial association alternatives in 
terms of  correlation test statistics with d.f. = t as out- 
lined in section 2.3. This approach is directed at the 
extent to which the probability of  leukemia death 
increases (or decreases) with the increase of  radiation 
dosage. In particular, four sets of  scores discussed in 
section 3 are potentially of  interest in this context. 
The first is uniform (or equal increment) scores which 
can be obtained as sums of  successive binary parti- 
tions of  the dosage scale which have been assigned 
equal weights. Thus, these scores do not necessarily 
imply that the actual levels of  the categories are 
equally spaced in some sense. Another choice of  
scores involves ridits computed from the first-order 
marginal distribution o f  leukemia deaths and radia- 
tion dosage levels obtained by summing across age 
groups. These scores are then applied to each of  the 
subtables determined by the age groups to provide a 
partial Spearman rank correlation analysis of  these 
data. Alternatively, a natural choice of  scores is the 
midpoint of  the radiation dosage intervals, where 
arbitrarily 0 is assigned to the category 'not in city'  
and 300 is assigned to the category '200+'. Moreover, 
for substantive reasons related to inverse square prin- 
ciples, it is of  interest to investigate the increase o f  
the probability of  leukemia death with respect to the 
square root o f  the radiation dosage midpoint. These 
four sets of  scores together with their corresponding 
correlation test statistic QCMMA obtained from 
(2.42), are displayed in table 3. Thus, we conclude 

Table 3 
Radiation dosage scores and correlation test statistics 

Type of scores Not in city Radiation dose levels 

0-9 10-49 50-99 100-199 200+ 

QCMMA 

Uniform 0 1 

Combined ridits 0.126 0.512 

Midpoints 0 5 

Square root of midpoints 0 2.24 

2 3 4 5 262.6 

0.841 0.928 0.960 0.987 102.4 

30 75 150 300 426.3 

5.48 8.66 12.25 17.32 316.5 
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COLUMN 1 2 3 4 5 6 
123456789012345678901234567890123456789012345678901234567890 

5 1 S 5 6 2 3 2 201(2G5.0) J 
DEATHS FROM LEUKEMIA OBSERVED AT ABCC (1950-1970) I 

Fig. 1. 

that there is a highly significant (a = 0.01) radiation 
dosage effect under any of  these scores adjusting for 
the effects of  age at exposure. A more extensive anal- 
ysis of  these data is reported in Landis et al. [7]. 

The card preparation necessary for analyzing these 
data by PARCAT is described in the following para- 
graphs. 

(1) BASIC PARAMETER CARD 

For each of  the q = 5 tables corresponding to the 
age groups there are r -- 2 responses within each of  
s = 6 sub-populations so that s • r = 12 ~< 100, which 

permits the data to be entered according to input 
mode 1. The required parameter values to analyze 
these data under uniform scores for both the row and 
column dimensions are indicated in the appropriate 
columns of  the first card in fig. 1. 

(2) TITLE CARD 

A title for this particular step of  the analysis is 
listed as card 2 in fig. 1. Since these data will be pro- 
cessed under several sets of  scores sequentially, it is 
necessary to set column 32 = 1 as indicated in fig. 1. 

COLUMN 1 2 3 4 5 6 
123456789012345678901234567890123456789012345678901234567890 
O. 5015. 
7. 10752 
3, 2989. 
1. 694. 
4, 418. 
11. 387. 
5, 5973. 
4. 11811 
6. 2620. 
1. 771. 
3.  792 .  
6. 820, 
2 ,  5669 .  
8, 10828 
3.  2798 .  
1. 797.  
3 ,  596 ,  
9 ,  624 ,  
3 ,  6158, 
19. 12645 
4 .  3566 .  
2 ,  9 7 2 ,  
1,  694,  
10. 608, 
3 .  3695 .  
7 ,  9 0 5 3 ,  
3 .  2415. 
2.  655 ,  
2 .  393.  
6 .  2 8 9 .  

Fig. 2. 
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(3) SCORE CARD 

No score card is required since uniform scores are 
selected for both rows and columns (col. 28 = 
col. 30 = 2 on card 1) for this step. 

(4) DATA CARDS 

dom and the associated significance level of  each chi- 
square variable. In addition, the corresponding sums 
of  these quantities given in (2.10), (2.25) and (2.38), 
respectively, are given in the row labeled 'TOTAL'.  
Finally, the Generalized CMH statistics defined in 
(2.13), (2.29) and (2.42) are given in section B of  the 
printed output.  

The data from table 2 are arrayed in the standard 
layout of  table 1 as shown in fig. 2. Note that the col- 
umn alignment conforms to the format specification 
on card 1. 

Although the individual tables together with their 
corresponding test statistics are each printed, only the 
summary table will be shown in fig. 3 for illustrative 
purposes. Note that the individual table statistics 
from (2.9), (2.24) and (2.37) are given in section A of  
fig. 3, together with the appropriate degrees of  free- 

(5) REANALYSIS OF DATA 

These data can be reanalyzed under the additional 
sets of  row scores outlined in table 3 by the sequence 
of  control cards given in fig. 4. In particular, note 
that column 32 = 1 for the first control card in fig. 1 
as well as each additional (1) BASIC PARAMETER 
CARD (column 5 = 6) to ensure that the same data 
set is saved on a temporary file for reanalysis. 

$ ~  PARCAT ~ $ ~  

GENERALIZED COCHRAN-NANTEL-HAENSZEL TEST STATISTICS 
FOR AVERAGE PARTIAL ASSOCIATION IN THREE-WAY CONTINGENCY TABLES 

COLUMN SCORES 

ROW SCORES 

DEATHS FROM LEUKEMIA OBSERVED AT ABCC (1950-1970) 

UNIFORM 1.00 2.00 

UNIFORM 1.00 2.00 3.00 4.00 5 . 0 0  6 . 0 0  

SUMMARY ACROSS TABLES 

A. SUMMARY OF INDIVIDUAL TABLE STATISTICS 

TABLE S A M P L E  MULTIVARIATE MEAN SCORE CORRELATION 
NO. SIZE ~ D.F. P QMS D.F. P ~MA D.F. P 

1 20281 248.05 5 0o0 248.05 5 0.0 127.51 1 0.0 

2 22812 43.89 5 0.0 43.89 5 0.0 29.32 1 0,0 

3 21338 100.56 5 0.0 100.56 5 0.0 60.23 1 0.0 

4 24682 88.85 5 0.0 88.95 5 0.0 38.02 1 0.0 

5 16523 84.74 5 0.0 84.74 5 0.0 40.56 1 0.0 

TOTAL 105636 566,09 25 0.0 566.09 25 0.0 295.65 5 0.0 

B. GENERALIZED COCHRAN-MANTEL-HAENSZEL STATISTICS 

SAMPLE MULTIVARIATE MEAN SCORE CORRELATION 
SIZE Q(CMH) D.F. P O(CMMS) D.F. P Q(CMMA) D.F. F' 

105636 461.66 5 0o0 461.66 5 0.0 262.62 I 0.0 

Fig 3 



240 J.R. Landis et al., Testing average partial association in three-way contingency tables (PARCA T) 

COLUMN 1 2 3 4 5 6 
123456789012345678901234567890123456789012345678901234567890 

6 5 6 2 3 4 4 1(2S5.0) 
DEATHS FROM LEUKEMIA OBSERVED AT ABCC (1950-1970) 

6 5 6 2 3 2 3 I(2G5.0) 
DEATHS FROM LEUKEMIA OBSERVED AT ABCC (1950-1970) 
O, 5. 30. 75, 150. 300. 

6 5 6 2 3 2 3 I(205,0) 
DEATHS FROM LEUKEMIA OBSERVED AT ABCC (1950-1970) 
O, 2.24 5,48 8.66 12.25 17.32 

Fig. 4. 

6.2. Dumping syndrome data 

The following data in table 4 which appeared in 
Grizzle, Starmer and Koch [17] were obtained from a 
multi-center randomized clinical trial involving suit- 
ably eligible patients who were treated in four partici- 
pating hospitals during 1966-1968.  Each patient was 
randomly assigned to one o f  the following four surgi- 
cal procedures for the treatment of  duodenal ulcers: 

A. Drainage and vagotomy; 
B. Antrectomy (25% resection) and vagotomy; 
C. Hemigastrectomy (50% resection) and vagotomy; 
D. 75% resection; 

Table 4 
Severity of dumping syndrome 

Hospital Treatment Severity of syn- Total 
drome a 

N S M 

1 A 23 7 2 32 
B 23 10 5 38 
C 20 13 5 38 
D 24 10 6 40 

2 A 18 6 1 25 
B 18 6 2 26 
C 13 13 2 28 
D 9 15 2 26 

3 A 8 6 3 17 
B 12 4 4 20 
C 11 6 2 19 
D 7 7 4 18 

4 A 12 9 1 22 
B 15 3 2 20 
C 14 8 3 25 
D 13 6 4 23 

a N denotes none; S denotes slight; M denotes moderate 

and was subsequently classified with respect to the 
severity of  the 'dumping syndrome' an undesirable 
sequela of  surgery for duodenal ulcer. 

The primary objective in the analysis of  these data 
is to investigate the relationship between the nature 
and extent of  surgery which involves the removal of  
different amounts of  the stomach and the severity of  
the 'dumping syndrome' adjusting for potential hos- 
pital effects. From a strict randomization point of  
view, the basic framework for hypothesis testing is 
the multiple hypergeometric model in (2.2). Within 
the framework outlined in section 2, these data 
involve s = 4 sub-populations (treatments), r = 3 
response categories (severity of  dumping syndrome) 
and q = 4 levels of  the covariable (hospital). 

For these data, the Generalized CMH statistic in 
(2.13) is QCMH = 10.60 with d. f  = 6, which is not 
statistically significant (a = 0.10). However, since the 
dumping syndrome severity is measured on an ordinal 
scale, the types of  alternative hypotheses which are 
of  primary interest are location shifts which are indi- 
cative of  the extent to which the syndrome tends to 
be more severe for certain operations than others. 
Under uniform scores discussed in section 3.3, the 
mean score test in (2.29) is QCMMS = 6.59 with 
d. f  = 3 which is statistically significant (a = 0.10). 
Alternatively, using marginal ridit-type scores as out- 
lined in section 3.5, these data yield QCMMS = 7.63 
with d. f  = 3 which is also statistically significant 
(a = 0.10). 

Finally, since the four surgical operations can be 
regarded as having an underlying ordinal scale with 
respect to the amount of  stomach removed, it is also 
of  interest to investigate the extent to which the loca- 
tion shifts in the severity of  the dumping syndrome 
are related to the ordinal scale for treatment. Conse- 
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COLUMN 1 2 3 4 5 6 
123456789012345678901234567890123456789012345678901234567890 

5 i 5 4 4 3 3 2 2 1(8G10°0)  

SEVERITY OF DUMPING SYNDROME 
23. 7. 2. 
23. 10. 5. 
20. 13. 5. 
24. 10. 6. 
l B .  6. 1. 
18. 6. 2. 
13. 13. 2. 

9. 15. 2 .  
8. 6 .  3. 

12. 4 .  4 .  
11. 6 .  2. 

7 .  7 .  4. 
12. 9. 1. 
15. 3. 2. 
14. S. 3. 
1 3 .  6 .  4 .  

6 6 6 
SEVERITY OF DUMPING SYNDROME 

Fig. 5. 

GENERALIZED COCHRAN-NANTEL-HAENSZEL TEST STATISTICS 
FOR AVERAGE PARTIAL ASSOCIATION IN THREE-WAY CONTINGENCY TABLES 

SEVERITY OF DUMPING SYNDROME 

COLUMN SCORES t UNIFORM 1.00 2.00 3.00 

ROW SCORES ; UNIFORM 1.00 2.00 3.00 4.00 

SUMMARY ACROSS TABLES 

A. SUMMARY OF INDIVIDUAL TABLE STATISTICS 

TABLE SAMPLE MULTIVARIATE MEAN SCORE CORRELATION 
NO. SIZE O D.F. P OMS D,F. P QMA D.F. P 

1 148 3.40 6 0.7575 2.62 3 0.4536 1.57 I 0.2105 

2 105 10.82 6 0.0942 7.34 3 0.0617 7.06 1 0.0079 

3 74 3.08 6 0.7987 1.69 3 0.6382 0.16 1 0.6927 

4 90 5,21 6 0.5177 1.68 3 0.6420 0.66 1 0.4161 

TOTAL 417 22.50 24 0.5494 13.34 12 0.3450 9.45 4 0.0508 

B. GENERALIZED COCHRAN-MANTEL-HAENSZEL STATISTICS 

SAMPLE MULTIVARIATE MEAN SCORE CORRELATION 
SIZE G(CMH) D.F, P O(CMMS) D.F. P Q(CMMA) D.F. P 

417 10,60 6 0.1016 6.59 3 0.0862 6.34 1 0.0118 

F~ .  6. 
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* * g g *  PARCAT * * * * *  
8ENERALIZED COCHRAN-MANTEL-HAENSZEL TEST STATISTICS 

FOR AVERAGE PARTIAL ASS0CIATION IN THREE-WAY CONTINGENCY TABLES 

COLUMN SCORES 

ROW SCORES 

SEVERITY OF DUMPING SYNDROME 

MARGINAL RIBITS SCORES VARY FOR EACH TABLE 

MARGINAL RIDITS SCORES VARY FOR EACH tABLE 

SUMMARY ACROSS TABLES 

A. SUMMARY OF INDIVIDUAL TABLE STATISTICS 

TABLE S A M P L E  MULTIVARIATE MEAN SCORE CORRELA'IION 
NO. SIZE O D.F, P ~MS D ,F. F' ~MA [I.FI. FI 

I 148 3.40 6 0.7575 2.75 3 0.4312 1.41 I 0.2350 

2 105 10.82 6 0.0942 8,93 3 0.0303 8,49 1 0.003~ 

3 74 3 . 0 8  6 0 . 7 9 8 7  1 . 8 7  3 0 . 6 0 0 4  0 . 2 0  1 0 . 6 5 6 8  

4 90 5.21 6 0,5177 1,96 3 0.5809 0,35 1 0.5523 

TOTAL 417 22.50 24 0.5494 15,51 12 0.2149 10,46 4 0.0334 

B. GENERALIZED COCHRAN--MANIEL-HAENSZEL S r A T I S T I C S  

SAMPLE MULTIVARIATE MEAN SCORE CORRELATION 
SIZE O(CMH) D,F. P Q(CMMS) B.F, P fl(CMMA) D.Fo P 

417 1 0 . 6 0  6 0 . 1 0 1 6  7 . 6 3  3 0 . 0 5 4 2  6 . 9 2  1 0 . 0 0 8 5  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Fig .  7. 

quently, the correlation mode of the CMH procedure 
outlined in section 2.3 can be utilized to examine the 
extent to which the probability of more severe dump- 
ing syndrome outcomes tends to increase (or decrease) 
with the extent of the operation in terms of larger 
amounts of stomach removed. Specifically, the corre- 
lation test in (2.42) yields QCMMA -- 6.34 for uniform 
scores and QCMMA = 6.92 for marginal ridit-type 
scores. Under Ho in (2.1), these statistics asympto- 
tically have chi-square distributions with d.f. = I. The 
former is significant at (a = 0.05) and the latter at 
(a = 0.01). Thus, both indicate a significant relation- 
ship between dumping syndrome severity and the 
extent of  operation. 

The control cards for PARCAT necessary for ana- 
lyzing these data under both uniform and marginal 
ridit-type scores are shown in fig. 5 and the corre- 
sponding summary tables of test statistics for each of 
these scoring procedures are shown in fig. 6 and 7, 
respectively. 

7. Hardware specifications 

This computer program is written in double preci- 
sion in IBM 360/370 FORTRAN IV which incorpo- 
rates a few extensions to American National Standard 
(ANS) FORTRAN. As a result, minor modifications 
of the source code may be required in order to use 
this program on other mechines. 

8. Program availability 

The source deck for the batch version of PARCAT, 
together with the corresponding listings and test data 
sets from section 6, may be obtained for a nominal 
cost from the Department of Biostatistics, School of 
Public Health, University of Michigan, Ann Arbor, 
MI 48109, USA. A current version of the documenta- 
tion and running instructions is included with the ini- 
tial purchase of the computer program. 
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9. Disclaimer 

Although PARCAT has received extensive testing, 
no warranty, expressed or implied, is made to the 

accuracy and functioning of the program. No respon- 
sibility is assumed by the authors. However, if spe- 

cific questions or problems do arise, contact the first 
author at the Department of Biostatistics, School of 
Public Health, University of Michigan, Ann Arbor, 

MI 48109, USA. 
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Appendix 

7-" 

PARAMETER CARD 

CASE I ? 

Flowchart 1. 

Yes 
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Yes 
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'Yes 
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S c o r e  
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' e s  

/ ...... / 
TABLE 

Yes 

i ........ L CASE I F U N C T I O N S  
AND STATISTICS 

I CALCULATE THE TABLE INDEPENDENT 
ROW SCORES 

Flowchart 2. 
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Flowchart  3. Flowchart 4. 


