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Abstract : Bycombining SU(3)recoupling techniques with the useofthe Bergmann-Segal integral transform
closed expressions are derived for the interaction kernels of the nuclear cluster model . In a cluster
model basis in which the relative motion and internal oscillator wave functions (with arbitrary
and different oscillator frequencies) are expanded in SU(3) coupled form, SU(3) reduced matrix
elements are evaluated by integral transform methods . Matrix elements in a basis of good angular
momentum can be constructed for multi-cluster systems by combining these SU(3) reduced matrix
elements with readily available SU(3) Wigner coefficients .

1 . Introduction

The detailed treatment of nuclear cluster problems by resonating group methods
has been made possible by many recent refinements in the resonating group technique.
In particular, Hackenbroich's tremendous computer code has made possible
sophisticated microscopic multichannel calculations t). Even though these com-
putational techniques have been improved to allow extensive calculations in systems
with mass as large as A = 8, e.g. ref. Z), detailed calculations of this type haveneverthe-
less been limited to very light nuclei. The introduction of integrâl transform techni-
ques a-5) has furnished us with a powerful new tool for the evaluation of resonating
group kernels by reducing thé computational effort for nuclear cluster problems to a
calculation of integrals over intercluster .coordinates . Although much progress has
been made in the technical problem of evaluating these integrals, some serious
analytical difficulties remain . The evaluation ofresonating group kernels in an angular
momentum coupled basis has proved very difficult for cluster problems involving
more than two fragments e) or for cluster problems with heavy fragments other than
closed-shell nuclei such as t 60. A practical solution to both of these problems may
be effected by exploiting the SU(3) symmetry properties of the relative motion and
internal harmonic oscillator functions of the cluster basis, particularly if cluster
functions are expressed in terms ofan SU(3) coupled basis for whiçh SU(3) recoupling
techniques can be used to advantage'). In a basis in which the SU(3) quantum
numbers of the several relative motion functions and internal functions of heavy
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fragments are SU(3) coupled successively to resultants of good SU(3) symmetry, the
details of the SU(3) subgroup labeling, including the angular momentum quantum
number, come into play only in the last step of the calculation . Difficulties associated
with the fact that the angular momentum quantum number does not fit naturally
into the SU(3) scheme are thus essentially avoided . In an SU(3) coupled cluster
function basis SU(3) reduced matrix elements can be evaluated by integral transform
techniques where any convenient basis (such as a Cartesian oscillator basis) can be
used to effect the SU(3) coupling .in the transform since the SU(3) reduced matrix
elements are independent of SU(3) subgroup labels . Matrix elements in the physically
meaningful basis of good angular momentum are then constructed trivially by com-
bining the SU(3) reduced matrix elements with readily available SU(3) ~ R(3) Wigner
coefficients 8) . The technique can be applied to multi-cluster systems as readily as to
simple cluster systems made up of only two fragments. The complexity of the cluster
system is reflected only in the number of SU(3) recoupling coefficients needed for the
evaluation of the reduced matrix elements .
Of the many integral transforms used in microscopic cluster calculations the

Bargmann-Segal (BS) transform a) is ideally suited to the exploitation of SU(3)
coupling techniques since oscillator functions have very simple SU(3) properties
in Bargmann space. Many of the technical problems in setting up the transform of
a resonating group kernel have been solved by earlier treatments . The problem of
antisymmetrization can be handled by taking advantage of double coset formula-
tions 9). The coupling of the SU(4) symmetries of the various cluster fragments to
build functions of good total SU(4) or conjugate space symmetry can be effected
either by permutation group techniques in terms of a double coset formûlation or by
unitary group recoupling techniques 9) . Theneeded technology 9) is readily available
so that the problem has beén reduced to one of evaluating orbital integrals . For the
orbital problem the reduction to cluster relative coordinates has been carried through .
in a practical way in ref. 4), , and this will form the starting point of the present
investigation. [The types of interactions to be considered are thus restricted to those
of ref. 1°); two-body interactions are built from superposition of Gaussians.] Kernels
of such interactions have transforms of simple Gaussian form for . multicluster
systems composed of fragments with Os internal functions 5), hence each with mass
5 4. For cluster systems including heavier fragments the integral transforms of the
resonating group kernels are products of Gaussians with polynomials in the trans-
forrned-space variables for the relative motion Jacobi vectors . The explicit construc-
tion of these polynomials has, however, been carried out in very few cases . The
evaluation of such polynomials is relatively straightforward if they are constructed
from SU(3) coupled tensors in the Bargmann-space variables for the relative .motion
vectors . In this form they can also be readily combined with the BS transform for
the relative motion excitations by simple SU(3) coupling techniques . These lead
directly to the SU(3) reduced matrix elements which are then combined with
SU(3) ~ R(3) Wigner coefficients to yield the matrix elements in the needed angular
momentum basis.
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It is the purpose of this investigation to illustrate the new technique with a few
very specific sample calculations. The illustration will proceed in two steps. In sect . 2
the simple three luster system, made up of three Os cluster fragments, will be treated
by the new techniques . (For simplicity only central interactions are discussed to
avoid the additional complications of spin couplings. These are extraneotis to the
SU(3) coupling techniques which are emphasized here but can easily be combined
with them if spin-orbit and tensor forces are included.) A few numerical details
are given for the ' ZC = a+a+a cluster system. There have been many studies of
' ZC. The purpose here is not to improve on these but to study the SU(3) irreducible
tensor character of interactions which have been proved successful in earlier treat-
ments of this cluster system 11 ) . In séct . 3 a fourth Os clûster fragment is added to
show that the new techrüque can easily be generalized to the multicluster system.
The n~luster wave functions can also be mâde to include cluster systems with one
or more heavy fragments by limiting the excitations of some of the relative motion
functions in the n-cluster system to their lowest Pauli-allowed values. We shall
indicate how the BS space polynomials generated by the p-shell components of such
a heavy fragment (with 5 <__ A _< 16) can be combined with the relative motion
excitations of the remaining clusters to construct the full resonating group kernel
for such a cluster system .

2. The basic method and a simple example: The three-cluster system

The three-cluster system used for . illustration is described by a cluster wave
function

3
Y` - ~~~P(~~)~

oo~ [X(R 1)cQ ~ o) x X(RZ)cQ~o~~%a~~

	

(1)

-1

wheré the internal wave functions, ~P, ofthe threé fragments are built from Os oscillator
wave functions in the internal degrees of freedom ~i . The ~P include the full spin-
isospin function of the clusters . The relative motion functions, X, are harmonic
oscillator functions in the Jacobi vectors Rl, RZ which give the relative positions of.
the three cluster fragments. These carry Q1 and Qz oscillator quanta and are
characterized by their SU(3) labels (~ipc) _ (Qi0), in Elliott's notation'2).. The
function is given in SU(3) coupled form . Thesquare bracket denotes SU(3) coupling .
Theresultant SU(3) symmetry (~,~) is characterized by subgroup labels which include
the angular momentum quantum numbers LM. To carry out the SU(3) coupling
each X(R) must be a harmonic oscillator function in a dimensionless variable R.
Each dimensionlessR; is equal to the physical R; (measured in cm or fin) divided by the
oscillator length parameter [~lM ima~ ~ with appropriate reduced mass Mi and
frequency coy of whatever magnitudé proves convenient . The method to be outlined
will thus apply with equal validity whether different relative motion functions have
equal or different oscillator frequencies . Thé antisymmetrizer, .s~, handles the
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antisymmetrization between clusters. The matrix elements of an operator, such as
the Hamiltonian, between such cluster functions can be converted to a kernel, .~,
by performing the integrations over the internal variables ~ for the three clusters . In
our example .the kernel will be a function of the variables ~ = lF l$z, R = R1Rz
where the barred and unbarred quantities arise from the bra and ket of the full
matrix element, respèctively. Specifically, we want to develop a general technique
for the evaluation of integrals of the type

I = I dRl . zdRi .
z[X*(R1)c~~o~ x X*(j~z)c~Zo)]Kiâ~

between states of good total angular momentum L. (The kernel .1ï is rotationally
invariant; an L = 0 operator.) If matrix elements are needed in an LILZLM [rather
than the (~.p)xLM] basis it is only necessary to uncouple the SU(3) coupled relative
motion functions :

where the double-barred coefficient is an SU(3) ~ R(3) reduced Wigner coefficient
and the round bracket on the right-hand side now denotes only ordinary angular
momentum coupling . 1fie SU(3) ~ R(3) Wigner coefficients are readily available
through the computer code of Akiyama and Draayer s) (we .use their conventions
for the additional quantumnumber x) . Ifthekernel .~ is nowimagined to be expanded
in terms of SU(3) irreducible tensor components, .~~z°'`°~, the integrals I can be
expanded in terms of SU(3) reduced matrix elements

I =

	

~ <~i~z(~IL~c~~~IIQiQz(~p)~Po
c "iorw)vo

x .~(1f11fzR1Rz)~Ri)~ Q~o) x X(Rz)~Qzo)]Ka~~

	

(2)

_ ~ <(Qi0)Li ; (Qz0)Lzll(~f~)KLi(xL,(R1)~
Q~o) xxL~(RZ)cQ~o~)L�r~

L,Lz

Thedouble barred (SU(3) reduced) matrix elements of.~~°~> appear in combination
with SU(3) ~ R(3) reduced Wigner coefficients which carry the L-dependence. The
sum includes a sum over the outer multiplicity label po which is needed whenever
the representation (~o,uo) occurs with a d-fold multiplicity, with d > 1 in the coupling
(~~) x(W~, ) . [The conventions of ref. e) are to be used for the multiplicity labels po.
It is to be noted that the SU(3) reduced matrix elements are defined in terms of an
unconventional order for the SU(3) coupling in the SU(3) Wigner coefficients . The
more conventional order would have involved SU(3) Wigner coefficients . <(~,p)xL ;

(~opopll(~~xL)P5 . In principle, the two coefficients are relatedby symmetry proper-
ties . In practice, these may not be simple in cases with outer multiplicity po for
d > 1. The factor {2L+1] -~ _ (-~-~<LML-MI00~ reflects the use of this
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symmetry for the ordinary angular momentum factor in the coupling.] It is to be
emphasized that no explicit irreducible tensor decompositions of the kernel need
to be carried out. The SU(3) reduced matrix elements of the kernel will fall out of
the Bargmann-Segal (BS) transform of the kernel quite naturally if all factors in this
transform are expressed in SU(3) coupled form. The full integrals I in a basis ofgood
angular momentum can thus be-constructed through eq. (4) with the use of SU(3)
Wigner coefficients which are accessible through efficient computer codes 8).
TheBS .transform of the kernel, .~, canbe constructed in terms ofthe BS transform

kernels, A,

	

'

with

importance in our applications :

[p(gl)cQ~o~ x p(gz)c4zo~]ax~)

where in this case K, K stand collectively for ~1Kz, IC 1Kz, the Bargmann-space
variâbles which in transformed space correspond to l~l , lFz and R1Rz [cf. eqs.
(2.3}{2.9) of ref. a)] . In our specific case

A(K, R) = A(R1, R1)A(Kz, Rz),

	

(6a)

A(K1R1) _

	

~

	

A(K1~, R,~)

	

(6b)

where the harmonic.oscillator function generating function property of A is ofprime

g~x
A(Kx~ X) _ ~, ~P~(X)

e=0 x'

Here Ks=/ nx ! is the normalized one-dimensional oscillator function in Bargmann
spacee . The fact that the oscillator vacuum is the simple number 1 leads to much of
the simplicity of Bargmann space.

In a Cartesian oscillator basis the Bargmann-space function

x

	

z
~xw".

	

.Jn ! .Jn. .!

	

n,!x

has SU(3) irreducible character (QO) with Q = nx+ny+nz , whereas

K*nx K*er Ksn.
p(g*)(oQ) __ x s =

x y s

has SU(3) irreducible character (OQ).
An SU(3) coupled Bargmann-space polynomial can be defined by

(10)

_ ~ <(QiO~i(QzOk~zl(~~~ip(Ki)âQ' °~p(Kz)âQz°>,

	

(11)
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where subgroup labels a in the U(3) coupling coefficient can be chosen in any con-
venient fashion ; e.g. a = n xnyn= in a Cartesian oscillator basis, or a = rcLM in an
angular momentum basis. With K 1 = K2 a renormalization factor is .néeded. The
normalized function p(K)çQ°) can be obtained from

i
[p(~(tz~o) x p(K)(Q=o)~Qxu) = p(Qo)(K) ~

	

Q .

	

~Sx.tz=Q~+Q,S~o .
Q~!Q .Z !

In the Cartesian basis the U(3) coupling coefficient for the stretched coupling is
given trivially in terms of binomial coefficients,

<(n0)nxngnz(m0)msm~m= ~(n + m, 0)n x+ m~, ny+ m,, nz+ mz)

(12)

n

	

y

	

n

	

n_

	

m/~
.

	

(13)

The expansion ofA(K, R) in the BS transform ofthe kernel .7ï can now be expressed
in terms of polynomials of the type (11) :

A(1C, R~ _

	

~

	

~

	

Â'n,x(`~. 1)xe,y(Y1)Xelz(Z1)i~n=x(`~2)Xn2y(Y2)Ân2,(Zi)
_ ni x . . .n2z (x~

(Qi - n iar + °iy +nis)

x <(~i0)nlsnlyni .(~ZO)nZxnz,,nZ=~(~u77~p(R1)(Q~o) x p(g Z)(Qzo>~a~7

~ Lp(1~~)(~~o) x p(~~)(Q=o)~Q~~ ~(~ )(~~o) x X(~ )(¢Zo)~ç~7* .i

	

a a
QiQa (x~

(14)

Since the sum over subgroup labels need not to be carried out explicitly, the U(3)
Wigner cceflcients can be supposed to be of the mixed variety where quantum
numbers â

.
are given in the angular momentum basis â = xLM. With a similar

expansion of A*(K, R) the BS transform of the kernel .~ can be expressed in the form

(~ouo)

and expanding the integral through eq. (4) the sums over subgroup labels xxLM
can be performed to express the BS transform of .7Er in terms of fully SU(3) coupled

FI(~~ K) _ ~ ~ ~ d1~dR[X(~i)(~~o) x x(~s)(~=o)~Ki~* .7f'
4~QZ (z~) xKLM J
Q~Qz (x~)

x LiC~RI)(t2io) x x(Rz)(QZo)~Kx~ x [p(~i)(i2~o) x p(iC (x~)2
)(t2zo)

~KLM

x ~p(Ki)(oQil x p(KZ)(oQ2)~ Lz) M(-)L-M. (15)

By imagining an expansion of the kernel .7ï in SU(3) irreducible tensors

_ ~ ,~(~~)
Lo=o~ (16)



tensors in Bargmann space :

HfK, R) _

	

~

	

~

	

~ <~~~y(~~)II~c~~w~IIQ1Qy(~P)~po
(ZoKo)Po Q~Qz (xk)

Q~QZ cx~~
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x LLp(R1)e2~o) x P(gy)cQzo>~czû~ x Lp(Ks)coQ,~ x p(KZ)coQz)~c~z)~~o)vo.

	

(17)

The needed SU(3) reduced matrix elements of .~ can thus be read directly from the
coefficients in an expansion of H(8, K) in terms ofthe fully SU(3) coupled Bargmann-
space tensors of eq. (17).
For the simple three-cluster system (or any multicluster system with fragments

containing Os internal cluster wave functions) and interactions of the type used in
refs. s .'°), the BS transform H($, K) is of simple Gaussian form

H(8, K) _ ~ aß exp {p(ß)} exp {Q(ß)} exp {r(ß)} .

	

(18)
ß

The ß-sum arises from the antisymmetrizer which is expressed in terms of a double
coset formulation 9) . The ß-sum runs over the full sét of double coset generators ;
the weighting factors aß are calculated by the techniques of ref. 9) (actual sums are
performed by simple computer codes) . The Gâussian functions exp {p}, exp {6},
exp {T} are abbreviations for

where the matrix elements Qr~, pi>' T ~J
for each ß are calculated by the analytic methods

of ref. S ) .
The exp {Q} factor is an SU(3) scalar so that its expansion in terms of SU(3) coupled

K-space polynomials is particularly simple. The basic building block is expressed as

(K~ .
Kj) =

V'Lp(K~)~io) x p(K~)col~~i~ô~ (20)

With the use of eq . (12) and the simple SU(3) recoupling coefficient

dim (~P)_
- [dim ] ' (21)(n0) dim (m0)

(~F~) ~
we obtain

(~~ ~ Ki)Q = Lp(K-~)~Qo~ x p(Ks)coQ~~ôoo~[dim (QO)~}, (22)nt i

z
(19a)

~. J= i

z

i. J=1

2

exp {T(ß)} = exp { ~ i~~{ßxK* ~ K*)}, (19c)
a .i=i



8

	

K. T. HECHT AND W. ZAHN

where dim (~ .p) = i~. + 1 xk + 1X~+ p +2) is the dimension of(~u) . The 9(~,Ec) coefficient
in square brackets is a particularly simple SU(3) recoupling ccefFcient in unitary form
(the arrangement of rows and columns follows the standard notation för the 9j
symbol of angular momentum recoupling theory). Straightforward SLJ(3) recoupling
[with the use of eqs. (12) and (21)] leads to the expansion of the exp {Q} factor

(zupc) I+rn .n+j
I+n,m+j

with

x [[p(1~1)(I+~, .o~ x p(~z)c~+j.oi]Iavv~~ x [p(R*)(o.I+~~ x
P(KZ)(o.~n+j~](~aQI]ô o~~

	

(23)

(m . n. J~

and with i = j

x r(l+mlCn+jlCl+nlCm+j l l~
(!0)

	

(m0)

	

(l+m, 0)
(n0)

	

(j0)

	

(n+j, 0)

	

,

	

(24)
(l+n, 0)

	

(m+j, 0)

	

(1.QuQ )

where the U(3~(ap) coefficient contains at most two-rowed representations so that
it is equivalent to an SU(2) X-cceftïcient (unitary form ofthe 9j recoupling coefficient).
With the "stretched" coupling it can moreover be related to an SU(3) Wigner coeffi-
cient [cf:, e.g . eq. (3 .8) of ref. ' 3)] .
The basic building block of the exp {p} factor is an SU(3) irreducible (20) tensor

with L = 0.
Withi~j:

(Rt~ gj) _ ~[P(RI)(io~ x p(Kj)Iio~]ioô~

	

(25a)

(25b)

Using algebraic expressions' 4) for the simple SU(3) ~ R(3) Wigner coefficients
<(Q10X1; (QzO~~~(~p)Di and very simple 9(ß.,u) recoupling coefficients it is easy to show
that with i ~ j:

(K . 1~ )Q
26aQ' czp)

	

L=o+

	

( )

where (~u) runs over the values (2Q, 0), (2Q-4, 2), (2Q-8, 4), . . ., (0, Q) for Q = even
or . . ., (2, Q-1) for Q = odd, and with i = j

Qi
=

Qi . l L-0 ' (26b)



[Since the phases are partly a question of convention it should be pointed out that
the phases of eq . (26) are in agreement with the phase convention of Akiyama and
Draayer e) if SU(3)/R(3) states are defined in terms of the labels IJ = Ol .of ref. s)
for all (~w) .]

	

-
The expansion of the exp {p} factor in terms of SU(3) irreducible tensors,
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exp {P1 - ~

	

~ BP(4i~ 9z ; (~PfzP))[P(~~)~~ °) x P($z)(glo>]LP~°ô~
9 .9z (ZoRn)

is best carried out by introducing an intermediate unitary (orthogonal) transformation

(27)

The transformation from the K a , lib to the 1~ 1 , K z basis is then made by the unitary
transformation

[p(fC )(zn. 0) x p(Rb)(2m .
°)]LZp~ô - ~ ü}(9i -9z). (e-m)(ß)a

9i9z

	

"
x [p(gl)(9~0) x p(~Z)(9z0)]LoKO~

where the.. SU(2) ct-function [using the phase convention of eq . (4 .1 .15) of ref. 1 s)]

is the generalized Moshinsky bracket for SU(3) coupled oscillator functions, [as
shown by Brody and Moshinsky ie) and Kaufman and Noack l')] . The expansion
of eq. (29), with the use of eqs. (2Gb) and (32), leads to the expansion ccellicients

BP(9i4z ; (~rPa)) °

	

~

	

PaaP66
e, ni

~ + in= }(9 i t 4z)

x

	

(

	

)	<(2n,0~; (2m, o)oii(~~Ppi x d zq -Qz) .(~-~)~)'

	

(33)n.m .
.The basic building block of the exp {i} factor is an SU(3) irreducible tensor of

rank (02) :

.(R* . g*) = V6p(K*)ïzô ;

	

(~* .
gÎ

) _ ~[P(R')(°1) x p(g*)(ol)]ï=ô~

(32)

(34)

Ka = cos (iß)ß, -sin (Zß)~z, (28a)

frCb = sin (iß)ß, +cos (iß)~z, (28b)

where ß is chosen so that

exp {P'r = exp {PQ,(KQ ~ ka)+Pnn(~b' Ref, (29)

with

P~ = Pi i cosz zß+Pzz sinz iß-2Piz cos iß sin iß, (30a)

Pbn = P11 sinz iß+Pzz cosz iß+2Piz cos iß sin iß, (30b)

tan ß 2Piz= . (31)
Pzz-P~ i
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Simple conjugation properties of the SU(3) tensors show that the expansion of the
exp {z} factor is given by B-coefficients of the type of eq . (33) .

Finally, the Bargmann-space SU(3) tensors from the expansions of the exp {p},
exp {Q} and exp {i} factors are SU(3) coupled successively to resultant (~opo), m
a

[[(~PpP)
x (00)](~PpP) x (p~i,T)](~.opo)po scheme, where the SU(3) coupled tensors of

the form

form by straightforward SU(3) recoupling to yield

exp {p} exp {Q} exp {z}

where

-_

	

_ _~

	

_
Qi :QiQa

	

9i924i4~
(zP)G+ )(ZoPo)Po (ZvPPH .~oPa)(x*P~)

xCQ(~1- Ql~~z - 4z+Qi -R1.Qz-qz ;(~QP,))

x BP(4i~ 9z~ (~PPv))Bt(9i4z~ (~~T))

x Z(~i~zQiQz414z414z(~PFwX~,PQX~~tX~~~pX~of~o)Po)

x [[p(gi)(4~o) x p(~z)(Q2o)](z~)

x [p(gi)(oQ~) x p(g?)(oQz)]c~x)]~uôPo~

	

(37a)

dim ~Z - ~

	

( ~

	

~ (- )xo+,~P+xo+va-z-~

dim (~PPP) dim (Zaha)

x {~ ~(~P` p)Lp ° ~; (PL~~)L~ - ~II((~oPo)Lo - ~wo
Po

x U((~~a~ex~oF~o~~~) ; (~ PuP)1Po ; (P~)1Po)}

[[[p(R i )l9iU) x p(~z)(9zo)](ZaPa)

x [[p(p~l)(Q~-9~, o) x p(Kz)(Qz-9~, o)](aa~v)

x i[p(R*)(o.Q,-9~) x p(gâ)(o .4a-q~)]U~ezo)](uo>](x,Kn)

x [p(R*)(oq~) x p(l(2)(oq~)](u<xt)](xokôvo (35)

are then transformed into the needed

[[p(gl)(Q~o) x p(~z)(QZo)](z~) x [~Ki)(oQ ~ ) x p(gZ)(oQ~)](~x)]~kôPO (36)



x
CC~1/C~2~CY1/Cqz~~~

(ql~) (4z0) (~vpv)
(~1 -41~~) ~ (~z -qz+ 0) (~.apa1

(Lil~) (~z~)
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1 1

r(Q1-qv~) (Qz-qz~~) (~apQ)1

(ql~) (q2~) (~tp~)

(Q1~)

	

(Qz~)

	

(~u) .

The SU(3) reduced matrix elements which are the coefficients of the Bargmann-
space tensors of the type of eq . (36) [see also eq. (17)] can thus be evaluated in terms
of the coefficients CQ , Bo, B= andthe coefficient Z which carries the SU(3) recoupling
coefficients. The U~oefficient is an SU(3) Racah coefficient in unitary form and is
written in the notation of réf. a)

U((~1~11~~2~2n~~~~3~3)~ (, 12~12)p12p12, 3 ~ (~23~23)p23p1, 23)r

. (37b)

which is a direct generalization from ordinary angular momentum theory . These
U-coefficients are readily available through the code of Akiyama and Draayer e) .
The two 9(ß,p) recoupling coefficients contain at most two-rowed U(3) representations
so that they are equivalent to SU(2) X-coefficients (unitary form of the 9j recoupling
coefficients). With two "stretched" couplings these again have a very simple form .
Since (~vpa) (~.ouo) and (~.~ T) all correspond to two-rowed U(3) representations
(~+ 2~1 = ~P+2pP+~Q+2pQ), the coupling (.~ x (ho~a) -. (~a%w) is free of multi-
plicity ; the label p in the 12 position ofthe U-coefficient can thus only have the value
1 and is essentially redundant . Similar remarks hold for the (hQ~Q) x (N . T~T) -+ (~) 1

coupling and the label p in the 23 position .
To illustrate the complexity of the q~, qi, (~PuP), (~,h,), (~~iT)

structure in a specific
case, it may be useful to consider a very simple example, the 12C = a+a+a cluster
system with oscillator functions of equal frequency. For this system the lowest
Pauli-allowed states have ~1 = ~z = Q1 = Qz = 4 and (.gyp-} _ (~.p) =.(04) . The
possible values of (~~.i P), (~eha), (~~t) for this subspace of the cluster basis are listed
in table 1 . In this subspace the SU(3) tensor components .~~z°N°1 âre restricted to the
possibilities (~opo) _ (00), (22), (44) . The relative importance of the three (~opo)
tensors is determined for the contributions from each ql +qz = ql +qz term by the
sum in the curly brackets of eq . (37b). These quantities are therefore included in
table 1 .
A realistic calculation will clearly require either a much larger pure oscillator

basis or, preferably, will stem from a variational treatment in which radial functions
are expanded in terms of oscillator functions of several different frequencies . Insofar
as all ofour techniques make useôf oscillator functions x(R) in dimensionless variables
R, with unit weighting factors in the BS transform kernels A(R, R), they apply
with equal validity to the case where different relative motion functions have different
frequencies, and frequencies diûerent from the Os internal cluster functions . The
different mi merely lead to amore complicated set of p~~ Qty, iiiwith more complicated
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T~et.~ 1
Composition of the (Zopo) structure for the lowest Pauli-allowed states of 'ZC

') Note that 91 +q2 = q1 +q2.

n) {

	

} stands for the sum in the cwly bracket of eq . (37b).

weighting coefficients 4). In addition, the distinction between Pauli-allowed and
Pauli-forbidden Qi values disappears when the different relative motion functions
have different frequencies. Even very low values ofQt and Qa should thus be included
in the basis in variational treatments with radial functions expanded in terms of
oscillator functions of several different frequencies. O.ur aim here is not to improve
on earlier calculations for ' ZC but to study the SU(3) irreducible tensor character
of interactions of the type t°) used in earlier successful treatments of the (a +a+a)-
cluster system. For this reâson only matrix elements in the a+a+a cluster basis
with Qt = QZ = 4, (~,u) _ (04) will be ~ considered . However, these will be derived
from a set of pt~, Qi~, and i+~ which stem from a realistic variational trial function for
t ZC which can be expected to give both reasonable values for the binding energy
and the excitations of the 0+ , 2 +, 4+ rotational band of 1ZC.
The Hamiltonian, successfully employed by the Hackenbroich group in Cologne

for mass numbers 3 <__ A S 12 is built from a kinetic energy term and a nucleon-
nucleon soft-core model potential 1°) with central and Coulomb components. The
spin-orbit and tensor cômponents of this potential are not needed in the
t 2C = a+a+asystem. The central and Coulomb potentials are made up from super-
positions ofGaussians t° ). This Hamiltonian requires the use of Jastrow correlations

ts
f =

	

~ (1-dt exp { -,d2(rk-rj)z }),

	

(38)
k<i=t

with dt = 0.6 and dZ = 3.0 fm -2 . The short-range correlations are shifted by an

0 (~) (~) (~) (~) 1
2 (~) (~) (z0) (zo) JÉ
2 (~) (22) (20) (20)
4 (~) (~) (~) (~)
4 (~) (~) (~) (~) -3J~
4 (~) (~) (~) (~) s 10
4 (~) (02) (~) (02)
4 (~) (02) (~) (~) -i~
6 (~) (20) (~) (~) i~
6 (22) (20) (22) (22) -1sJ~
6 (44) (20) (22) (22) 1'-5 14
Ô (~) (~) (~) ~ (~) 15

8 (22), (~) (~) (~) - 30

ô (~) (~) (~) (~) 10



approximate treatment from the wave functions to the Hamiltonian fHf-. Heee'
This procedure is made necessary by limited computer . capacities and has been
described in detail in ref. t).

This Hamiltonian has been used in a basis in which the orbital parts of. the a-
particle internal wave functions are given by

All numbers are given in MeV.

SU(3) APPROACH

	

13

exp {

	

4a

	

~ r

	

,
i=1 i>j=1

with a = 0.27 fm -Z , yielding a binding energy of -21 .51 MeV for the a-particle.
The exponential parts of the relative motion functions, X, are given in terms of Ritz
variational parameters, bt~, by

s

Each radial function is takén as a superposition of five Gaussians, with parameters
nt t = 0.28, nt z = 0.22, n t a = 0.15, X14 = 0.05, nt s = 0.01 in the first Jacobi côor-
dinate, Rt , and nzt = 0.34, nzs = 0.20, qz3 = 0.12, n2a = 0.03, nzs = 0.005 in the
second Jacobi coordinate, RZ . All values are given in fm-2 . The superposition of
wave functions with different oscillator frequencies in one and the same variable
requires - almost trivial - dilation techniques as outlined in ref. 4). With btQ deter-
mined by minimizing the groud state energy for t ZC, a set of per, u~~, T~j has been
calculated .
Even though a correspondingly large basis, starting with low values of Qt, Q2,

should now be chosen for a complete calculation, the cluster states with Q t = Qz = 4,
(~~) _ (04) have been singled out specifically to study the SU(3) irreducible tensor
character of the above interâction . The magnitudes of the SU(3) reduced matrix
elements for this interaction in the restrictéd Qt = Qs = 4, (~,u) _ (04) cluster basis
are shown in table 2. It is interesting to note that the SU(3) scalar components ärß
by far the most important. The (~. opo ) _ (22) tensors aréalso signifïcant. In a restriçted
Qt = Qa = 4, (~l~) _ (04) basis these would give rise to a nearly pure-rotational
spectrum for the 0 + , 2+ , 4 + excitations . The (,~opo) . _ (44) tensor, which in this
restricted basis might have been responsible for large deviations from a pure L(L+ 1)

TABLE 2

The SU(3) reduced matrix elements (¢i~3,(T~)II~~~°`"'IIQiQz(zk)>~ _ <4M~)H~`~~°po~H44(~3)

(~) Central pot. Kin. energy Coulomb pot . Total energy

(00) -799.94 508 .46 26.99 -264 .51
(22) 51 .89 -29:54 -1 .49 20.86
(44) -0.49 0 .069 -0.007 =0.428
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excitation spectrum, is seen to be much less significant. It is also interesting to note
how the reduced matrix elements are made up from the various q ( , q;, (~p~p), . . .
components listed in table 1 . By far the largest contributions come from the terms
with q l +q2 =0.. The contributions from the q l +q2 = 2 terms are only 16.5 ~�
15.1 ~, and 14.5 ~ ofthe former for the central potential, kinetic energy; and Coulomb
potential, respectively . The corresponding numbers for the q l +q2 = 4 terms are
0.25 ~, 0.06 ~, and 0.11 ~; and the contributions from terms with ql +q2 = 6 or 8
are completely negligible . Since terms with ql +q2 , q l +q2 > 0 arise from the expan-
sion of the exp {p}, exp {T} factors of the B-S transform, it can be seen that only the
lowest terms in these expansions make significant contributions to the reduced
matrix elements. This may lead to possible simplifications in a basis in which larger
values of Q 1 , Q2 aiè.included . .

	

'
By combining the réduced matrix elements of table 2 with the appropriate

SU(3)~ ~ R(3) Wigner coefficients a total binding energy of - 78.73 MeV is obtained
for the ' 2C nucleus, compared with -78.56 MeV of an earlier calculation ' 1) based
on the same Hamiltôz~ian .

3. The four-cluster system

For thé : simple three-cluster system, . with only two relative motion functions,
much of the SU(3) technology collapses to~ simple SU(2) technology since many of
the needed recoupling coefficients contain U(3) representations with at most two-
rowed tableaux . It may therefore be useful to study a cluster system made up of
four fragments, each with Os oscillator functions in its internal degrees of freedom .
his . system will demonstrate the full complexity of the new method . The generaliza-

riôp to multicluster systems is then straightforward.
~nr a four-cluster system, with three relative motion functions, the function, A,

which generates the BS transform is expanded by

3

~=1

	

4~4z4s (x~zPiz) (zr~>a

x ~~p(K )(2~0) X p(K )(Qzo)~(a~~p~z) x p(K )(4zo),(~k)
1

	

2

	

s s

x ~~JC(R1)(Q~o)x X(R2)(Qzo)~( .l,zp~z) x ~C(R3)(43o)~=zP)',

	

(39)

and,-with .~F .= ~1 , il!2, R3, etc., the BS transform of a kernel .~Y'(R, R) is expanded in
térms of the basic SU(3) coupled K-space irreducible tensors by

H(K, K) _
4t4z4s(x~zP~zNxP) Q~4z43(.t~zp~z)(xN) (zoPO)po

X ~(~1~2n~12~12)~3(~~~~~~(zoPO)I~L'1L'2(~12~12)L'3(ai~)~po



An expansion of the BS transform in terms of the basic K-space tensors again leads
directly to the needed SU(3) reduced matrix eléments . The function H(K, K) can
again be expanded in terms of Gaussians, exp {p) exp {v} exp {T}, [see eqs . (18), (1.9)] .
The expansion of each factor is accomplished in analogy with the earlier simpler
case . The 6-factor gives

where
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x [[[p(K )(Q~o) x p(R )(Qzo)](x~3~~2) x p(R )(Q3o)](z~1
1

	

2

	

3

X [Cp(K*)(oQi) x p(K*)(oQz)]IP~zZ~z) x p(K*)(oQa)l(PZ)]UoPo)Po1

	

2

	

3 ~=o

_ ~ Co (1 1 +ml +nl , lz +m2 +nz , 1 3 +m3 +n3,1 1 +1 2 +1 3 ,

ml +mz+m3 , n l +n2 +n3 ; (i 121~12)~ (~lzuiz), (~QpQ ))

x C[[p(K1)(1~+m~+n,
.0) x p(K2)u3+mz+nz .o)](zSzPSz) x p(IZ3)(l3+mg+n3 .0)~(dapo)

x [[p(K*)(0.l~+Iz+l3) x p(K*)(o.m~+mz+m3)](kïzzïz)
1

	

2

x P(K3)(o.n,+nz+n,>](Po .iol]ô 01,

	

(41)

QII ~1?nl QIz U 3i~2 Q13 Q'n3Qna
a

	

~

	

11 12 13 21 22 23 31 32 33
lim~n~

x [dun(.: ouo )]~ [( 1 1 +ml +nl ) 1(12 +m2 +n2)!(13 +m3+n3)!

x (1 1 +1 2 +1 3)1(m l +m2+m3)1(n l +n2+n3)!]~~

x [ll vl2 t13 oml vmz om3 0 l oz tn 3 t]

(11~)

	

(ml~)

	

(11 +ml~ ~)

x

	

~

	

(1z0)

	

(mz0)

	

(lz+mz, 0)
1 z+

	

1

	

z+

	

12 12 I
� , �(1 1 -~ 1 2 , 0)

	

(ml +m2 ~ 0)

	

(~121~12)
(lg~) .

	

()n30)

	

(13+7113, 0)
(1 1 +12 +13,0) (ml+mz+m3,Oj (~izKi2)

"'

	

"'

	

n

	

+n

	

0

	

~.'( 12~12)

	

( 1

	

2+ )

	

( 12~12)
(1 3 +m3 , 0)

	

(n3 , 0)

	

(13 +m3 +n3 , 0)

(~i2hïz) (nl+n2+ns~ 0 ) (~aN~Q)

(40~
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r(l 1 +m1 ,0) (n i ,0) (1 1 +m1 +n1,0)
x ~ (lz+mz , 0)

	

(nz, 0) .

	

(lz +mz +nz , 0)
"'

	

"'	n

	

+n

	

0

	

~.'

	

'( izPiz)

	

( i

	

z~ )

	

( izPiz)

The expansion of the p (and similarly the i) factor is given by

where

3
exp { ~ P~~{Ri " Ri)} _

~ . .1=1

	

9t9z9s (Z01]' LC12) (ZO~P)

x Bp(4i, 9z~ 4s, `aP~~~P~z)' (~n~v))

x [[~R )r~o) x p(Kz)(g2o)](zP �,~P,2> x p(l(3)(9a~)y/iLe~ô~Ji

i m [(21+1)!(2m+1)!(2n+1)!] ~
Bn - ~ PmPnnPnM .

l .,n . n

	

!!m!n!

<(21, 0~; (2m, opll(~~abp>
(Z,bPan)

x <(~onP~+ (2n, 0~11(~ppP~>

~(ZPl~P)

	

((~ pXüZ~ 2m.(zaakaa).2n:9i .9a.(xo l2 pp,=).93`rl , F'z,

	

3)"

The symmetric quadratic förm has again first been put into diagonal form,

3

by the transformation

P(~Ri ' R;) = P~(ga ~ ~a)+P6b(R6 ' ~n) + P«(K~ ' R~),

(42)

(43)

(45)

1~' = OR = 030201K,

	

(46)

with R' _ (g~ Kb,1~~), R = (R 1 , RZ, K3) ; and with

C3 -S3 O CZ O -S Z Cl -Sl O
O = s3	c3	0

	

0

	

1

	

0

	

sl

	

cl

	

0

	

,	(47)
0 0 1 sz 0 cz 0 0 1

and c~ = cos ißß and st = sin Zß,.The generalized Moshinsky bracket which takes
us from the SU(3) coupled [[(2l, 0) x (2m, 0)](~,,~an) x (2n, 0)](~vPv) scheme in R'



space to the [[(q10) X (q20 )](~ ,p, Zpp 12 ) x (q30)](~ppp) scheme in 8 space is now given
by a special U(3) d-function's.19 )

xZyKP)

	

~(~

	

(~

	

~ü`2l, 2n~, (xaaKab). 2n; 9i .9z. ( .tP,zPPI Z) .9s~lr Y2+ F'3)

__ (_~la+x,,+K,b+a'+K'~zab
3(9v - 4z) . (!w)~3)

9iU'P')

X ~((g2~Ilql~Jl~p~pll2n+ ~)~ l~cb~ab)
-
-~ l~~P~ --) X d~(9 - 9a) : (~t9~ -n)(F'2)

XII((q2~x~~)(~pup11g3~),1~Ptz~Piz) - -~(~~~~ - -)X ~izgz) .~(9'-9z)(~1)+

with q l , q z , q' ; restricted by q l +q 2 = 21+2m; q'+q 3 = q l+ 2n ; q'+q2 = ql+qz:

This is a slight generalization of the formula given by Chacon 19) for the SU(3)
d-function. This generalization is necessitated by the fact that the Young tableau
for ( pu p) built from 21+2m+2n = ql +q 2 +q3 oscillator quanta will in general be
three-rowed, so that the two recoupling coefficients must be bona fide SU(3) Racah
coefficients .
The p, Q and T factôrs are finally assembled in SU(3) coupled tensor form by a

straightforward generalization of eq. (39) with the C~, Bp, and Bs of appropriate quan-
tum numbers (e.g. CQ =_ CQ (~1 -Qv i~z - 42+ ~3 -4s~ Q1- 4v .Qz - qz+ Qs - 4s~

(~i2uiz)+ (~ïzuïz)+ (~Q~o)) ; and with a Z-function which is now generalized to

Z = ~ U((~pupx~Qudx~P~v~~v); (~P~P~ ; (~) --)p . p . .

X ~, ~l~pi~p)Lp - ~ r ~s~r)Ls

	

oII(~Oi~O)Lo - ~' Po
Po

x U((~s~ox~ouo)~~~) ; (~pfw)P~Po ; G~)P~Po)Î

X
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(w1 -41~~)

(L~1~)
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(~Piz~piz)

(~izuiz)
(~l2ulz)

`nPiz~Piz) (q30) `~P~-P)
_

(~12~12) (~3- q3+~) (~o~a)
_

(~lz~lz) (~3~) (~ -
_. _ . P~
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(~12~12)

	

(Q3 _q3~ 0)

	

(,`o~o)

(~lzhlz) (Q30) (~F~) -
(49)

- - p..

Both the U-coefficients and two ofthe 9(ßp) recoupling coefficients arenow bona fide
SU(3) coefficients including some representations with three-rowed tableaux . Even
in these two 9(~~) recoupling coefficients five of the six SU(3) couplings are auto-
matically free of outer multiplicities. Unnecessary multiplicity labels are replaced
by a dash .
The generalization to heavier mufti-cluster systems is now straightforward . Cluster

systems which one or more heavy fragments can also be included by limiting the
excitations in some of the relative motion functions in the n-cluster system to their
lowest Pauli-allowed values. In an aggregate made up of m Os clusters (m < n), with
m-1 relative motion functions of equal oscillator frequency, and with oscillator
quanta Q1, QZ, . . . Qm-1 frozen into their lowest Pauli-allowed values, the anti-
symmetrizer assures that the wave function of such an aggregate is itself the internal
wave function of a heavy-cluster fragment . . In our coupling scheme such a wave
function corresponds to a ground-state shell-model configuration of definite SU(3)
symmetry (~~p~) of the heavy-fragment nucleus. The BS transform of such a heavy-
fragment internal wavé function can simply be denoted by P(K;oll, . . ., K,ntm-,)~~`"°~
for heavy fragments with 5 S A <_ 16 . The antisymmetrizer assures that the order
and the details of the SU(3) coupling in the K1, . . ., R~,_ 1 subspace are immaterial ;
and the heavy-cluster fragment can be characterized by (~~u~), a~ alone.

In the technique outlined so far the details of antisymmetrization are handled by
an expansion in terms of double cosét generators. For an n-cluster problem, with
large n, the number of terms in such an expansion may become prohibitively large,
and more indirect methods may be preferable. Such methods have been used to
advantage for the norm problem of a series of nuclei with 12 <__ A <_- 24, described
in a (heavy-fragment+a-particle) cluster model basis'). The BS transform of the full
n-cluster problem is .of simple Gaussian form, ~ß a~ exp {p(ß)} exp {~} éxp {r(ß)},
with a ß-sum which runs over a large number of double coset generators. For the
restricted cluster problem, e.g. for a single heavy fragment with oneor two additional
Os cluster components, this sum is reduced to one with a manageable number of
terms. However, the BS transform is no longer of simple Gaussian form . In this case
the géneral form of the BS transform of the restricted cluster problem can 6e
established from the full Gaussian form for the unrestricted n-cluster problem by
expanding the exponentials containing internal variables and limiting the powers of

K;nt,, . . ., K;~,,~_ ,, Ko,,, . . , KIIlm _ , to their minimum Pauli-allowed values, as dictated
by the internal wave function of the heavy fragment. In a (heavy-fragment +a+a)
three-cluster system, e.g., the two relative motion vectors can be denoted by R 1, RZ
with BS transforms K1, K2. The exponential factors made `up from R1, L~ 2, K*, KZ
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variables only may be handled by the techniques ofsect . 2. The expansion ofexponen-
tials with cross terms between the K;�;; Ki, K?, and Kôt, lit, $z can be combined
with the expansion of the exponentials of pure K;n,, Kô~ terms to yield K-space poly-
nomïals of the type

gb(~PôPÔ -_ LLp(Kin~(z`P
e) xp(K~~)cu~a~)~(xw~)P~LLp($1)r~ o) x p($z)C~zo>~cx i zP ~z)

X [p(K*)(oqi) X p(K#)(oqz)~(Piz~~z)](dizMiz)v~zlUbPb)vb

	

($0),i

	

z

	

-~r.~=o

The fu11 .B-S transform is then assembled by combining these polynomials with the
$i, $z, Ki, KZ space exponentials, and as yet undetermined coefficients . If the heavy
fragment is a p-shell nucleus in a state. of highest possible SU(3) symmetry (~~~~) ;
the number of possible combinations (~iz~tz)+ (~iz~tz)~ (~izMiz)Ptz~ (~.~Fü)P~ rs
severely limited by SU(3)coupling rules and the fact that the qi, qz+ q i, qz are restricted.
to very small numbers. The total number of undetermined coefficients is thus a
manageable number, and these may be evaluated by indirect methods of the type
used with considerable success') for the simpler (heavy-fragment+a-particle) cluster
system .

Detailed microscopic treatments of nuclear cluster problems by resonating group
methods have until now been limited.to very light nuclei or cluster systems made up
of closed-shell nuclei . By using a cluster-model basis in which the relâtive motion
and internal oscillator wave functions are given in SU(3) coupled form, it has been. .
possible to combine the power ofintegral transform methods with SU(3) recoupling
techniques to derive closed expressions for matrix elements of more challenging
cluster problems. Multi-cluster systems can be handled as easily as the simple two=
cluster system . TheSU(3)reduced matrix elements are evaluated by integral transform
methods and are expressed mainly in terms of SU(3) recoupling coefficients . Matrix
elements . in a basis of good angular momentum are then constructed trivially by
combining these SU(3) reduced matrix elements with readily available SU(3) Wigner
coefficients.
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