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This paper presents a theory of separable Jordan algebras over commutative 
rings. We define a Jordan algebra over a commutative ring with & to be separable 
if its unital universal multiplication algebra is a separable associative algebra. 

In Section 1 we develop the basic properties of separable Jordan algebras over 
commutative rings. In Section 2 we prove that a central separable R-algebra J is 
an R-progenerator and that there is a one-to-one correspondence between the 
ideals of J and the ideals of R. 

The rest of the paper centers around the decomposition theorem of 
Section 6, that a separable Jordan algebra is a direct sum of homogenous com- 
ponents corresponding to the isomorphism classes of finite-dimensional simple 
Jordan algebras over an algebraically closed field. In Section 3, we obtain 
analogous decompositions for separable associative algebras and separable 
associative algebras with involution. In Sections 7 and 8 we apply the decomposi- 
tion theorems to study the structure of central separable Jordan algebras and 
their universal envelopes. In particular, we relate the decompositions of separable 
Jordan algebras and separable associative algebras with involution. 

More precisely, the decomposition theorem states that a separable Jordan 
R-algebra J can be written J = Ji @ ... @ Js for distinct ordered pairs 
(pi , qi),..., (ps , qs) such that, if m is a maximal ideal of R and F is the algebraic 
closure of R/m, then ( Ji/m Ji) aRlln F is a direct sum of simple F-algebras of 
degree pi and dimension qi . We note that the isomorphism class of a finite- 
dimensional simple algebra over an algebraically closed field is determined by 
its degree and dimension. 

The key fact needed to prove the decomposition theorem is that, if J is sepa- 
rable with center Z(J), its special universal envelope SzcJ)( J) is finitely spanned 
Z( J)-projective along with J. This implies that Z(J) is the direct sum of ideals 
Ci such that Ci J and S,,(Ci J) have constant rank over C, . On the other hand, * 

* Portions of the results presented here are contained in the author’s doctoral disserta- 
tion, written at Yale University under the direction of Professor N. Jacobson. The author 
would like to express his gratitude to Professor Jacobson for his guidance and encourage- 
ment. 

111 
0021~8693/79/03011 l-33$02.00/0 

Copyright 0 1979 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



112 ROBERT BIX 

the degree and dimension of a finite-dimensional simple Jordan algebra K over 
an algebraically closed field F are determined by dim, K and dim, S,(K). It 
follows that the Cij are the desired components of J. 

In Section 5 we prove that S,(j) is R-projective when J is R-central separable. 
We reduce to the case where (R, m) is complete local Noetherian and J/m J is 
a reduced R/m-algebra. In Section 4 we classify such J’s and construct the 
corresponding S,(J)‘s, showing that they are free R-modules. 

In a subsequent article we will apply the decomposition theorem to prove that 
each component of a central separable algebra has a generic minimum poly- 
nomial with the standard properties. Results of Harris and McCrimmon on 
derivations and centralizers and results of Jacobson on structure groups and 
Lie algebras will be extended to separable algebras over commutative rings. 
We will establish special cases of Wedderburn-Malcev decompositions over 
commutative rings. Finally we will present an analogous theory of separable 
alternative algebras. 

In [lo], Miiller defined an arbitrary nonassociative algebra/l over a commutative 
ring R to be separable if its multiplication algebra is a separable associative 
R-algebra. To ensure the functoriality of this definition, he had to assume that A 
is finitely spanned R-projective and a progenerator over its center. Under these 
assumptions he established our Proposition 1.7 (without the results on the 
centers), Theorem 1.8, and one direction of Theorem 2.5, for arbitrary non- 
associative algebras. This point of view was continued by Wisbauer [13], who 
established parts of Corollaries 2.6 and 2.7 for arbitrary nonassociative algebras 
under the same assumptions. 

0. PRELIMINARIES 

In this section we establish notation and list certain assumed results about 
Jordan and separable associative algebras for later reference. 

All algebras in this paper are defined over commutative rings containing +. 
All commutative rings, algebras, subalgebras, bimodules, and homomorphisms 
are assumed to be unital. 

Throughout this paper, let J be a Jordan algebra and R a commutative ring. 
Let Z(J) be the center of J. 

Let M,(D) be the associative algebra of n x n matrices over D. If (A,j) is an 
associative algebra with involution, let H(A,j) be the Jordan algebra of j-sym- 
metric elements of A. Let H(M,(C),j) be the Jordan algebra of j-symmetric 
n x n matrices over a composition algebra C, where j is the “standard involu- 
tion” conjugate transpose and C is associative if n > 3 [3, p. 1271. 

For a, b, c E J, let [a, b, c] = (u * b) * c - a - (b * c). Let [J, J, Jj = 
Ebe > bi , 4 I ai I bd , ci E J>. 

The basic results on Jordan algebras over fields of characteristic #2 presented 
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in [3] immediately extend to Jordan algebras over commutative rings containing 
$. We will use such results without further comment. In particular, we use the 
definitions and basic properties of Jordan algebras, invertible elements, 
associative specializations and special universal envelopes, and Peirce decomposi- 
tions [3, ChaptersI.l, 1.7,1.11, 1.12,II.l-11.3,11.9-11.11, andIII.11. 

Let S,(J) be the unital special universal envelope of J as an R-algebra and let 
CS: J-S,(J) be th e natural map. Let U,(j) be the unital universal multiplica- 
tion envelope of J as an R-algebra and let p: J+ U,(J) be the natural map. An 
R-module M is a J-bimodule if and only if M is a module for the associative- 
R-algebra U,(j) and the action of J on M is given by az = a%, for a E J and 
ZEM. 

We list the basic properties of universal envelopes for later reference. 

Jl. U,(J OR T) e U&T) OR T and &(J OR T) e S,(J) OR T for a 
commutative R-algebra T [3, pp. 66 and 881. 

J2. URII(JP~l E URUW~U> and ~R~IU/~J) = SRUP~RU) for an ideal 1 
of R [Jl]. 

J3. An R-algebra homomorphismq%: J--+ J’ ’ d m uces algebra homomorphisms 
udJ> --i, URU’> and S,(J) - SdJ’> w rc h’ h are surjective if 4 is [3, pp. 65 and 
881. 

J4. If N C J is an ideal, U,( J/N) s U,( J)/(iVo) and S,( J/N) E 5’,( J)/(No), 
where (K) denotes the ideal generated by K [3, pp. 66 and 881. 

J5. VA@ Ji> = 0 UR(J~) Oi<i [&(J4 OR SdJdl and &CO Ji) s 
@ S,( Ji) [3, pp. 73 and 1051. 

J6. If J is a finitely spanned R-module, so are U,(J) and S,(J) [3, pp. 66 
and 971. 

57. Let J be finite-dimensional over a field F. Then J is separable (in the 
classical sense) if and only if U,(J) is. If J is separable, then S,(J) is, and the 
converse holds if J is special [3, p. 2861. 

Next we list several definitions and basic facts about modules over commutative 
rings. 

Ml. An R-module M is called an R-progenerator if it is finitely spanned, 
projective, and faithful. 

M2. If M is finitely spanned and projective over a local ring (R, m), then M is a 
free R-module. In fact, if {x1 + mM ,..., xt + mM} is a vector space basis for 
M/mM over R/m, then {x1 ,..., xt> is a free basis for M over R [2, p. 241. Thus a 
direct summand of M, being projective, is free. 

M3. A finitely spanned, projective R-module M is said to have rank d if 
M OR R, is a free R,-module of rank d for every prime p of R, where R, is the 
localization of R at p. If S is a commutative R-algebra and M has rank d over R,, 
then M OR S has rank d over S [2, p. 271. 
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M4. If M is finitely spanned R-projective, we can write R as a direct sum of 
ideals Ri such that R,M has rank ti over Ri for distinct integers ti [5, p. 231. 

M5. Let M be finitely spanned R-projective and let f: M x M + R be a 
symmetric bilinear form. f is called nondegenerate if it satisfies the following 
equivalent conditions [ 1] : 

(1) f induces an isomorphism of M onto Hom,(M, R) by x +f(x, ( )). 

(2) M OR ME HomdM, M) by Y 0 2 -f,,z , wheref,,,(x) = f(x, y)z 
forx,y, ZE M. 

(3) f induces a nondegenerate symmetric bilinear form from M/mM to 
R/m for every maximal ideal m of R. 

M6. (Nakayama’s Lemma) If N C M are R-modules, M finitely spanned, and 
M = N + mM for every maximal ideal m of R, then M = N[2, p. 71. 

M7. Let f: M + N be an R-module homomorphism, where M is finitely 
spanned and N is finitely spanned, R-projective. If f induces an isomorphism 
MjmM + NjmN for every maximal ideal m of R, then f is an isomorphism. 
(Apply [M6] as in [12, p. 51.) 

Finally, we list the basic properties of separable associative algebras over 
commutative rings for later use and for comparison with the Jordan case. Let A 
be an associative algebra and let Z(A) be the center of A. Let A0 be the opposite 
algebra with multiplication aW = (ba)~ for a, b E A. A is an A OR A”-module 
via left and right multiplication. 

Al. An R-algebra A is called R-separable if A is a projective A OR &-module. 
A separable R-algebra A is called central separable if R z Z(A) by r + rl. A is 
R-separable if and only if A is Z(A)-separable and Z(A) is R-separable [2, p. 461. 

A2. An R-algebra A is R-separable if and only if there exists e E A OR A0 
such that e(1) = 1 for 1 E A and (a @ 1” - 1 @ &)e = 0 for all a E A. e is 
necessarily an idempotent and is called a separability idempotent for A [2, p. 401. 

A3. An algebra A over a field F is called classically separable if A is finite 
dimensional and remains semisimple under arbitrary field extensions. An 
F-algebra A is F-separable if and only if it is classically separable [2, p. 501. 

A4. A finitely spanned R-algebra A is R-separable if and only if AImA is 
either zero or classically separable for every maximal ideal m of R [2, p. 721. 

A5. Let A be R-separable. If T is a commutative R-algebra, then A OR T 
is T-separable and Z(A OR T) G Z(A) OR T. If 9: A ---f A’ is an R-algebra 
homomorphism, then &A) is R-separable and Z[+(A)] = $[Z(A)]. A OR A” 
is also R-separable [2, pp. 42-441. 

A6. Let A be R-separable. A short exact sequence of A-modules split over R 
is split over A. An A-module which is R-projective is A-projective [2, p. 48, 
proof of Proposition 2.31. 
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A7. A central separable R-algebra is an R-progenerator containing R as an 
R-direct summand [2, pp. 51-521. 

A8. If A is R-central separable, there is a one-to-one correspondence between 
the ideals I of A and the ideals 01 of R by 1+ I n R and 01+ olA [2, p. 541. 

A9. If A is R-central separable and M is a two-sided A/R-module, then 
M s ,4 OR MA, where MA == (x E M 1 ax = xa for all a E A} [2, p. 541. 

AlO. If M is an R-progenerator, End,(M) G Hom,(M, M) is a central 
separable R-algebra [2, p. 561. 

Al 1. An R-algebra A is R-central separable if and only if A is an R-pro- 
generator and A OR A” z End,(A) via left and right multiplication [2, p. 521. 

1. BASIC PROPERTIES OF SEPARABLE ALGEBRAS 

In this section we present the basic properties of separable Jordan algebras 
over commutative rings. These parallel the properties of separable associative 
algebras. Specifically, we define a Jordan algebra J to be R-separable if UR(J) is 
a separable associative R-algebra. This definition is functorial. If / is finitely 
spanned and special, J is R-separable if and only if J is a projective U,(J)- 
module. A finitely spanned R-algebra J is separable if and only if J/mJ is 
separable in the classical sense over R/m for every maximal ideal m of R. If iz is a 
finitely spanned, separable associative algebra, then A-- is a separable Jordan 
algebra; moreover, if A has an involutionj, H(A,j) is a separable Jordan algebra. 
A key result for our work is that, if J is R-separable, then U,(J) contains an 
idempotent which ensures that Z(J) is functorial. 

DEFINITION 1.1. An R-algebra J is called R-separable if U,(J) is a separable 
associative R-algebra. J is called R-central separable if J is R-separable and the 
map Y -+ rl is an isomorphism of R onto Z(J). 

An R-algebra J is spanned as a U,(J)-module by 1 E J. Thus there is an exact 
sequence of U,(J)-homomorphisms p: U,(J) + J- 0, where p(b) = b(1) for 

b E u,(J). 

PROPOSITION 1.2. rf J is R-separable, the exact sequence of U,( J)-homomor- 
phisms /*: U,(J) + J + 0 splits. 

Proof. The canonical map p: J -+ U,(J) splits p in the category of R-modules 
(since a = awl, a E J). Then p splits in the category of U,( J)-modules, since 
U,(J) is a separable associative R-algebra [A6]. 

For a J-bimodule M, set MJ = {a E M / (u b)z = a(bz), a, b E Jj. Equiv- 
alently, MJ = {a E M j uz = (ul)z, u E U,(J)}, where ul denotes u applied to 



116 ROBERT BIX 

1 E J. Also, MJ is the intersection of M and the center of the split null extension 
J @ M [3, p. 791. In particular, JJ = Z(J). Clearly, any homomorphism 
M + M’ of J-bimodules induces a homomorphism MJ + MJ of R-modules. 
Thus M + MJ defines a functor from the category of J-bimodules to the 
category of R-modules. 

DEFINITION 1.3. e E U,(J) is called a separability idempotent for an R-algebra 
J if e E U,(J)” and e(1) = 1, 1 E J. 

PROPOSITION 1.4. The following conditions on an R-algebra J are equivalent: 

(1) J is a projective U,( J)-module. 

(2) The exact sequence of U,( J)-h omomorphisms CL: U,(J) --f J- 0 splits. 

(3) J has a separability idempotent e. e is necessarily an idempotent and 
eM = MJ for every J-bimodule M. In particular, e J = Z(J). 

(4) Every exact sequence of J-bimodules M + N + 0 induces an exact 
sequence of R-modules MJ -+ NJ + 0. 

Proof. (1) o (2) is clear. (2) * (3). Let #: J- U,(J) be a UR(J)-homo- 
morphism splitting ,u. Set e = #(l). S ince 1 E JJ, e = #(l) E U,(J)“. e(1) = 
p(e) = 1, so e is a separability idempotent for J. Now let e be any separability 
idempotent for J. Since e E U,( J)J, ue = (ul)De for u E U,(J). In particular, 
ea = (el)De = lee = e, so e is an idempotent. Let M be a J-bimodule and let 
.a E M. The relation aobOe = (a . b)oe in U,(J), a, b E J, implies that ao(bo(ez)) = 
(anboe)zz = ((a . b)ne)z = (a . b)O(ez). Thus eM C MJ. Conversely, let z E MJ. 
Then ez = (el)“z = 1~ = x. Hence eM = MJ. In particular, eJ = JJ = Z(J). 
(3) * (2). If e is a separability idempotent for J, define #: J + U,(J) by #(a) = 
ape. Then # is a U,( J)-homomorphism, since a+,b(b) = aoboe = (a * b)oe = #(sob) 
for a, b E J. Moreover, # splits p, since p[#(a)] = [#(a)]1 = (aoe)l = aD1 = a. 
(3) a (4).IfM~N-tOisexact,thensoiseM-+eN-+O.ThusMJ-+NJ-+O 
is exact, by (3). (4) 3 (3). In the exact sequence of U,( J)-modules /.L: U,(J) -+ 
J+ 0, choose a preimage e E U,(J)” of 1 E J”, by (4). 

By Proposition 1.2, a separable R-algebra J satisfies the equivalent conditions 
of Proposition 1.4. In particular, it has a separability idempotent. In Theorem 
1.12 we prove that the conditions of Proposition 1.4 are equivalent to R-separa- 
bility if J is finitely spanned and special. We remark that the condition that 
J is L;,(J)-projective is the exact analogue of the definition that an associative 
algebra i3 is R-separable if it is A OR /lo-projective, since U,(A) E A OR A” 
for the variety of associative R-algebras [3, p. 851. 

In general, a separable Jordan algebra has many separability idempotents. In 
fact, if e E U,(J) is a separability idempotent for Jandg E U,(J) satisfiesg( 1) = 1 
for 1 E J, then eg is also a separability idempotent for J. 
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As examples of separability idempotents, consider J = H(&(F),j), F a 
field and n >, 3. We claim that 

e = 
/ 
-(n - 2)e,P, + 2 C [(ei, + eli)L112 [2e&e& - e;J 

i#l 1 

is a separability idempotent for J. In fact, every J-bimodule is completely 
reducible and every irreducible J-bimodule is isomorphic to a subbimodule of 
M,(F), where J acts on M,(F) by a% = *(ax + ~a), a E J and x E M,(F) [3, 
pp. 272-2841. Under this action, e(eii) = e,, + ... + enn and e(eij) = 0 for 
(i,j) # (1, 1). Then e(1) = 1 for 1 E J and e&‘C MJ for every J-bimodule M. 
Thus a+e = (u * b)oe for a, b E J, so e is a separability idempotent for J. The 
corresponding definition of e also works for J = M,(F)+, n 3 3, and J = 
H(M,(O), j) for an octonion algebra 0 over a field. 

LEMMA 1.5. If J is R-separable, Z(J) is a Z(J)-direct summand of J. 

Proof. Let e E U,(‘) be an separability idempotent for f. Then e J = Z(J), 
and J = eJ @ (1 - e)J is a direct decomposition of J as a Z(J)-module since 
the actions of Z(J) and U,(J) on J commute. 

We call a Jordan or associative algebra over a field cZassicaZZy separable if it is 
finite-dimensional and remains semisimple under arbitrary field extensions. 

PROPOSITION 1.6. Let J be an uZgebra over a $eZd F. Then J is F-separable if 
and only if J is classically separable. 

Proof. If J is finite-dimensional over F, so is U,(J) [ J6]. The converse holds 
since J = r/r,(J)l. By definition, J is F-separable if and only if U,(J) is a 
separable associative F-algebra. This holds if and only if V,(J) is classically 
separabIe [A3]. And U,(j) is classically separable if and only if f is classically 
separable, by [ J7] and the fact that J is finite-dimensional if and only if ur(J) is. 

We note that we have assumed + E R, avoiding the quadratic theory of 
McCrimmon, to ensure that J classically separable over a field F implies that 
U,(J) is classically separable. Counterexamples to this result in characteristic 
two appear in [4, pp. 42-441. In [7], L 00s studies separable Jordan algebras and 
Jordan pairs without assuming that 4 E R, by using schemes. He extends 
Theorem 6.3 to these cases. 

PROPOSITION 1.7. Let J be R-separabZe with separability idempotent e. 

(1) Let S be a commutative R-algebra. Then J OR S is either zero or 
S-separable with separability idempotent e @ 1 E U,(J) @ S E U,( J @ S). Also 
Z(J) @ S z Z(J @ S) under the natural map. 

(2) If I is an ideal of R, JIIJ is either zero OY R/I-separable. Also 

Kww) = Zwn 
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(3) Let + be a homomorphism of J onto an R-algebra J’. Then J’ is R-separable 
andZ(J’) = +[Z( J)]. J’ has separability idempotent 4(e), where 4: U,(J) + UR(J’) 
is the homomorphism induced by +. 

(4) Let S be a commutative R-algebra and let J be an S-algebra. Consider J 
as an R-algebra via Rl C S. If J is R-separable, then J is S-separable. In particular, 
a separable R-algebra J is Z(J)- se ara p bl e, so any separable algebra can be considered 
as a central separable algebra. 

Proof. (1). Assume that J @ S + 0, so lJ,( J @ S) g U,(J) @ S # 0 [Jl]. 
Since U,(J) is a separable associative R-algebra, U,(J) @ S is a separable 
associative S-algebra [A5]. Thus J @ S is S-separable. e @ 1 is clearly a 
separability idempotent for J @ S. Then Z( J @ S) = (e @ l)(J @ S) is the 
image in J @ S of (e J) @ S = Z(J) @ S. Moreover, the map from Z(J) @ S 
to J @ S is injective, since Z(J) is an R-direct summand of J [Lemma 1.51. (2) 
follows from (1). (3) 4 induces a homomorphism # of U,(J) onto U,(y) [J3]. 
Then UR(J’) is a separable associative R-algebra [A5], so /’ is R-separable. 4(e) 
is clearly a separability idempotent for J’, so Z(J’) = #(e)J’ = +(e J) = #[.Z( J)]. 
(4) Since U,(J) is a homomorphic image of U,(J) @ S, U,(J) is a separable 
associative S-algebra, so J is S-separable. 

THEOREM 1.8. Let J be a finitely spanned R-algebra. J is R-separable zf and 
only if J/m J is tither zero or classically R/m-separable for every maximal ideal m 
of R. J is central separable over Rl (1 E J) if and only if J/m J is either zero or 
R/m-central simple for every maximal ideal m of R. 

Proof. By definition, J is R-separable if and only if U,(J) is a separable 
associative R-algebra. Since U,(J) is finitely spanned, this holds if and only if 
lJ,( J)/mUR( J) is either zero or R/m-separable for every maximal ideal m of R 
[J6, A4]. Since U,( J)/mUR( J) s URim( J/m J), this holds if and only if J/m J is 
either zero or classically R/m-separable for every maximal ideal m of R [J2, 
Proposition 1.61. 

If J is R-separable andZ(j) = Rl, J/ m 1s ei J. th er zero or R/m-central separable 
[Proposition 1.7(2)]. In the latter case, J/m J is simple, since it is classically 
separable and its center is a field. Conversely, assume that J/m J is either zero or 
R/m-central simple for every maximal ideal m of R. J is R-separable as above, 
and Z(J) C RI + m J. Then Z(J) = Rl + mZ( J) and Z(J) is finitely spanned 
over R, since Z(J) is an R-direct summand of J [Lemma 1.51. Hence Z(J) = 211 

VW. 

COROLLARY 1.9. If J is jkitely spanned R-separable, then S,(J) is a separable 
associative R-algebra. 

Proof. For every maximal ideal m of R, J/mJ is either zero or classically 
separable [Theorem 1.81. Then S,,,( J/m J) E S,( J)/mS,(J) is either zero or 
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classically separable [ J2, J7]. S ince S,(J) is finitely spanned, S,(J) is a separable 
associative R-algebra [ J6, A3]. 

EXAMPLE 1 .lO. (1) Let A be a finitely spanned, separable associative 
R-algebra. Then A+ is R-separable and Z(A) = Z(A+-). 

(2) Let A be a separable associative R-algebra with involution j. Then 
H(A,j) is R-separable and Z[H(A,j)] = Z(A) n H(A,j). 

Proof. We can assume that R is a field, by Theorem 1.8. By field extension, 
we can assume that R is algebraically closed, whence the result is clear. 

The next example follows from Theorem 1.8, [MS], and the corresponding 
statement over fields [3, p. 1791. 

EXAMPLE 1.11. Let M be a finitely generated, projective R-module and let 
J = R @ M be the Jordan algebra determined by a symmetric bilinear formf on 
M. Then J is R-separable if and only if f is nondegenerate. Moreover, in this 
case, J is R-central if and only if rank, M > 2 for all primes p of R. 

We remark that, if J is R-separable, so is any isotope Jcc), since U,(J) g 
UR(J(c)) [3, p. 1061. 

THEOREM 1.12. Let J be a jinitely spanned and special R-algebra. Then J is 

R-separable ;f and only ;f J satis$es the equiualent conditions of Proposition 1.4. 

Proof. We must prove that J is R-separable if it contains a separability 
idempotent e. Define 7, 7’: J 4 S,(J) @ S,(J)” by T(a) = au @ 1” and T’(a) = 
1 @ aoO, a E J. 7 and Q-’ are commuting associative specializations of J in 
S,(J) @ S,(J)“, so &(T + 7’) is a multiplicative specialization [3, p. 991. Then 
there is a homomorphism 4: U,(J) + S,(J) @ S,(J)” such that C(aO) = 
$(a0 @ 1” -t 1 @ aoO), a E J. Let f = C(e), so f~ S,(J) @ S,(J)” is an idem- 
potent. For a, x E J, (a . x)” = B(a”xO + xaao) = #aO)xu, where +(aD) E S,(J) @I 
S,(J)” acts on S,(J) by left and right multiplication. It follows that (b(x))’ = 
+(b)xO for b E UR( J) and x E J. Thusf(lO) = $(e)(lU) = (e(l)p = 1”. 

Apply 4 to the equation aDboe = (a . b)oe = bpaDe, for a, b E J. This gives 
[a”bo @ 1” + a0 @ buo + b” @ aDo + I @ (buaO)o]f = [a”bO @ lo + baa0 @ 
lo + 1 @ (aObb”)” + 1 @ (bOaO)O]f = [boa0 @ lo + a0 @ buO + b0 @I au0 + 1 @ 
(a”bO)O] f. Equating the first and last expressions yields 

([au, bO] @ 10 - 1 @ [a”, b”]“)f = 0, a, b E J, (*) 

where [au, bo] = aOb0 - bOao. Equating the first and second expressions and 
setting a = b yields 

(am @ 1” - 1 @! ao0)2f = 0, a E J. (**) 

Let m be a maximal ideal of R and let F be an algebraic closure of R/m. It 
su&es to prove that J/m J @F is semisimple [Theorem 1.81. Suppose not, 
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so N = rad (J/ml @F) # 0. By the Albert-Penico-Taft theorem, J/m J @F 
contains a semisimple subalgebra K such that J/m J @FE K @ N as vector 
spaces [3, p. 2921. Since N is a nonzero solvable ideal, it contains an ideal N(2) 
such that N/N12) # 0 and [N/Nc2)12 = 0 [3, p. 1921. Then K @ N/Nf2) is a 
finite-dimensional split null extension [3, p. 911. 

The image e’ of e in [U,(J) OR R/m] BRImF E U,( J/m J gRimF) is a 
separability idempotent for J/m J OF. Since K @ N/Nt2) is a homomorphic 
image of K @ NE J/m J @F, the image of e’ in UF(K @ N/N(a)) is a separa- 
bility idempotent for K @ N/Nc2). 

We claim that the split null extension K @ N/Nt2) is special. If K is not 
special, it contains an ideal isomorphic to H(Ma(O),j) for an octonion algebra 0 
[3, p. 2041, so K does not satisfy Glennie’s identity [3, pp. 49-511. This contra- 
dicts the fact that J satisfies Glennie’s identity since it is special. Thus K is 
special. Write K = @ Ki , Ki simple, and let N/Nc2) = @j,k(N/N’2))i,k be the 
corresponding Peirce decomposition. The subalgebra K @j,,(N/N(2))i,k is 
special [3, p. 1051. We apply th e representation theory of finite-dimensional 
simple algebras over an algebraically closed field [3, pp. 273 and 2841. If 
K @ N/N@) is not special, some Ki g H(M,(Q),j) for a quaternion algebra Q 
and N/Nf2) contains a K,-subbimodule isomorphic to H(M,(cayQ), j), where 
cay Q = (x’ / x EQ}, j(x’) = -x’, and a EQ acts on x’ by a(~‘) = (~a)’ and 
(~‘)a = (M) [3, pp. 278-2831. Let X = 1[12], Y = 1[23], and 2 = u[21] + 
v[13] + I’[321 be elements of the split null extension H(M,(Q), j) @ 
H(Ma(cay Q), j), where u and z, are non-commuting elements of Q and u[;i] = 
aeij + geji . Then the proof on [3, pp. 50-511 shows that X, Y, and 2 fail to 
satisfy Glennie’s identity, contradicting the fact that J does. Thus K @ N/N@) 
is special, as claimed. 

In short, if the theorem is false, we can find a semisimple algebra K over an 
algebraically closed field F and a nonzero K-bimodule M such that the split null 
extension K 0 M is finite dimensional, special, and has a separability idempotent. 
Let M’ be an irreducible K-subbimodule of M. Write K = @ Ki , Ki simple, 
and let li be the unit element of Ki . M’ is either in the Peirce l-space of some 1, 
or the Peirce +-space of some 1 s and 1 t . Then either K, @ M’ or K, @ Kt @M 
is a homomorphic image of K @ M, and can be used in place of K @ M. We 
treat both cases simultaneously, writing K for K, or K,9 @ Kt and M for M’. 

We apply the classification of finite-dimensional. simple Jordan algebras over 
an algebraically closed field [3, p. 2041. Take f s S,(K @ M) @I S,(K @ M)O, 
as in the first paragraph of the proof. 

First suppose that K = K, = Fl. Then M = Fx and S,(K @ M) = 
Flu @ Fx”, where (x”)~ = 0. S,(K @ M) @ S,(K @ M)” = F( 10 @ 1”“) @ P, 
where P is a nilpotent ideal. Since f is a nonzero idempotent, f = 1” @ 1”“. 
Then (xc @ 1” - 1 @ xuo)2f = 0 (**) implies that -2(x0 @ xuO) = 0, a contra- 
diction. 

Next suppose that K = K, @ Kt , where K, = Fl s and Kt = Fl, . Then 
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M = Fx and S,(K @ M) = FI,o @Fltu @FLY+‘, where (A+‘)” = 0. S,(K @ M)@ 

S,(K 0 M)O = Oi.je(s.t)F(V‘ 0 1;“) 0 P, w h ere the liU @ 17” are orthogonal 
idempotents and P is a nilpotent ideal. Writef = C oli,$( liu @ 14”) + p, ai,i E F 
andp E P. Sincef(P) = 10, a,,, = 1 = a:t,t . Since 0 = (1 Q0 @ 1” - 1 @ Iy)“f- 
CQ(~~~ @ 1;“) - ti&lto @ 1:‘) (mod P) (**), q.t = 0 = qs. Then f = 1 
(mod P). Since f is an idempotent, f = 1. Then (x0 @ 1” - 1 @ xoo)2f =: 0 
becomes -2(x” @ x+) = 0, a contradiction. 

Henceforth we exclude the two cases above, so we can assume that the degrees 
ofK,andK,areatleast2.LetA={a~SF(K~M)~(a~lo- 1 @a”)f=O}. 
A is a subalgebra of S,(K @ M). We assert that A = S,(K @ M). If so, f is an 
associative separability idempotent for S,(K @ M) (since f (lo) = 10, by the 
first paragraph), so S,(K @ M) is a separable associative algebra [A2]. Then 
K @ M is a separable Jordan algebra, since it is special [J7]. This contradicts 
the fact that rad (K @ M) = M is nonzero, establishing the theorem. Hence we 
need only prove that A = S,(K @ M). S ince A is a subalgebra of S,(K @ M), 
it suffices to show in turn that Kc and Ma are contained in A. 

In the case K = K, @ Kt , we note that (x0 @ yoo)f = 0 for x E Ki and 
y E Kj , i # j. This follows by multiplying ( liO @ 1” - 1 @ lT”)“f = 0 (**) on 
the left by x0 @ yuO. 

We claim that Kiu C A when Ki has degree 2, i E {r, s, t}. Ki has a basis 
(li , 2’1 ,.... zs,J, 71 3 2, where vrt = li and vk . vk = 0 for h # k. Multiply 
(zlno @ lo - 1 @ vi0)2f = 0 on the left by +(vp @ 1%‘). This yields(v,o @ 
1:” - Ii0 @ $‘)f = 0. Applying the last paragraph if K = K, @ Kt , 
we obtain (q~ @ 1” - 1 @ v”,o)f = 0 in either case. Then vhO E A, so 
Ki” C at!. 

Next we prove that Kio C A when Kg has degree at least 3, i E (r, s, t}. Kg E 
H(M,(C),j) for an associative composition algebra C, n > 3, and S,(KJ z 
AgJC) [3, pp. 204 and 1431. We note that S,(K,) is generated as an associative 
algebra without 1 by ([x0, y”] ) x, y E KJ, so the same holds for the image of 
S,(K,) in S,(K @ M). By (*), [x0, y”] E A, so Kia C A. 

We have shown that Kiu C A if Ki has degree at least 2, i E {Y, s, t}. Thus 
Ku C -4, if K = K, or if K = K, @ Kt and K, has degree at least 2. The only 
case remaining is K = K, @ Fl t . Here Kso C A and (1 s @ I$ E A, so Ku C A 
in every case. 

Let Ki denote K, or K, , so Ki has degree at least 2. We claim that 
[Ki , Ki , M] # 0. Suppose not. It follows that (d . [a, b, c])m = 0 for 
.a, 6, c, d E Ki and m E M. Moreover, K, is generated as a Jordan algebra 
without 1 by [Kz , Ki , K,], by the classification theorem. Then K,M = 0, a 
contradiction. Thus [Ki , Ki , M] f 0. 

[a, b, ml0 = )[b”, [au, VP]] for a, b E Ki and m E M, by computation. Thus 
[Ki , Ki , r14]” C A, since [a”, me] E A by (*) and b” E Ku C A. Moreover, M is 
generated as a K-bimodule by [Ki , Ki , M], since M is irreducible and 
iKi, Ki ,341 # 0. Then M” is contained in the subalgebra of S,(K @ M) 
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generated by KU and [Ki , Ki , MlO, so Ma C A. Hence (K @ M)O C ,4 and 
A = S,(K @ M), as required. 

2. CENTRAL SEPARABLE ALGEBRAS 

In this section we prove several fundamental results about central separable 
algebras. We show that a central separable R-algebra J is an R-progenerator and 
that there is a one-to-one correspondence between the ideals of J and the ideals 
of R. 

Theorem 2.1, the Jordan analogue of [A7], is crucial to our work. 

THEOREM 2.1. A central separable R-algebra is an R-progenerator. 

Proof. Let 1 be R-central separable; we identify R and Z(J). Let S be the 
center of U,(J). For s E S, the map from J to itself taking x --f sx belongs to the 
centroid of J. Then sl E R and sx = s(xpl) = xp(sI) = (sl)x for x E J [3, p. 2061. 
Since U,(J) is a separable associative R-algebra with center S, (‘R(J) is an 
S-progenerator [A7]. Thus there exist u1 ,..., U, E U,(J) and fr ,..., fn E 
HomA crR(J>, S) such that u = C fi(u)ui for all u E U,(J). For a E J, a = a01 = 
Cft(ao)uil. Since fi(ao) E S, a = C (fi(aO)l)(uil), where fi(aP)l E R. Define 
g, E Horn&, R) byg,(a) = fi(ao)l. Then a = Cg,(a)(u,l), so {gi , ~~11 is a dual 
basis for J as an R-module. Hence J is finitely spanned R-projective, and so an 
R-progenerator. 

Combining Lemma 1.5 and Theorem 2.1 yields: 

COROLLARY 2.2. A separable R-algebra J is finitely spanned over R if and only 
if Z( J) is finitely spanned over R. 

PROPOSITION 2.3. Let J be R-central separable with separability idempotent 

e E u,(J). Let 4: u,(J) ---f End,(J) be the natural algebra homomorphism. Then C$ 
restricts to an isomorphism of U,(J) eU,(J) onto End,(J) and U,(J) = 

[U,(J) eudJ)l 0 [ker+l. M oreover, $ induces an R-module isomorphism of 
eU,( J) onto Hom,( J, R). 

Proof. We first show that +[U,( J) eU,( J)] = End,(J). Let m be a maximal 
ideal of R. Let e’ E URlm( J/m J) be th e image of e under the natural map from 
U,(J) to UR,m( J/m J). Let +‘: URIm( J/mJ) - End& J/mJ) be the natural 
homomorphism. We have the following commutative diagram: 

u/‘,(J) eudJ> l EndA J) 

1 L 
URlm( J!mJ) e’URlm(J,‘mJ) - En4dJhJ) 
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By Theorem 1.8, J/mJ is either zero or R/m-central simple. In either case, 

+‘[U~dJlmJ)l = En4+(J/mJ) [3, P. 23% Then 

+‘[U,,dJ/mJ) e’u,dJ/mJ)I = EnG.,dJ/mJ) 4’(e’) En4dJbJ) 

is an ideal in the simple algebra EndsIn2(J/mJ). $‘(e’) # 0 (unless J/mJ = 0), 
since [+‘(d)](l) = e’(l) = 1. Thus~‘[U,,,(J/mJ)e’U,,lIL(J/llZJ)I = E&~dJ/~J) 
and the bottom map of the diagram is surjective. Moreover, End,,,( J/m J) E 
End,( J)/m End,(J), since J is finitely spanned, R-projective [Theorem 2.11. 
It follows from the diagram that End,(J) = d[U,( J) eU,( J)] + m End,(J). 
End,(J) is finitely spanned, since J is finitely spanned, R-projective. Hence 

En44 J) = d[Ud J) ~UR( J)l WI. 
We now prove that U,(J) = [ U,( J)eUR( J)] @ [ker $1, so 4 maps U,( J)eU,( J) 

isomorphically onto End,(J). End,(J) becomes a U,(J) @ U,( J)o-module 
under (u @ v), = (4~) a($~) for u, z, E U,(J) and a E End,(J). This makes 
4 a U,(J) @ U,( J)“-homomorphism of U,(J) onto End,(J). End,(J) is 
U,(J) @ U,( J)o-projective, since it is R-projective and U,(J) @ U,(J)” is a 
separable associative R-algebra [A& A6]. Thus4 has a splitting map I+!J: End,(J) ---f 
U,(J) over U,(J) @ U,(J)“. Let idJ E End,(J) be the identity map and set 
g = $(idJ). Then g is a central idempotent of U,(J), g(a) = a for a E J, and 
U,(J) = [gU,(J)] @ [ker$]. Since ge = (gl)“e = lee = e, U,(J) eU,(J) C 
gU,( J). SinceC[Us( J) eU,( J)] = End,( J) by the last paragraph, U,(J) eU,( J) = 
gU,( J), as required. 

Identify Hom,( J, R) with the R-submodule of End,(J) of endomorphisms 
mapping J into R. Then +[eU,( J)] C Hom,( J, R). Conversely, if u E U,(J) 
satisfies C(u) E Hom,( J, R), then 4(u) = $(a). It follows from the above 
paragraph that + maps eU,( J) isomorphically onto Hom,( J, R). 

COROLLARY 2.4. An R-algebra J is R-central separable zjc and only ;f J 
is an R-progenerator and the natural homomorphism 4: U,(J) --f End,(J) is 
surjective. 

Proof. The reverse implication remains to be shown. Let m be a maximal 
ideal of R. + induces a surjection of U,( J)/mU,( J) onto End,( J)/m End,(J). 

uR( J)/mUd J) = URirn( J/mJ> and En44 J)/m En&(J) = E&d J/mJ) since 
J is R-projective. Thus the natural homomorphism from URIm( J/mJ) to 
EndRim(J/mJ) is surjective. Then J/m J is an irreducible URIn( J/m J)-module 
with cornmutant R/m. Since J/m J is finite-dimensional, it is R/m-central simple. 
Thus J is R-central separable [Theorem 1.81. 

It is not true that +: U,(J) + End,(J) is an isomorphism if J is R-central 
separable, as in the associative case [Al 11. This corresponds to the fact that there 
are J-bimodules which are not spanned by images of the regular bimodule J. 

Proposition 2.3 is the key step in proving the following analogue of [A8]. 
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THEOREM 2.5. Let J be a central separable R-algebra. Then there is a one-to-one 
correspondence between the ideals of J and the ideals of R given by: 

I + I n R, if I is an ideal of J 

a: + a: J, if a? is an ideal of R. 

Proof. We must show that LY = (a J) n R and I = (I n RR) J. Let e E U,(J) 
be a separability idempotent for J. Then (a J) n R = eel J = ae J = olR = 01. 
By Proposition 2.3, 

I = EndR(J)I=$[UR(J)eUR(J)]I = U,(J) J = UdJ)Vn RI =(InR)J- 

Let rad J be the radical of J defined in [8] as the maximal quasi-regular ideal 
of J. 

COROLLARY 2.6. Let J be R-central separable. Then (rad R) J = n m J = 
n M = rad J, as m runs over the maximal ideals of R and M runs over the maximal 
ideals of J. 

Proof. The first equality holds because J is R-projective [Theorem 2.11. 
The second holds by Theorem 2.5. We show that n m J = rad J. For any 
maximal ideal m of R, J/m] is simple, so rad J/m J = 0. Then the image of 
rad J in J/m] is zero, so rad J C n m J. Conversely, let x E 0 m J. Then 
lJ,_, J + m J = J for every maximal ideal m of R. Since J is finitely spanned, 
U,-, J = J and x is quasi-invertible [M6]. Then n m J is a quasi-regular ideal of 
J, so fi m J = rad J. 

COROLLARY 2.7. If J is R-separable, rad J = n M as M runs over the 
maximal ideals of J. If J is also Jinitely spanned, these equal fl m J as m runs over 
the maximal ideals of R. If J is R-projective as well, these equal (rad R) J. 

Proof. If J is R-separable, J is central separable over Z(J), so rad J = n M. 
If J is also finitely spanned over R, rad J = n m J by the proof of Corollary 2.6,. 
since J/m J is semisimple for every maximal ideal m of R. 

The next two propositions are Jordan analogues of [Al] and [A9]. 

PROPOSITION 2.8. Let J be a finitely spanned R-algebra. Then J is R-separable 
if and only if J is Z( J)-separable and Z(J) is R-separable. 

Proof. First assume that J is R-separable. Then J is Z( J)-separable [Proposi- 
tion 1.7(4)]. For every maximal ideal m of R, Z( J)/mZ( J) E Z( J/m J) [Proposi- 
tion 1.7(2)]. Z( J/m J) is a direct sum of separable field extensions of R/m, since 
J/m] is classically separable over R/m [3, p. 2391. Then Z(J) is R-separable, 
since it is finitely spanned [A4, Corollary 2.21. 

Conversely, assume that J is Z( J)-separable and .Z( J) is R-separable. It suffices. 
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to show that J/m J is R/m-separable for any maximal ideal m of R [Theorem 1.81. 
Z(J/mJ) is the image of Z(J) in J/rnJ (by [proposition 1.7(3)] for J and J/m J as 
Z(J)-algebras). Then Z(J/mJ) is R/ m-se ara p bl e, so Z(J/mJ) = Fl @ ... OF,, 
where each Fi is a finite-dimensional separable field extension of R/m. J/m J = 
Fl(J/mJ) @ ... @ Fn(J/mJ), where each Fi(J/mJ) is Fi-central separable. Thus 
J/m J is classically separable over R/m [3, p. 2391, as required. 

PROPOSITION 2.9. Let J be R-central separable and let M be a J-bimodule. 
Then ]MJ s J OR MJ. 

Proof. Consider the homomorphism of J @ MJ onto JMJ taking a @ m 
to am. Assume thatz ai @ mi is in the kernel, sot aimi = 0. By Proposition 2.3, 
the identity map on J is induced by an element of UR(J) of the form C ujevj , 
Uj , nj E U,(J). Then C ai @ mi = C( UjeVjcZi) @ mi = C Ujl @ (evja,)m, (since 
eJ = R) = C ujl @ evj(a,mi) (since mi E MJ) = 0, as required. 

We note that it is not true that every bimodule M for a central separable 
Jordan algebra J satisfies M = JMJ. This again follows from the fact that M 
need not be spanned by images of the regular bimodule J. 

Finally, we observe that the basic results of the first two sections (1.1-1.8, 
2.1-2.5, 2.8, 2.9) d p e en d on only two special properties of Jordan algebras over 
commutative rings with i: that U,(J) satisfies [J6] and [J7]. Thus the above 
results generalize to any variety of algebras where U,(J) has these two properties. 

More precisely, let I be any set of identities and let V(1) be the class of all 
unital nonassociative algebras satisfying them [3, p. 251. For an R-algebra A 
in V(I), Jacobson has defined an associative R-algebra U,(A) determined by A, 1, 
and R-the unital universal multiplication envelope of A [3, p. 881. U,(A) 
satisfies properties [Jl]-[J4]. If R is a field with algebraic closure T, call an 
R-algebra A classically separable if A is finite-dimensional over R and A OR T 
is a direct sum of simple T-algebras. A-bimodules relative to I are defined via 
split null extensions and correspond to U,(A)-modules [3, p. 791. For an A-bimod- 
ule M, let MA be the intersection of M and the center of the split null extension 
A @ M. Define an R-algebra A in V(1) to be R-separable if U,(A) is a separable 
associative R-algebra. Then, if the algebras in V(1) are such that ii’,(A) satisfies 
[J6] and [J7], the results listed above hold. 

In particular, in a subsequent article, we will note that alternative algebras 
have the two required properties and we will present further results on separable 
alternative algebras. 

3. ASSOCIATIVE DECOMPOSITION THEOREMS 

In this section, we prove decomposition theorems for separable associative 
algebras and separable associative algebras with involution. That is, we show that 
any such algebra is a direct sum of homogenous components corresponding to 
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distinct isomorphism classes of simple algebras (simple algebras with involution) 
over an algebraically closed field. We present these results here for comparison 
with the more complicated Jordan case and because the decomposition of 
separable associative algebras with involution corresponds to the decomposition 
of separable Jordan algebras. 

We first prove the decomposition theorem for separable associative algebras. 
This theorem follows directly from two facts: that a separable associative algebra 
is finitely spanned and projective over its center and that the isomorphism class 
of a simple associative algebra over an algebraically closed field is determined by 
its dimension. For 3.1-3.3, we suspend our assumption that & E R. 

THEOREM 3.1. Let A be a separable associative R-algebra. Then A = 
A, @ ... @ A, for distinct integers rl ,..., Y, such that, if m is any maximal ideal of 
R and F is the algebraic closure of R/m, then (A,/mA,) BRlm F is a direct sum of 
algebras isomorphic to M,;(F). If the Ai are chosen for A as a separable Z(A)- 
algebra, they also work for A as an R-algebra. 

The Ai are uniquely determined if A is finitely spanned over R. In particular, 
the Ai chosen over Z(A) are always unique. 

Proof. A is finitely spanned, Z(A)-projective [Al, A7]. Then Z(A) = 
C,@...@C,, a direct sum of ideals such that C,A has constant rank ti over 
Ci for distinct integers ti [M4]. Let Ai = C,A, so A = A, @ ... @A, is a 
direct sum of ideals. Ai is R-separable and Z(AJ = Ci [A5]. For any maximal 
ideal &I of Ci , dim,i,,wA,/MA, = ti . 

Let m be a maximal ideal of R and let F be the algebraic closure of R/m. 
AJmA, = B, @ .‘. @B, , where each Bj is a finite-dimensional, simple 
R/m-algebra [A4]. Let k be an integer, 1 < k < v. Let $: Ai + A,/mA, be the 
natural homomorphism and let M = Ci n $-l[@i+k Z(B,)]. Since 4 maps Ci 
onto Z(Ai/mAi), AJMA, z B, and C,IM E Z(B,) [A5]. Thus dimz(s,jBk = 
dimci,,Ai/MAi = ti . Since Z(B,) ORImF = F1 @ ... @F, where each 
Fj g F, B, @ F = F1(Bk @ F) @ ... @ F,(BI, @ F) where Fj(Bk: OF) is a 
central simple F-algebra of dimension ti . Since F is algebraically closed, 
Fj(BR OF) g Mri(F), where ri2 = ti . Thus (AilmA,) @F = @ (B, @ F) z 
0 MYi for ri = t:/2. The ri are distinct, since the ti are. 

It remains to prove the uniqueness of the Ai when A is finitely spanned over R. 
Let A = A; @ ... @ A; be another such decomposition. We can assume that 
the same integer ri corresponds to Ai and A; . For any maximal ideal m of R, 
A,/mA, = AilmA; is the sum of the simple components of A/mA of degree ri . 
Then A, = AiA; + mAi , since Ai is a direct summand of A. Since Ai is 
finitely spanned over R, Ai = A,A; [M6]. Thus Ai = A,Ai = A; , by symmetry. 

We remark that finite spanning is required for uniqueness in Theorem 3.1. 
For example, Q is Z-separable [5] and Q/mQ = 0 for every maximal ideal m of Z. 
Thus, if A = Q @ Mrl(Z) @ Mrz(Z), rl f r2, we can take A, = Q @ MYI 
and A, = Mrz(Z) or else A, = Mrl(Z) and A, = Q @ Mrz(.Z). 
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DEFINITION 3.2. Let A be a separable associative R-algebra. For every 
positive integer I, define A(Y) to be the component of A corresponding to Y 

over Z(A) in Theorem 3.1. Then A = @ A(Y), where almost all A(Y) = 0. 

COROLLARY 3.3. (1) Let A be a separable associative R-algebra and let S be 
a commutative R-algebra. Then A @ S = @ [A(Y) @ S] is the decomposition of 
A @ S as a separable S-algebra, i.e., [A @ a(r) = A(Y) @ S. 

(2) Let A be a separable associative R-algebra and let T be a homomorphism 
from A to another R-algebra. Then T(A) = @ T[A(r)] is the decomposition of T(A) 
as a separable R-algebra, i.e., [T(A)](r) = T[A(r)]. 

Proof. (1) By the proof of Theorem 3.1, A(Y) is separable of rank r2 as a 
projective module over Z[A(r)]. Thus A(Y) @ S is separable of module rank r2 

over its center Z[A(r)] @ S [M3, A5]. Then the proof of Theorem 3.1 shows that 
A @ S = @ [A(Y) @ S] is the required decomposition of A @ S. 

(2) T(A) = 0 TM )I Y is a direct sum of ideals. Let N be a maximal ideal 
of T(Z[A(r)]) and let M be its inverse image in Z[A(r)]. Then M is a maximal 
ideal of Z[A(r)], so A(r)/MA( Y is central simple over Z[A(r)]/M [AS]. Thus T ) . 

induces an isomorphism of A(r)/MA(r) and T[A(r)]/NT[A(r)]. These 
algebras have centers Z[A(r)]/M and T(Z[A(r)])/N. Hence the dimension of 

vw1/m4a over T(Z[A(r)])/N equals the dimension of A(r)/MA(r) over 
Z[A(y)]/M, which equals r2. The corollary follows from the proof of Theorem 3.1. 

Next we prove the analogous decomposition theorem for a separable associative 
R-algebra with involution (A,j). We reinstate our assumption that 4 E R. 
Setting Z(A,j) = Z(A) n H(A,j), (A,j) 1s a separable Z(A,j)-algebra with 
involution. (A,j) is called j-simple if A has no j-invariant ideals except itself 
and 0. One easily sees that, if A is finite-dimensional semi-simple over a field, 
then (A, j) is a direct sum ofj-simple ideals. 

Let (A,j) be a separable associative R-algebra with involution. The two 
facts needed to prove the decompsition theorem for (A,j) are that A and H(A,j) 
are finitely spanned Z(A, j)-projective and that, if (A, j) is finite-dimensional 
j-simple over an algebraically closed field F, the isomorphism class of (A, j) is 
determined by dim, A and dim, H(A, j). 

H(A, j) is a direct summand of A as Z(A, j)-modules, since 4 E R. Thus, to 
prove that both A and H(A, j) are finitely spanned, Z(A, j)-projective, it suffices 
to show this for A. A more general result is established in Lemma 3.4. 

We define Galois extensions of commutative rings as in [2, p. 841. If G is a 
group of automorphisms of a commutative ring S, let SC be the subring of 
G-invariant elements. The following theorem is a special case of a result in 
[6, p. 4261: 

THEOREM (~EIMER). Let R C S be commutative rings. Then the following 
conditions aye equivalent: 

481/.57/I-9 
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(1) S is a separable R-algebra and R = SG for some finite group G of 
automorphisms of S. 

(2) There is a$nite set of orthogonal idempotents {ei} in R such that C ei = 1 
and Sei is a Galois extension of Rei (relative to some$nite group of automorphisms 
of Sei). 

Let K CL be a Galois extension of commutative rings. Then L is finitely 
generated, K-projective [2, p. 811. Also there is a one-to-one correspondence 
between the ideals 01 of K and the G-invariant ideals /3 of L given by 01+ aL and 
p + /3 n K [ll, p. 211. Combining these facts with Kreimer’s theorem yields: 

LEMMA. Let S be a commutative, separable R-algebra. Let G be a finite group of 
R-algebra automorphisms of S. Then S is finitely spanned SC-projective and there 
is a one-to-one correspondence between ideals CY of SG and G-invariant ideals p of 
Sgivenbyol+olSandP+/3nSG. 

LEMMA 3.4. Let A be a separable associative R-algebra and let G be a finite 
group of automorphisms and anti-automorphisms of A. Then A is a Z(A)G-pro- 
generator. Also, there is a one-to-one correspondence between the G-invariant ideals I 
of A and the ideals 01 of Z(A)G by I -+ I n Z(A)G and a --+ crA. 

Proof. G induces a finite group of automorphisms of Z(A), so Z(A) is a 
Z(A)G-progenerator by the lemma. Since A is a Z(A)-progenerator, A is a 
Z(A)G-progenerator. By the lemma, there is a one-to-one correspondence between 
ideals 01 of Z(A)G and G-invariant ideals p of Z(A) by 01---f olZ(A) and /3 + 
/? n Z(A)G. There is also a one-to-one correspondence between ideals p of 
Z(A) and ideals I of A by /3 -+ PA and I-+ I n Z(A) [A8]. Since this corre- 
spondence takes G-invariant ideals to G-invariant ideals, the lemma follows. 

Let F be an algebraically closed field. We show that the isomorphism class of a 
finite-dimensional j-simple F-algebra with involution (A, j) is determined by 
dim, A and dim, H(A, j). We list the distinct isomorphism classes of finite- 
dimensional, j-simple F-algebras as follows [3, p. 2091: for p = 1, 2,... set 

(F(p, l),j) = (M,(F), t) where t is transposition, 

(F&J, 2),j) = (M,(F) 0 M,(F),j) wherej(a, b) = P, a’), 

for 
(F(p, 4),j) = (A&,(F), j) where j(X) = S-l(Xt)S 

S = diag{Q,..., Q} and Q = (-y A). 

LEMMA 3.5. Let (A, j) be a finite-dimensional, j-simple algebra with involution 
over an algebraically closed $eld F. Then the integers p and q such that (A, j) E 
(F(p, q), j) are determined by the integers dim, A and dim, H(A, j), and this 
correspondence is independent of F. 
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Proof. One checks that the ordered pairs (dim A, dim H(A, j)) in Table I 
are distinct, as required. 

We can now prove the decomposition theorem for a separable associative 
R-algebra with involution (A, j). By Lemma 3.4, A and H(A, j) are finitely 
spanned, Z(A, j)-projective. Then the proof in [5, p. 231 shows that Z(A,j) = 
C, @ ... @ C, such that rankci C,A = ri and rank, C,H(A, j) = ti for distinct 
ordered pairs (yi , ti). As in the proof of Theorem 3.(, it follows from Lemma 3.5 
that (A, j) = @ (C,A, j) is the required decomposition. (The assumption that 
4 E R ensures that H(A,j) and Z(A, j) are preserved under a change of rings.) 

TABLE I 

Form of (A,j) dim A 

(F(P9 1h.i) P2 

(F(P, 2h.i) 2P2 

P(P, 4h.i) 4P2 

dim H(A, j) 

P(P + 1112 
P? 

P(2P - 1) 

THEOREM 3.6. Let (A, j) be a separable associative R-algebra with inaobtion. 
Then (A,j)=(A,, j) @ ... @ (A,, j)for distinct orderedpairs (pl, q&..., (ps, qR) 
such that, if m is any maximal ideal of R and F is the algebraic closure of R/m, then 
(AilmA, @nlm F, j @ 1) is aJinite direct sum of algebras isomorphic to (F(p,, qi), j). 
In fact, if the [Ai , j) are chosen over Z(A, j), they also work for A as an R-algebra. 

The Ai are uniquely determined if A is$nitely spanned over R. Thus the A, chosen 
over Z(A, j) are always unique. 

DEFINITION 3.7. Let (A, j) be a separable associative R-algebra with involu- 
tion. For each ordered pair (p, q) let (A@, q), j) be the component of (A, j) 
corresponding to (p, q) over Z(A, j) in Theorem 3.6. (A, j) = @ (A& q), j). 

COROLLARY 3.8. (I) Let (A, j) be a separable associative R-algebra with 
involution and let S be a commutative R-algebra. Then (A @ S, j @ I)(p, q) = 

(A(P, n) 0 W 0 1). 

(2) Let (A, j) be a separable associative R-algebra with involution and let T be 
a homomorphism from (A, j) to another R-algebra with involtuion. Then 

G’VMp, d = (TMP, did- 

4. SEPARABLE ALGEBRAS OVER COMPLETE LOCAL RINGS 

In this section we classify finitely spanned, separable Jordan algebras / over a. 
complete local Noetherian ring (R, m) such that J/m J is reduced. We present 
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these results both for their own sake and for use in Section 5 in proving that 

SdJ) is z(J)-P ro ec ive for any separable algebra 1. j t’ 
We begin with a series of definitions and lemmas. We recall that a finite- 

dimensional Jordan algebra J over a field F is called reduced if we can write 
1 = z ei for orthogonal idempotents ei such that every element of /;(e,) has the 
form mei t z for 01 E F and .a nilpotent. 

LEMMA 4.1. Let J be Jinitely spanned over a complete local Noetherian ring 
(R, m). Then a set of orthogonal idernpotents in J/m J lifts to a set of orthogonal 
idempotents in J. 

Proof. Inducting on the number of idempotents and applying the Peirce 
identities, it suffices to prove the following claim: if e E J is an idempotent and 
f E J/m J is an idempotent orthogonal to the image of e in J/m J, then f lifts to an 
idempotent in J orthogonal to e. To prove the claim, let g E Jo(e) be a preimage 
off. Let CI(R[g]) be the closure of R[g] in J. Cl(R[g]) is a commutative, asso- 
ciative subalgebra of J. Then the proof in [12, pp. 50-511 shows there is an 
idempotent in CI(R[g]) congruent to g (mod m J). Since Cl(R[g]) C Jo(e), this is 
the required idempotent. 

LEMMA 4.2. Let J be finitely spanned and separable over a complete local 
Noetherian ring (R, m). Assume that J/m J is reduced. Then J = J, @ *.. @ I;, , 
where each J,jm Ji is simple and reduced. Each Ji is central separable over the 
complete local Noetherian ring Rli , where li is the unit element of Ji . 

Proof. J/m J is a direct sum of simple reduced algebras Ki with unit elements 
ei . By Lemma 4.1, the ei lift to orthogonal idempotents fi in J. Since J/m J = 
@ Ki = @ (J/m J)l(ei) and J is finitely spanned, J = C Jl(fi) [M6]. Since the 
JI(fi) are orthogonal ideals, setting Jz = JI(fi) g ives the required decomposition. 
Since each Ji/mJi is finite-dimensional, simple, and reduced, the structure 
theory over fields shows that it has center R/m [3, p. 2031. Then Ji has center 
Rli [Theorem 1.81. 

LEMMA 4.3. Let (R, m) be complete local Noetherian and let F be a finite- 
dimensional extensionJield of R/m. Then there is a finite free commutative R-algebra 
S such that (S, mS) is complete local Noetherian and S/mS E F. 

Proof. Inducting on the dimension of F, we can assume that F is a primitive 
extension of R/m. Let f E R/m[x] b e a manic polynomial such that F s 
(R/m[x])/(f ). Let g E R[x] be a manic lift off and set S = R[x]/(g). S is a finite 
free extension of R and S is Noetherian. mS C rad S, since S is finitely spanned 
over R [12, p. 41. SImS z F is a field, so (S, mS) is a local ring. Since S is 
finitely spanned over R, S is complete in the m-adic-equivalently, the mS- 
adic-topology. 
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DEFINITION 4.4. An R-algebra with involution (D, d) is called a composition 
algebra if (1) D is finitely spanned R-projective, (2) D is alternative with 1, and 
(3) xxd = Q(x)1 = xdx (x E D), where Q is a quadratic form from D to R whose 
associated bilinear form is nondegenerate [M5]. 

Using [M2], it follows as in [3, pp. 163-1641 that an algebra with involution 
(D, d) over a local ring (R, m) is a composition algebra if and only if there is a 
series of subalgebras Vi of D which satisfy the following conditions: (1) Rl = 
V, C Vi C ... C I’, = D, where 0 < n < 3, (2) each Vi is free over R of rank 2i, 
(3) V,+i = Vi @ Viqi+i for some qi+i E V,+i such that q,Z+r = ~~+i is a unit of R 

and d+l = -qi+l, and (4) the elements of V,,i multiply by 

(a + bq,+Ac + eqi+l) = (UC + pi+1 edb) + (ea + bcd)qi+l for a, b, c, e E Vi. 

D is associative if and only if rank D < 4. We refer to the above method of 
obtaining V,+i from Vi as the doubling process. 

LEMMA 4.5. Let J be finitely spanned over a complete local Noetherian ring 
(R, m). Let J contain elements vI ,..., v), such that vi . TIN = Sit , the Kronecker 
delta. Assume there exists u E J such that u2 = 1 and u . vi = 0 (mod mJ). Then 
there exists v E J such that v = u (mod m J), v2 = 1, and v . vi = 0. 

Proof. Apply [3, Lemma 2, p. 2901 to the R-algebra J/m21 and the ideal 
m J/m2 Jwhose square is zero. Then there exists ur E Jsuch that ui = u (mod m]), 
ui2 = 1 (mod m2J) and u1 * vi = 0 (mod m2J). Now applying the same lemma to 
the image of u1 in J/m41 and the ideal m2 J/m4J, we obtain ua E J such that 
u2 = u1 (mod m2J), u2a = 1 (mod m4J), and u2 . vi = 0 (mod m4J). By induction, 
define u, E J such that u, E u,-r (mod mZnmlJ), uG2 = 1 (mod m2”J) and 
u, . vi = 0 (mod m2”J). Then v = lim u, has the required properties. 

The next lemma follows from Lemma 4.5 as on [3, pp. 290-2911. 

LEMMA 4.6. Let (R, m) be complete local Noetherian. Let (D, d) be an alter- 
native R-algebra with involution which is a finite free R-module. Assume that 
(D/mD, d) is a composition R/m-algebra built by a doubling process which adjoins 
qi E D/mD such that qi2 = 1. Then (D, d) is a composition algebra built by a 
doubling process which adjoins elements ti such that ti2 = 1. 

LEMMA 4.7. Let (R, m) be local. Then the following statements are equivalent: 

(1) J is the Jordan algebra of a nondegenerate symmetric bilinear form over R. 

(2) Jhasafree R-basis(1, v1 ,..., vu,}, where vi2 E R is a unit and Vi . vj = 0 
for i # j. 

Proof. (1) => (2). Let J be determined by a nondegenerate bilinear form f on 
an R-module M. If M # 0, f (M, M) = R, since M is R-free and f (M, ( )) 
induces Hom,(M, R) [M2, M5]. By 1’ mearization, there is v E M such that 
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J(zI, U) is a unit of R. Then f (Rv, Rv) = R, so M = Rv @ VI. Moreover, f 
induces a nondegenerate symmetric bilinear form on v1 [M5(3)], so we are done 
by induction on the rank of M. (2) => (1) is clear. 

Let (D, d) be an R-algebra with involution. Set y = diag{l, ys ,..., m} E 
M,(D), where the yi are symmetric invertible elements of the nucleus of D. 
Define an involution j, of M,(D) by j,(X) = y-lXaty, where Xat is the d-con- 
jugate transpose of X. In particular, if (D, d) . IS a composition algebra, the yi are 
units of R. 

THEOREM 4.8. Let (R, m) be complete local Noetherian. Then J is R-central 
separable such that J/m J is reduced zf and only if J has one of the following forms: 

(1) JE R. 
(2) J is the Jordan algebra of a nondegenerate symmetric bilinear form f on a 

finite free R-module M, where rank M >, 2 and there exists v E M with f (v, v) = 1. 
(Equivalently, J has a free R-basis {I, v1 ,..., vu,), n 3 2, such that vi2 is a unit of R, 
~,~=l,andv~~v~=Ofori#j.) 

(3) J g H(M,(D), j,,), n > 3, where (D, d) is a composition algebra which is 
associative if 71 >, 4. 

Moreover, an R-algebra J is finitely spanned R-separable such that J/m J is 
reduced if and only if J is a Jinite direct sum of ideals Ji which have the above form 
over Rli . 

Proof. The last paragraph follows from the first by Lemma 4.2. If J has one 
of the given forms, then J is a finitely spanned, faithful Jordan R-algebra. 
J/m J is R/m-central simple [3, p. 2031, so J is R- central separable [Theorem 1.81. 

Conversely, let J be R-central separable such that J/mJ is reduced. Since 
J/m J is simple [Theorem 1.81, we apply the classification of finite-dimensional 
reduced simple algebras over a field [3, p. 2031. 

(1) If JlmJE R/m, then Jr R. 
(2) Let J/m J = R/m @ W be the Jordan algebra of a nondegenerate 

symmetric bilinear form g on W, where dim W > 2 and there is w E W with 
g(w, w) = 1. Let W have basis {wi ,..., w,}, n > 2, such that wi2 = ri E R/m, 
7i # 0, and wi . wi = 0 for i # j. By Lemma 4.3, there is a finite free R-algebra S 
such that (S, mS) is complete local Noetherian and S/mS E R/m(@2,..., T:‘“). 
Then (J @ S)/m( J @ S) has basis (1, yi ,.. ., yn} such that yi . yj = Si, . By 
Lemma 4.5 and induction, J @ S contains elements z1 ,..., x, such that xi lies 
over yi and xi . zj = Sii . Moreover, J @ S is a finite free S-module, since 
J @ S is S-central separable and S is local. Thus (1, zi ,..., xn} is a free S-basis 
ofJ@S[M2].Sincen>2,itfollowsthatJ@S=S@[J@S, J@S, JQS] 
and [J @ S, J @ S, J @ S12 C S. S ince S is a free R-module, this implies 
that J = R @ [J, J, J] and [J, J, J]” C R. Then [J, J, J] is a finite free 
R-module [M2] and multiplication defines a symmetric bilinear form f from 
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[_T, J, J] to R. f is nondegenerate since it inducesg [M5]. Finally, by assumption, 
W contains an element w with w2 = 1. Thus there is z, E [J, J, J] with o2 = 1 
(mod mJ). Since u2 E R and 4 E R, there is a unit ol E R such that (c+v)” = 1 
[3, p. 1501. The equivalent form of (2) follows from the proof of Lemma 4.7. 

(3) Finally, let J/m J g H(Dk ,j,), n > 3. By Lemma 4.1, Jhas n ortho- 
gonal idempotents fi lying over the diagonal idempotents e, of J/m J. For i # i, 

there is u E (J/mJ)l12(4 n (J/mJ>l,2(4 such that UuKJ/mJ)&~ + 4 = 
tJ/mJMei + ej>. L t b e 7~ e a P reimage of u in Jli2(fi) n Jl12(fj), so Jdfi + .h) C 

uJJl(fi + fdl + 7n.l. Then JO + h> = ~dJdf, + fdl + mJdfi + h) and 
Jl(fi f fj) is finitely spanned, since Jl(fi +fj) is an R-direct summand of 1. 

Thus Jdfi + fd = UAJdfi + f.41 WA. Th e C oordinatization Theorem applies 
without change to Jordan algebras over commutative rings with 4, by the proof 
in [3, pp. 133-1371. Hence j = ZY(n/r,(D),j,), where (D, d) is an alternative 
algebra with involution. If n > 4, D is associative [3, p. 1271. D is a finite free 
R-module, since Jis [M2]. It remains to show that (D, d) is actually a composition 
algebra. 

(D/mD, d) is a composition algebra, by the proof in [3, p. 2031. Let D/mD be 
built by a doubling process which adjoins elements qi such that qt = pi E R/m, 
pi f 0. Then F = R/m(&j2,..., pi/“) is a finite-dimensional extension field of 
R/m such that D/mD gRiln F is a composition algebra built by adjoining elements 
pi such that pi2 = 1. By Lemma 4.3, there is a finite free R-algebra S such that 
(S, mS) is complete local Noetherian and S/mS E F. By Lemma 4.6, D @ S 
is a composition algebra over S, so XX d = xdx E S for x E D @ S. Then xxd = 
9x E R for x ED. The associated bilinear form is nondegenerate, since it 
induces a nondegenerate bilinear form on D/mD. Thus (D, d) is a composition 
algebra, as required. 

For pi ,...., fin E R, define a unital associative R-algebra C(& ,..., fin) with free 
R-basis (1, nil ... zli,for 1 < ii < ... < it < 11, 1 < t < n>, where the monomials 
multiply by juxtaposition and the rules vi2 = pi and vjzti = -vivuj for i < i. 

COROLLARY 4.9. Let (R, m) be complete local Noetherian. Let J be R-central 
separable such that J/m J is reduced. Then S,(J) has one of the following forms: 

(1) ;f JE R, then S,(J)= R, 

(2) if J has basis {l, vi ,..., vn} where vi2 = pi and vi . vj = Ofor i #j, then 
S,(J) s W, ,..., ,Q 

(3) $ J E H(M*(D), j,,), n > 3, and rank D < 4, then S,(J) s M,(D), 

(4) if Jr H(M,(D), j,,) and rank D = 8, then S,(J) = 0. 

In particular, S,(J) is a$nite free R-module in every case. 

Proof. By Theorem 4.8, it s&ices to establish the statements (l)-(4). 
In each case the given algebra is clearly an associative specialization of J, so there 
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is a homomorphism+ from S,(j) to this algebra. 4 induces an isomorphism under 
tensoring by R/m, by the structure theory of reduced R/m-algebras [3, pp. 203, 
209, and 2611. Since S,(j) is finitely spanned and the given algebras are finite 
free R-modules, 4 is an isomorphism [ J6, M7]. 

We remark that Corollary 4.9 actually classifies S,(J) when J is finitely 
spanned and separable over a complete local Noetherian ring (R, m) and J;lm J is 
reduced. Write J = @ Ji , as in the last paragraph of Theorem 4.8. Then 
S,(J) = 0 S,(Ji> = 0 &li(Ji), w h ere each SRli( Ji) has the form of Corollary 
4.9 as an RI,-algebra. 

5. PROJECTIVITY OF Sz&J) 

In this section we apply Corollary 4.9 to deduce that S,(J) is R-projective 
for a central separable R-algebra J. This is the key result in proving the decompo- 
sition theorem for Jordan algebras. 

We require two lemmas, 5.2 and 5.3. Lemma 5.2 reduces the study of a 
separable Jordan algebra J over a complete local Noetherian ring (R, m) to the 
case where J/m J is reduced. 

SUBLEMMA 5.1. Let J be separable over a field F. Then there is a jkite- 
dimensional extension $eld E of F such that J @ E is a reduced E-algebra. 

Proof. Let F’ be the algebraic closure of F. In J OF’ we can write 1 as the 
sum of orthogonal idempotents ei such that (J @ F’),(ei) = F’ei [3, p, 2021. Let E 
be a finite-dimensional extension field of F containing the elements of F’ needed 
to write each ei as a linear combination of elements of J. Then J @ E contains 
idempotents fi lying over the ei . The fi are orthogonal idempotents whose sum 
is 1 and which satisfy (J @ E),(fi) = Ef$ . 

Combining Sublemma 5.1 and Lemma 4.3 yields: 

LEMMA 5.2. Let J be separable over (R, m) complete local Noetherian. Then 
there is a$nite free R-algebra S such that (S, mS) is complete local Noetherian and 
(J @ S)/mS( J @ S) is a reduced SlmS-algebra. 

The next lemma reduces the study of separable Jordan algebras over com- 
mutative rings to algebras over Noetherian rings. It is a generalized Jordan 
analogue of a result on separable associative algebras in [12, p. 1351. 

LEMMA 5.3. Let J be jinitely spanned R-separable. Then there is a Noetherian 
subring R’ of R and an R’-subalgebra J’ of J such that J’ is jinitely spanned R’- 
separable and J = RJ’. If J is also R-projective, we can ensure that J’ is R-pro- 
jective and that J s J’ OR, R. If J is R-central, we can ensure that J’ is R’-central. 
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Proof. Fix a finite spanning set {vi} for J over R. We will let R’ be a finitely 
generated subring of R such that J’ = C R’vi has the required properties. 
Writing vi . vi = x rijBvk and 1 = C sivi for rijlc , si E R, we can ensure that ] 
is an R’-subalgebra of 3 by taking rijR , si E R’. Let fE U,(J) OR U,(~)O be an 
associative separability idempotent for U,(j) [A2]. By adjoining finitely many 
elements of R to R’, we can ensure that f is the image of some f’ E U,,(J’) OR, 
U,,(j’)” under the natural map. The equation (~~0 @ 10 - 1 @ v:‘)f = 0 

holds in UR(J) OR U,(J)“, where U,(J) 8s U,(j)” is isomorphic to the free 
associative algebra on (0~0, vi’} modulo the ideal I generated by the defining 
relations of UK(J), U,(J)“, and the tensor product. Adjoin the elements of R 
needed to express (vi0 @ 1” - 1 @ vz’)f as an element of 1, where everything is 
written in terms of vi0 and vpi’. Then (vi0 @ lo - 1 @ v$‘)f’ = 0 in U&J’) OR, 
UR(J’)o. Likewise, we can ensure that f ‘(1) = 1, 1 E U&‘). Then f' is an 
associative separability idempotent for UR(J’), so J’ is R’-separable. 

Now assume that J is also R-projective. As an R-module, J z gRn, where 
g E k&(R) is an idempotent and M%(R) acts on R” via the basis e, = 
(1, 0 ,..., 0) ,..., e, = (0 ,..., 0, 1). Let R’ contain the entries ofg and take vi = g(e,) 
in the last paragraph. Let g’ E M,(R) h ave the same entries as g and let M,(R’) 
act on Rfn. Then C R’g(ei) g g’R’” as R’-modules, so J’ = C R’g(ei) is R-pro- 
jective. Since Rn s [C R’g(e,)] @ [C R’(l - g)(ei)], the natural isomorphism 
of R’n OR, R and Rn induces an isomorphism of [C R’g(ei)] OR, R andgRn g J, 
as required. 

Finally, let J be R-central separable. Since J is finitely spanned R-projective, 
we can choose J’ and R’ as in the last paragraph. Since J’ OR, R E J, it follows 
that the natural map of J’ @z(J,) R onto Jis an isomorphism. Z(j’) is Noetherian, 
since it is finitely spanned over R’ [Corollary 2.21. Thus we can replace R’ by 
Z(j’), as required. 

THEOREM 5.4. If J is R-central separable, then S,(J) is finitely spanned 
R-projective. If a: J + S,(J) is the canonical map, O(J) and S,(J)/u(J) are 
jkitely spanned R-projective and u(J) is an R-direct summand of S,(J). ker (T is 
Jinitely spanned R-projective and an R-direct summand of J. 

Proof. Since J is finitely spanned over R, so is S,(J) [J6]. By Lemma 5.3, 
there is a Noetherian subring R’ of R and an R’-subalgebra J’ of J such that 
J’ is R/-central separable and J’ OR, R g J. If we show that S,(J’) is R’-pro- 
jective, then S,(J) E S&j’) OR, R is R-projective. Thus we can assume that 
R is Noetherian. 

Let m be a maximal ideal of R, let R* be the completion of R localized at m, 
and let J* denote J OR R*. By Lemma 5.2, there is a finite free extension T of R* 
such that (Z’, mT) is complete local Noetherian, I* OR* T is T-central separable, 
and (J* @ T)/mT(J* @ T) is a reduced T/mT-algebra. Then S,(]* OR* T) is 
a free T-module, by Corollary 4.9. Since T is a free R*-module and&‘&J*) OR* T 
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s-z &(J* a* T), s,*(J*) is a free R*-module [M2]. Then S,(j) OR R* s 
Ss*(J*) is a free R*-module for every maximal ideal m of R. Since S,(j) is 
finitely spanned, this implies that S,(J) is R-projective [5, pp. 12-141. Similarly, 
one proves that S,(j)/g(J) is R-projective (since tensoring is right exact). Then 
a(J) is a direct summand of S,(j) and thus R-projective. Then u: J + u[S,(J)] 
splits, so ker c is a direct summand of J and R-projective. 

6. JORDAN DECOMPOSITION THEOREM 

We now apply Theorem 5.4 to prove the decomposition theorem for Jordan 
algebras. We need only observe that the isomorphism class of a finite-dimen- 
sional simple algebra J over an algebraically closed field F is determined by 
dim, J and dim, S,(J). 

DEFINITION 6.1. For an algebraically closed field F, let F[p, q] be a Jordan 
F-algebra as follows: 

F[l, I] = F. 

F[2, q] = F @ V, the Jordan algebra of a nondegenerate symmetric 
bilinear form on a vector space V of dimension q, q 3 2. 

F[p, q] = H(n/l,(D),j) for a composition algebra D of dimension p, 
where (p, q) = (3, 8) or p 3 3 and q E {1,2,4>. 

The F[p, q] represent the distinct isomorphism classes of finite-dimensional 
simple Jordan F-algebras. 

LEMMA 6.2. Let J be Jinite-dimensional and simple over an algebraically 
closed field F. Then the integers p and q such that J z F[p, q] are determined by 
dim, J and dim, S,(J), and this correspondence is independent of F. 

Proof. One verifies that the ordered pairs (dim J, dim S,(J)) in Table II are 
distinct. 

TABLE II 

J dim J dim SF(/) 

W, 11 
HZ 91, q > 2 

F[P, 11, P > 3 

F[P, 21, P > 3 

F[P, 41, P > 3 
F[3, 81 

1 

q+l 

P(P + 1w 
P2 

P(2P - 1) 
27 

1 

29 

Pe 

2P2 

4P2 
0 
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The decomposition theorem for a separable Jordan algebra J can now be 
proved in the same manner as Theorems 3.1 and 3.6. By Theorem 5.4, both J 
and S,(,)(J) are finitely spanned Z(J)-projective. Then Z(J) = C, @ ... @ C, 
such that rankc. Ci J = r, and rank c, CiSz(,,(J) = ti for distinct ordered pairs 
(yi , ti). It follow: from Lemma 6.2 that J = @ Cij is the desired decomposition. 

THEOREM 6.3. Let J be R-separable. Then J = JI @ ... @ J, for distinct 
ordered pairs (p, , ql) ,..., (p, , qS) such th a t, J z m is any maximal ideal of R and F 
is the algebraic closure of R/m, then Ji/m Ji OR ,,,, F is a finite direct sum of algebras 
isomorphic to F[p, , qi]. If the Ji are chosen for J as a Z( J)-algebra, they also work 
for J as an R-algebra. 

The Ji are uniquely determined if J isjnitely spanned over R. Thus the Ji chosen 
over Z(J) are always uniquely determined. 

DEFINITION 6.4. Let J be R-separable. For an ordered pair (p, q), let J(p, q) 
be the component of J corresponding to (p, q) over Z(J) in Theorem 6.3. Then 

3 = 0 J(P, s>- 

COROLLARY 6.5. (1) Let J be R-separable and let S be a commutative R-algebra. 
Then (J 0 W P, 4 = J(P, 4) 0 S. 

(2) Let J be R-separable and let T: J- J’ be an R-algebra homomorphism. 
Then FVNP, d = T[J(P, dl- 

7. STRUCTURE OF SEPARABLE JORDAN ALGEBRAS AND THEIR SPECIAL 
UNIVERSAL ENVELOPES 

In this section we apply Theorem 6.3 to study the structure of separable 
Jordan algebras and their special universal envelopes. We start by relating the 
decomposition of separable Jordan algebras and separable associative algebras 
with involution. We require the following proposition: 

PROPOSITION 7.1. Let J be jinitely spanned, R-separable. Then S,(J) z 
&dJ). 

Proof. Let U: J-+ S,(J) and let aE.Z(J) and XE J. We must show that 
a0xD = (a . x)” = xOaO. By Lemma 5.3, there is a Noetherian subring R’ of R 
and an R’-subalgebra J’ of J such that J’ is finitely spanned R-separable and 
J = RJ’. By enlarging R’, we can assume that a, x E J’. Since J is a homo- 
morphic image of J’ OR, R, S,(J) is a homomorphic image of S,,(y) OR, R. 
Thus we can assume that R is Noetherian to prove that aOxU = (x . ay = xoag. 
As in the proof of Theorem 5.4, we can further assume that (R, m) is complete 
local Noetherian and J/m J is reduced. Then J = @ Ji , where Z(j,) = Rli 
[Lemma 4.21. Since S,(j) z @ S,(Ji) [JS], the proposition follows. 
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Let QT denote the main involution of S,(J), so v(x”) = x0 for x E J [3, p. 651. 

THEOREM 7.2. Let R be a commutative ring with 8. There is an isomorphism 
between the category of Jinitely spanned, separable Jordan R-algebras J such that 
J = @ J(p, q) (p > 3 and q < 4) and the category ofJinitely spanned, separable, 
associative R-algebras with involution (A,j) such that (A,j) = @ (A(p, q),j) 
(p > 3). This isomorphism takes J to (S,(J), VT) and (A,j) to H(A,j). If J and 
(A,j) correspond, then Z(J) = Z(A,j) and the components J(p, q) and (A(p, q),j) 
correspond. 

Proof. Let J be finitely spanned, R-separable such that J = J(p, q) for 
p > 3 and q < 4. Let a: J-+ H(S,( J), Z-) be the natural map. We show that D 
is an isomorphism and that (S,(l), rr) = (S,(J)(p, q), n). By Proposition 7.1, 
we can assume that R = Z(J). Let m be a maximal ideal of R. Tensoring u by 
R/m gives the canonical map u’: J/m J- H(S,,,( J/m J), n). U’ is an isomorphism, 
since J/m J = (J/m J)(p, q) is a finite-dimensional, special, central simple 
R/m-algebra of degreep 3 3 [3, p. 2091. Th en (T is an isomorphism, since both J 
and H(S,( J), r) are finitely spanned R-projective [Theorem 5.4, M7]. Moreover, 
ifF is the algebraic closure of R/m, J/m J gRlm F g F[p, q], so 

[3, P. 2101. Hence (S,(J), 4 = (SdJ)(p, d, 4. 
Conversely, let (A,j) = (A(p, q),j) be a finitely spanned, separable associative 

R-algebra with involution, p > 3. As above, H(A,j) = [H(A,j)](p, q). Let 
4: (SR13Mj)l, 4 - GW be th e canonical homomorphism. We show that + 
is an isomorphism. By Proposition 7.1 and Example 1.10(2), we can assume that 
R = Z(A,j) = Z[H(A,j)]. L t e m be a maximal ideal of R. Tensoring 4 by 
R/m gives the canonical homomorphism $‘: S,,,[H(A/mA,j)] -+ (A/mA,j). 
Since (A/mA,j) is R/m-central simple of degree p > 3, 4 is an isomorphism 
[3, p. 2091. Th en + is an isomorphism, since A is finitely spanned R-projective and 
S,[H(A,j)] is finitely spanned [Lemma 3.4, J6, M7]. The theorem follows by 
taking direct sums [JS]. 

PROPOSITION 7.3. Let J be finitely spanned, R-separable. Set B = @ J(p, q) 
for (p, q) # (3, S), and consider the decomposition J = B @ J(3, 8). B is R-special 
and S,[ J(3, S)] = 0. Thus J(3, 8) is the kernel of u: J -+ S,(J). 

Proof. By Proposition 7.1, we can assume that R = Z(J). Let u: B -+ S,(B). 
For any maximal ideal m of R, o induces u’: B[mB -+ S,(B)/mS,(B) z 
S,,,(B/mB). u’ is injective, since B[mB is special. Thus ker o C mB. By Theorem 
5.4, ker a is an R-direct summand of B, so ker u = m(ker u) and ker u is finitely 
spanned. Then ker u = 0 [M6], and B is special. For every maximal ideal m of R, 
Sd’J(3, f91/mSR[J(3, @I cz SRlmMJ/mJ)(3, 811 = 0. Hence 5’R[J(3,8)l = 0 
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[M6, J6]. The last sentence of the theorem follows, since S,(J) g S,[J(3, S)] @ 

S,(B) fJ51. 
Next, we apply the results of McCrimmon in [9]. He defines an R-algebra J 

to be 4-interconnected if 1 E J can be written as 1 = C e, , where the e, are 
orthogonal idempotents such that, for each i, there are at least three other e?‘s 
satisfying ei E UJzj(Jjj). H e calls J ZutentZy 4-interconnected if there is a faithfully 
flat commutative R-algebra S such that ] OR S is 4-interconnected. We define 
J to be weakly 4interconnected if J OR R, is latently 4-interconnected for every 
maximal ideal m of R. 

PROPOSITION 7.4. (1) A weakly 4-interconnected algebra is special and 
re$exive. 

(2) Let J bejinitely spanned R-separable such that J = @ J(p, q)for p 3 4. 
Then J is weakly 4-interconnected. 

Pyoof. By [9], a latently 4-interconnected algebra is special and reflexive. (1) 
follows by localization. Localizing (2), it suffices to assume that (R, m) is local and 
prove that J is latently 4-interconnected. First suppose that (R, m) is Noetherian 
local. Let R* be the completion of R and let J* denote J OR R*. By Lemma 5.2, 
there is a free R*-algebra S such that (S, mS) is complete local Noetherian and 

(J* OR* Wms(J* OR* S) is a reduced S/mS-algebra. Since J* OR* S = 
@ [J* OR* S](p, q) for p 2 4, Theorem 4.8 shows that J* OR* S is a direct 
sum of matrix algebras of degree at least 4. Thus J OR S s (J 8s RX) OR* S = 
J* OR* S is 4-interconnected. Moreover, S is a faithfully flat R-algebra, since 
R* is. Hence J is latently 4-interconnected. 

Now let (R, m) be any local ring. By Lemma 5.3, there are a Noetherian 
subring R’ of R and an R’-subalgebra J’ of J such that J’ is finitely spanned 
RI-separable and J = RJ’. Let m’ = m r\ R’. Localizing R’ and J’ at m’, we can 
assume that R’ is Noetherian local. Writing J’ = @ J’(p, q) yields J = 

0 RI’@, q). RJ’(p, q) = [RJ’(p, q)l(p, q) by Corollary 6.5, since RJ’(p, q) is 
a homomorphic images of R OR, J’(p, q). Thus y = @ J’(p, q) for p 2 4. 
By the last paragraph, there is a faithfully flat R’-algebra S’ such that J’ OR, S 
is 4-interconnected. Set S = R OR, S’, so S is a faithfully flat R-algebra. 
Moreover J OR S s J OR, S’ contains J’ OR, S’ as a subalgebra. Then 
J OR S is 4-interconnected, so J is latently 4-interconnected. 

COROLLARY 7.5. Let J befinitely spanned, R-separable such that J = @ J(p, q) 
for p > 4. Then any R-algebra B containing J as a subalgebra is special and 
rejexive. 

Proof. By Proposition 7.4(2), J is weakly 4-interconnected. Then B is weakly 
4-interconnected, so B is special and reflexive [Proposition 7.4(l)]. 

Next we consider central separable algebras of the form J = @ J(2, q) 
(q 2 2 assumed). 
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PROPOSITION 7.6. J is R-central separable such that J = @ J(2, q) zfand only 
zf J = R @ M is the Jordan algebra of a nondegenerate symmetric bilinear form on 
M, where M is an R-progenerator such that rank, M > 2 for all primes p of R. In 
fact, M = [J, J, J]. J = J(2, q) $and only if M has constant rank q. 

Proof. Let J be R-central separable such that J = @ J(2, q). We claim that 

J = R 0 [J, J, Jl and [J, J, JI” CR. W e can assume that (R, m) is complete 
local Noetherian and J/m J is reduced. Then the claim follows from Theorem 4.8. 

Since J = R 0 [J, J, Jl and [J, J, Jl” C R multiplication defines a symmetric 
bilinear form f from [J, J, J] to R, and J is the Jordan algebra determined by f. 
[J, J, JJ is finitely spanned R-projective, since J is R-central separable. Then f is 
nondegenerate and rank, M 3 2, by Example 1.11. M is R-faithful, since it has 
positive rank at every prime. The converse is Example 1. II. 

PROPOSITION 7.7. Let J = J(2, q) be R-central separable, q 3 2. 

(1) If q is even, S,(J) is R-central separable. 

(2) If q is odd, S,(J) is R-separable and Z[S,( J)] is a Galois extension of R 
with Galois group { 1, rr}, where T is the canonical involution of S,( J). 

Proof. (1) S,(J) is R-faithful, by the standard reductions. For any maxima1 
ideal m of R, S,( J)/mS,( J) E S,,,( J/mJ) is R/m-central simple [3, p. 2631. 
Then S,(J) is R-central separable, by the associative analogue of Theorem 1.8. 

(2) S,(J) is R-separable by Corollary 1.9 and R-faithful by the standard 
reductions. (1, r} induces a group of automorphisms of Z[S,( J)] over R. For 
every maximal ideal m of R, r induces a nontrivial automorphism of 

~[sR(JWm~CsdJ~l = -WRdJ/mJ)I with fixed ring R/m [3, p. 2631. Then 

Wz[&(J)l, 4 = R W31, and z[SR(J)l is a Galois extension of R with Galois 
group (1, z-} [2, p. 81, Proposition 1.2.51. 

8. UNIVERSAL MULTIPLICATION ENVELOPES OF CENTRAL SEPARABLE ALGEBRAS 

Lastly, we apply the decomposition theorem to study the universal multi- 
plication envelope of a central separable R-algebra J, extending the theory in 

[3, pp. 264-2851. BY CJ51, we can assume that J = J(p, q). We represent 
U,(J) as a direct sum of algebras of the form End,(M), where M is an S-pro- 
generator and S = R or Z[S,( J)]. 

First assume that J = J(2, q). For 0 < K < q, let V, be the R-submodule of 
of S,(J) spanned by {aIU ... aku 1 ai E J}. Since 1 E J, V, C Vk for-j < K. Vj and 
V,/V, , i < k, are R-progenerators, by our standard reductions and Corollary 
4.9. For any R-algebra J, let 7: U,(J) -+ S,(J) @s S,(J) be the homomorphism 
determined by T(aD) = &(a0 @ 1 + 1 @au), a E J [3, p. 1001. 
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PROPOSITION 8.1. Let J be R-central separable such that J = J(2, q) for 
q = 2k even. Set To = VI, Tl = Vs/Vl ,..., Ti = Vz/zi+l/V,i-1 ,..., Tk-1 = 
V,-,/V,-, , Tk = V,/V,-, . Then U,(j) s @ End,( TJ where each Ti is an 
R-progenerator of rank C,+l,,i+, . Moreover, T is injective. 

Proof. S,(J) is an associative UX(J)-module under aos = &(a”~ + saO), a E J 
and s E S,(J) [3, p. 2671. Each Vzi+l is a submodule [3, p. 2681, SO each Ti is a 
U,(J)-module and there is a homomorphism 4: U,(J) + @ End,(Ti). Since 
the Ti are finitely spanned R-projective, tensoring $ by R/m induces the corre- 
sponding homomorphism 9’ for J/m]. 4 ’ is an isomorphism, by [3, pp. 267-2691. 
Thus $ is an isomorphism, since @ End,(Ti) is finitely spanned R-projective 
and U&) is finitely spanned [M7, J6]. H ence 7 is injective, since + factors 
through 7 [3, p. 2671. 

The next proposition follows in the same manner from [3, p. 2721. 

PROPOSITION 8.2. Let J be R-central separable such that J = J(2, q) for 
q = 2k - 1 odd (k > 2, since q > 2). Write J = R @ M as the Jordan algebra 
of a nondegenerate symmetric bilinear form f on M [Proposition 7.61. Let J’ = 
R @ M @ Rw be the Jordan algebra of a nondegenerate symmetric bilinear form g 
on M @ Rw, where Rw g R, g restricts to f on M x M, g(M, w) = 0, and 
g(w, w) = 1. Consider J C J’ and Vi C S,(J) C S,(y). If k is odd, set 

Tl = V, , Ts = I’,/V, ,..., T,-, = Vk-z/Vk--4 , 

T, = Vow, T, = V,w/V,w ,..., T,_, = Vk-1w/Vk-3w, and 

x = &u>/(~~~Ru)l Vk-2). 
If k is even, set 

Tl = V, , Tz = V,/V, ,..., T,-, = V,-,/V,-, , 

T,, = V,,w, T2 = I/zw/V,,w,..., T,-, = V,-,w/V,<-,w, and 

x = sR(JNmwll Vk-24. 

Then U,(j) z @ End,(T,) @ End z[s,(J)l(X), where Ti is an R-progenerator of 
rank C,+,,i and X is a Z[S,(J)]-progeneyator of rank $Cq+I,k. Moreover, 7 is 
injective. 

Finally, we consider U,(J) when J is R-central separable and J = J(p, q), 

P 3 3. 

PROPOSITION 8.3. Let J be R-central separable such that J = J(3, 8). Then 
U,(J) E End,(J), where J is an R-progenerator of rank 27. 

Proof. Let $: U,(J) + End,(J) be th e natural homomorphism. Let m be a 
maximal ideal of R. Since 1 is finitely spanned R-projective, tensoring + by R/m 
induces the natural homomorphism +‘: URlm(JmJ) --+ EndRlm(J/mJ). 4’ is an 
isomorphism [3, p. 2841, so 4 is an isomorphism [M7]. 
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For an R-algebra J, let V,(J) be the subalgebra of S,(J) @ SR(J) fixed by the 
automorphism exchanging SR(J) @ 1 and 1 @ S,(J). T[U,(J)] C V,(J), 7 as 
above. Since & E R, V,(J) is an R-direct summand of S,(J) @ S,(J) preserved 
under changes of rings. In particular, V,(J) is finitely spanned R-projective if 
J is R-central separable [Th eorem 5.41. Applying the results on central simple 
algebras in [3, pp. 272 and 2851, one can prove the next proposition in the same 
manner as Proposition 8.3. 

PROPOSITION 8.4. Let J be R-central separable such that J = J(p, q), p > 3. 
Then 4udJ)l = v,(J). M oreover, 7 is an isomorphism of U,(J) onto V,(J) if 
p>4orp=3andq=lor2. 

If (A,j) is an associative algebra with involution, let Sk(A,j) be the set of 
j-skew elements of A. Applying the same argument for the results in [3, p. 2721 
yields: 

PROPOSITION 8.5. Let J be R-central separable such that J = J(p, 1) or 

J = J(P, 4), P 3 3. Then V,(J) z End,(H[S,(J), ~1) 0 End,(Sk[SAJ), ~1). 
WS,(J), 4 ad NS,(J), 1 T are R-progenerators of respective ranks p(p + 1)/2 

andp(p - 1)/2ifJ = J(P, 1) an ranksp(2p - 1) andp(2p + 1) ;f J = J(p, 4). d 

PROPOSITION 8.6. If J is R-central separable, then U&J) is an R-progenerator. 

Proof. We must show that U,(J) is R-projective. We can assume that 
J = J(p, q). If J = J(1, l), then J = R. By Propositions 8.1-8.4, it remains to 
consider J = J(3,4). As usual, we can assume (R, m) is complete local Noetherian 
and that J/m J is reduced. By Theorem 4.8, J E H(M,(D), j,) where rank D = 4 
and y = diag{l, ya , ya} for units yi E R. As in the proof of Theorem 4.8, we 
can assume that the yi have square roots in R, so J g H(MS(D),j) [3, p. 601. 
Likewise we can assume that (-l)l/” E R and that D is built by a doubling 
process which adjoins elements qi such that qi2 = 1. Then we can identify 
(D, d) with (M2(R), d) where Xd = (t -t) Xt(_y i), XE M2(R), and t denotes 
transposition [3, p. 1281. Let (C, d) = (e,,M2(R), -Ic), and let a E M,(R) act 
on m E C by a(m) = ma and (m)a = mad. Then H(Ma(C), j’) is a J-bimodule, 
where i’ is d-conjugate transpose [3, p. 2791. Let 4: UR(J) + V,(J) @ 
End, H(Ma(C),jl) be the natural homomorphism. 4 is an isomorphism, since it 
induces an isomorphism modulo m [3, p. 2841, so Ua( J) is R-projective. 
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