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The fraction of hadronic final states from e*e™ annihilation consisting of two jets is calculated exactly to lowest order
in QCD perturbation theory. This improves the Sterman—Weinberg expression increasing its range of applicability and may
allow for detailed quantitative tests of QCD at feasible experimental energies.

The most straightforward way to obtain experi-
mental predictions from a lagrangian field theory is by
means of Feynman diagrammatic perturbation theory.
In the case of quantum chromodynamics, such predic-
tions are often invalidated by a large coupling constant,
by mass singularities, and by the nonperturbative na-
ture of confinement. Lately, quantities free of the
first two difficulties (and for which, we hope, the
third difficulty may be ignored) have been investi-
gated as a means of obtaining detailed numerical pre-
dictions from QCD [1--3].

One such quantity is the fraction f of final states
from e*e~ annihilation which consists of “two jet”
events. A two jet event, as defined by Sterman and
Weinberg [1], has all but a fraction € of the total ener-
gy E going into some pair of cones each of half-angle
8. Sterman and Weinberg derived

1—f=(ag/m)* % -Q(6,e)+0(as7-), )]
with

0(5,¢)=41logs-log(2e)~1 —3] +743 -7, (2)
where terms vanishing as §, € = 0 have been dropped.
o = g2/4n, with g being the value of the strong cou-
pling appropriate to this process. More will be said
about the value of o later.

The predictions represented by egs. (1) and (2)
may provide detailed tests of QCD as the theory of

* Work supported by the Department of Energy and by a Uni-
versity of Michigan Rackham Predoctoral Fellowship.

strong interactions. Unfortunately, as noted elsewhere
[3,4], the formulas above are of limited usefulness. At
any energies which will be experimentally accessible in
the reasonably near future, 1—f becomes sizeable for
small § and e, signalling the inapplicability of perturba-
tion theory. For § and € large, the terms which van-
ished as 6, € = 0 and were neglected could be signifi-
cant. In this note, we eliminate the latter difficulty by
computing I —f exactly (to order o). (This extends
the result of Stevenson [4] *'.) We then consider possi-
ble applications of the new result.

As noted elsewhere [3,4] 1—f is proportional to
the integral of the e*e~ - qqg matrix element squared
over that part of the final state phase space not consist-
ing of 2-jet events. Let x, y, z be thg q, q, g energies
measured in units of %E After integrating over various

orientations of the final state, 1—f is proportional to
[4,5]

[ dxdy 2+ y2)/(1 —x)(1 ).
R

The region R is shown in fig. 1 along with a subre-
gion A which we use below. Since all three final parti-
cles are taken to be massless, phase space is invariant
under particle interchange, and we may symmetrize
the integrand in x, ¥, and z without changing the re-
sult. Having done so, we may restrict the phase space

1 Actually, expanding our eq. (3) leads to a slight disagree-
ment with this author.
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region by requiring x <y <z. This yields

. x2+y2

e [ ddy i
x2+22 2422 ]
D0 T

where x +y +z = 2. Furthermore, straightforward
kinematics yields

12+b 1-x/2

fdxdyf ar [ dy

(1 -x)/(1—ax)

2/3 1-x/2
+ f dx f dy,
1/2+b X

where a = 5(1 —¢c0s28)=5sin28 and b =(1—+/1—a)/a
-1=1 tan2(‘6)

The 1ntegrals can now be performed. The result
is eq. (1), with eq. (2) replaced with

Q(5,€)=2log [(1 —a)/a]
X [log(2e)~1 —2 +1log(1 —2€) + 3¢
+log(1+2b)/(1 —2b) — 2b] + 23 — ]
—2.L5(2¢) — log2(1 —2¢)
+ (3 — 6€)log(1 — 2€) + 3¢ + 32
+4L,11370 +2.05(~2b) - 2.05(20)

(3

1/2
+2b-2b2 —210g212
+ [2 log(1+2b)/(1 —2b) — 3b] log2b
+6x log xIﬂ%_b + [3ax2 + (242 —a)x3r(@)] 120

where f(x)I$ = fI$ = (s) f(r) £, is the dilogarithm,
and —log (1 —x) = x +1x2 + 1x3r(x) defines r(x).

The solid lines in ﬁg 2 dlsplay Q as a function of
& for several values of €. The dashed lines are the origi-
nal Sterman—Weinberg result, which is seen over much
of the plot to be a better approximation than might
have been expected a priori.

Before applying eqgs. (1) and (3), we need to con-
sider a/m. The only candidate which presents itself is
the running coupling constant evaluated at energy E,
which we will denote as a(E). Setting o = a(E), we
have at very high energies the result [6]
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Fig. 1. Phase space regions of interest. R is that region whose
complement consists of 2-jet events. A is the subregion of R
satisfyingx <y <z=2 —x —y.
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)

where /V is the number of quark flavors and A is some
not too small scale with A < E. Although it is not im-
mediately clear how to extrapolate eq. (4) to experi-

Fig. 2. Q(8, €), which contains all the § and e dependence of
1 - £, as a function of & for several values of e. The solid lines
are the exact result; the dashed lines are the original Sterman—
Weinberg result.
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mentally accessible energies, there is experimental evi-
dence [7] that eq. (4) works quite well in describing
scaling violations in deep inelastic scattering with &N
=4 and A= 0.5 GeV. The corresponding prediction
for eTe~ annihilation is in reasonable agreement with
the observed value of the total cross section above
charm threshold [8]. We therefore optimistically take
eq. (4) to hold in general, with ;V and A being energy
independent between flavor thresholds.

We can now apply egs. (1) and (3) to experiment.
These equations contain a lot of information, most of
which could not be obtaingd without the specific ap-
plication of QCD. Thus, they check QCD directly. For
example, with fixed § and €, 1\ can be measured as a
function of energy, although the preceding paragraphs
indicate that one should be cautious with these pre-
dictions. On the other hand, for fixed energy (£ = 30
GeV would be nice), egs. (1) and (3) should accurately
describe the variation of 1—-Awithé and e. Thus, it is
hoped that the results shown in fig. 2 can be tested
experimentally, yielding a practical quantitative test
of QCD.

My thanks to Martin B. Einhorn for several indis-
pensable discussions.
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