
Nuclear Physics A313 (1979) 77-94;  (~) North-Holland Publishing Co., Amsterdam 

Not to be reproduced by photoprint or microfilm without written permission from the publisher 

THE BARGMANN-SEGAL TRANSFORM, SU(3) SYMMETRY, 
AND NUCLEAR CLUSTER NORMS t 

K. T. HECHT and W. Z A H N  

Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109, USA 

Received 16 June 1978 

(Revised 29 August 1978) 

Abstract: By combining the use of the Bargmann-Segal integral transform with SU(3) recoupling 
techniques a new method is developed for the calculation of matrix elements in a basis of cluster model 
wave functions. An analytic expression is derived for the norm of an ~ + heavy fragment "cluster" 
function. Norms in p and sd shell nuclei can be calculated by a simple formula involving a few 
tabulated coefficients and readily available SU(3) Racah coefficients. Specific tabulations are given 
for nuclei with 12 < A < 24. 

1. Introduction 

With the development of the nuclear cluster model 1) in the last decade sophisticated 
computational methods in the framework of a refined resonating group theory have 
been developed 2). The use of integral transforms for the evaluation of matrix elements 
was found to be a powerful tool 3). Recently, various integral transforms have 
successfully been applied in different but similar approaches to nuclear problems 4- 9). 
Detailed applications of the refined resonating group method, however, have been 
limited to very light nuclei (A < 12); and the evaluation of matrix elements in an 
angular-momentum coupled basis has proved to be difficult for cluster functions 
involving more than two fragments 10). The extension of integral transform techniques 
to heavier cluster systems may be possible by exploiting the SU(3) symmetry proper- 
ties of the relative motion and internal cluster harmonic oscillator functions, 
particularly if cluster functions are expressed in terms of an SU(3) coupled basis in 
which SU(3) recoupling techniques can be used to advantage. Of the many integral 
transforms employed in microscopic cluster model calculations the Bargmann-Segal 
(BS) transform 6) is ideally suited to the exploitation of SU(3) recoupling techniques 11) 
since oscillator functions have very simple SU(3) coupling properties in Bargmann 
space. Kernels for norms and two-body operators (expanded in terms of Gaussians) 
have BS transforms of simple Gaussian form for cluster functions built from 0s 
cluster components, each with mass number < 4. For problems involving heavier 
cluster fragments (e.g. 19 F as a 15 N + ~ "cluster" system), the BS transforms of these 
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kernels are products of Gaussians with polynomials in the Bargmann-space variables 
for the relative motion Jacobi vectors. The evaluation of these polynomials is 
particularly simple if they are expressed in an SU(3) coupled basis. 

The technique to be illustrated in this paper can be exploited for the evaluation of 
kernels for both norms and two-body operators, and for cluster functions with 
fragments of equal and unequal oscillator size parameters. The special case of the 
norm kernel for a cluster system with fragments described by oscillator functions 
of equal size, however, forms a particularly simple example since such a norm kernel 
is an SU(3) scalar 12). Although the restriction to this simple problem is made mainly 
for purposes of illustration, a cluster function built from cluster componenfs with 
oscillator functions of equal size may nevertheless be very useful for p and sd shell 
nuclei since a physically realistic description of such nuclei may involve the combina- 
tion of a fairly rich shell model (valence) basis with core excitations described in 
terms of such cluster wave functions 13). A recent "extended" shell model calculation 
of this type for 2°Ne has proved to be very successful 13). Norm kernels for cluster 
wave functions built from oscillator functions of equal size are also useful for multi- 
nucleon transfer spectroscopy if norms can be calculated for relative motion functions 
of an excitation high enough to construct radial functions of realistic shape. A 
number of recent tabulations of s-spectroscopic amplitudes 14), in particular, have 
included results up to high oscillator excitation 12,13.15). For realistic applications 
the relative motion functions in a cluster basis built from oscillator functions of equal 
size must thus be able to carry excitations up to a high number of oscillator quanta. 
In the present method the polynomials in the Bargmann-space variables, from which 
the needed kernels are built, can be evaluated from known matrix elements in the 
space of functions corresponding to the lowest Pauli-allowed relative motion excita- 
tions which have a 100 ~o overlap with simple (valence) shell model wave functions. 
Since the BS transform of such a kernel then contains relative motion functions of 
arbitrarily higher excitation an expansion of such a kernel will lead directly to the 
evaluation of the needed matrix elements. The technique thus is one which propagates 
information from the space of lowest Pauli-allowed excitations to arbitrarily high 
excitations of the relative motion functions of the cluster basis. 

The formulation of the general technique will be given in sect. 2 which will also 
serve to establish the notation. The details of the technique will be illustrated with 
the evaluation of the BS transforms of a few norm kernels in sect. 3. The cluster 
problems chosen for this purpose will be a series of A = 4n + k nuclei (k = 1, 2, 3, 4) 
described in terms of a cluster model basis made up of a heavy fragment and an 
or-cluster where the heavy fragment is assumed to have an internal function of highest 
possible space and SU(3) symmetry. Detailed results are tabulated for nuclei with 
12 < A < 24 from which the ~+(A-4)  fragment norms can be calculated by a 
simple formula involving readily available SU(3) Racah coefficients. The limitation 
to these simple ct + (A-4)  fragment systems serves to illustrate the technique with 
problems which involve the minimum of SU(3) recoupling. The present investigation 
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is also limited to the evaluation of norm kernels which are SU(3) scalars. Kernels 
for more complicated operators (or for norms of cluster functions with fragments of 
unequal oscillator size parameters) will be built from SU(3) tensors. Their BS trans- 
forms can be constructed by similar techniques which will, however, involve more 
SU(3) irreducible tensor calculus and more recoupling of the SU(3) tensors from 
which these transforms are built. 

2. Formulation of the technique 

The use of the combined BS integral transform and SU(3) recoupling technique 
will be illustrated by the simplest possible example, the calculation of the norm for 
the cluster wave functions of a series of nuclei described by cluster wave functions with 
cluster components consisting of a heavy I-A = 4 (n -1 )+k]  fragment (n = integer, 
k = 1, 2, 3 or 4), and an s-cluster 

~P ~°~° (la) = ~/[~o . . . .  ¢, ~x(R) ~e-°~] ~ 
K L M  " 

Here, d denotes total antisymmetrization. The internal wave function of the heavy 
fragment, ~t~c,o~, is itself built from a superposition of n - 1  s-cluster internal wave 
functions, a single k-cluster internal wave function, and relative motion functions 
for n -  1 Jacobi vectors R~ . . . . .  R._ 

n 

¢c~o~o~ . . . .  ( 1-[ ~0,)[... [x(R,) ~1°~ × x(R2)~2°q~'2,,~.. ,  x(R._ ,)~"-'°q~°"°~ ... .  0b)  
' = l  

where the internal function for the ith cluster, ¢p~, is built from 0s oscillator functions 
in the g- or k~cluster internal degrees of freedom and includes the spin-isospin 
functions, which are SU(4) scalars for the n - 1  s-clusters and of SU(4) symmetry 
I1 k] for the k-particle cluster. The relative motion functions, Z, are constructed in 
terms of SU(3) coupled oscillator functions carrying a number of oscillator quanta 
Qg which correspond to the minimum Pauli-allowed values for i =  1 . . . . .  n - 1 .  
The superscripts indicate SU(3) quantum numbers (2#), in Elliott's notation; and 
the square brackets denote SU(3) coupling. Although the internal function for the 
heavy fragment could be built from a superposition of several (2¢#¢), it will be assumed 
that this function is adequately described by a single SU(3) representation corre- 
sponding to the highest possible oscillator quanta symmetry in the function of highest 
space symmetry; e.g., (2d~¢) = (04) for a12C fragment, or (2¢#¢) = (02) for an A = 14 
fragment. 

If the cluster wave function of eqs. (la) and (lb) is abbreviated by 
n 

~e = ~¢ I-I ¢P,(~,)z(R), (lc) 
i = 1  

where R stands collectively for R1, R2,..., R., the kernel sC(R, R) for an operator, 
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O, is defined by 

K. T. H E C H T  A N D  W. Z A H N  

f " . f de [ I  q,*OJ I-[  o,z(R) = dR (R, R)z(R). (2) 
i = l  i = l  

The operator may be the Hamiltonian, or the unit operator for the norm. If O is an 
operator of complicated SU(3) or spherical tensor rank, this equation is schematic 
since it implies considerable SU(3) or angular momentum coupling. However, 
it is precise for the unit operator, or any SU(3) scalar operator. 

It will be advantageous to introduce the BS transform of the kernel 

H(K, K) = f A(K,, R)d/d(R, R)A*(K, R)dRdR, (3) 

where the function A(K, R) which generates the transform is a short-hand notation for 

A(K, R) = I J  l-I A(Kw X,=) (4a) 
i = 1  a = x , y , z  

[-see also eqs. (2.3)-(2.9) of ref. 6)]; and the one-dimensional factor is defined by 

- 1 2 1 2 A(Kx, X) = n ~ exp { - ~ K  x --~X +x/~KxX}. (4b) 

In the present application the generating function property of A is of prime 
importance: 

A(Kx, X) = ~ 71 . (5) 
n = O  ~ /  • 

Here, ~u(X) is a one-dimensional harmonic oscillator function, and K]/x/n[. is the 
normalized oscillator function in Bargmann space. The Bargmann space function, 

ptK~<qo) K] x K"y~ KT" 
"-- . . . . .  "= x/nx! ~/ny! ~=.T'  (6a) 

has SU(3) irreducible tensor character (Q0) with subgroup labels here given in a 
Cartesian oscillator basis. On the other hand, 

p(K,~oo ) K *"x K*"~ K*": 
,-- .... , , : - x ~ x [  x/ny ! x/nz ! (6b) 

has SU(3) irreducible character (OQ). An SU(3) coupled Bargmann space polynomial 
can be defined by 

[P(K0 "2'°)x P(K2)(°2°)] (-au' = Z ((Q,O)ax(QzO)azl(2#)a)P(KO(~q~'°~P(K2)(~q~ 2°), (7) 

where the subgroup labels a in the U(3) coupling coefficient can be chosen in any 
convenient fashion; e.g. ~ = nxnyn ~ in a Cartesian oscillator basis, or a = ~cLM in 
an angular momentum basis. With K 1 --- K 2 a renormalization factor is needed to 
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construct the normalized Bargmann space polynomial 

o t 721 
[P(K)(Q'°)× P(K)(Q:°)](-~u) = 5a'(Q=Q'+Q~)6"° Qa ]Q2 ! P(K), . (8) 

The product of two A-functions can then be written as 

A(K, ,R,)A(K 2,R2) = ~ ~ Z 
QIQ2 ()'121/12) al 2 

PtK ](Q20)"I(~'I2#I2)I-'"*IR "~(Q10)X '~* /R  ](Q2°)l()~12/t12) 
× [ P ( K x )  ( Q ~ ° ) ×  ~ 2J J , , ~  L,~ ~ w ,~ ~ 2J .J,~: • (9) 

By successive SU(3) coupling this can be generalized to 

n 

I~ A(Ki, Ri) = Z ~, ~, [P(K, . . . . .  K,_ ,)(a~uJ x P(K.)(Q"°)](~ ~u) 
i = 1  QI...Qn (,~,12U121...(,~/~) a 

x [ [ . . .  [z*(R,)(~,°) x Z*(R:)(Q2°)](~':",~)... Z*(R,_ ,)(~"-" °)](~°"°) x z*(R.)(e"°)](, ~"). (lO) 

For the components with (2~) ,  for which Q~,..., Q._~ are restricted to lowest 
Pauli-allowed values, the order and the detail of the SU(3) coupling are immaterial. 
The Bargmann space functions in the variables g l  . . . . .  K,_ 1 for the internal degrees 
of freedom of the heavy cluster fragment can thus be characterized by the quantum 
numbers (2d~c) alone• By expressing all functions in eq. (10) in terms of SU(3) coupled 
irreducible tensors it is possible to avoid SU(3) Wigner coefficients and express 
physically meaningful results largely in terms of SU(3) recoupling coefficients. For 
the norm kernel, [or any kernel 5C(/~, R) which is an SU(3) scalar], in particular, 
the simple property 

fdl~dR[.. , /~  )(0~o) ,(,q (0~o) (X,:~,2)•.. • [ z  ( , x z ~) ] z * ( ~ . ) ( ~ - ° ) ] ~ ( R , R )  

× [ . . .  [z(R1)(e '°)  × z(R2)(e2°)](z '2" ' : ) . . ,  z(R,)(Q-°)](, ~") = 6a , - ) (z , ) f~)a~  ), (11) 

eliminates all dependence on subgroup labels, since the numbers I{~) must also be 
independent of ~. For the kernel of the unit operator the integrals I{~;) are related 
to the norms, N, of the normalized cluster functions of the type (1), 

by 

N((2¢#¢)(Q.0XXfi))~[tp,.+ 4 )(acuc)'tR ~(Q,o)q(x~ 

I(~.~) = 1/[N((2cpc)(O,O)(-~fO)] 2. 

(12) 

(13) 

By the use of eq. (10) for both A(K, R) and A*(K, R), combined with eqs. (11) and (13), 
the BS transform of the norm kernel can be expressed by 



82 K.  T. H E C H T  A N D  W. Z A H N  

H(K,K)= ~ ~ I/[N((2d~,)(Q.O)(X~))] 2 
(2cu_c)Q. 

(2u-) 

× [P(KI K )(2o~o) x P(K ~°-"°)l(X~rP(K*, , ~(~2o) ,, o(~*~(oq.)l(~ • ' ' ,  n - 1  n! 35 L 1 " " , K n - l !  . . . . .  n !  _15 

= ~ (l/[N((2¢~c)(Q.O)(Xp))]2)Edim (Xp)]* 
(2¢ta¢)Q~ 

(~u-) 

x [[P(gl , . - . ,  K.-  ,)(2o~o) x p(g.)(o,o~]a~ x [P(K* . . . .  , K*_ 1) '~°2°) × P(K*)(°°"J](~X)] (°°', 
(14) 

where dim (2#) = 2!(2 + 1)(/~ + 1)(2 +/~ + 2) is the dimension of (2/~). 
By using the orthonormality of the P(K) (2ouo) in K-space it would, in principle, 

be possible to integrate over the complex variables g~ ...  K._ 1, K*. . .  K*_ 1 with the 
Bargmann K-space measure 6) to select a single, specific value of (2d~). In practice, 
it is easier to expand the full H(K, K) in terms of the SU(3) coupled BS space poly- 
nomials of eq. (14) and determine the norms N by selecting the coefficients for the 
desired values of (2~#~) of the heavy fragment wave functions. 

Since it is our aim to give an analytic expression for the function H(K, K) from 
which the norms N, for fixed (2c#~), can be evaluated for arbitrary values of (~ )  
and Q., including Q. values corresponding to arbitrary, high excitations of the 
~-heavy fragment relative motion, we shall make use of general properties of the BS 
transform of the norm kernel. These enable us to express H(K, K) in terms of a few 
exponentials in the variable (K.-K*) and a few SU(3) coupled Bargmann-space 
polynomials built from P(K,) ("°~, P(K*) ~°"~ of relatively low degree (m < 4 for 
~ + ( A - 4 )  cluster systems with A - 4  < 16); as well as the P(K1,...,K._O (2~'~J 
which are the BS space transforms of the heavy fragment internal wave functions. 
Specifically, we shall show that H(K, K) can be given by 

. . . .  (mm) ff.~ 4 =0 { 4  =0 L F4(A--4)--PA'~ ~ - - ~  1} H ( K , K )  = Z ~ ,2Cra, l,{22)p ~D,(p)exp { , . 'K*)  
m=O (4).)=(00) p=l = p= 

x [ [P(K1 . . . .  , g . _  1) (2°"°~ x P(K* . . . . .  K*_ 1)("°2°~] ~22)p x [P(gn) (m°) x P(K*)(°')](22)] (°°~. 
(15) 

The p-sum in the curly bracket arises from the antisymmetrizer, ~¢, and leads to a 
linear combination of five exponentials each multiplied by its own polynomial in the 
BS space SU(3) coupled irreducible tensors. The p = 0 term arises from the identity, 
etc., the p = 4 term from the permutation which exchanges all four nucleons of the 
~t-particle with four nucleons in the heavy fragment. The coefficients Dt(p ) are given 
in table 1. The simplicity of these numbers is related to the fact that they are a group 
theoretical construct. Their values can be derived from properties of the permutation 
group. Eq. (15) is particularly simple when the heavy fragment in the a + ( A - 4 )  
cluster system is a p-shell nucleus with A - 4  < 16. In this case, mma x ----- 4, and the 
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TABLE 1 

Values of Dl(,p ) 

0 1 2 3 4 

0 1 -4  6 -4  1 
1 0 - 4  12 -12 4 
2 0 0 6 -12 6 
3 0 0 0 -4  4 
4 0 0 0 0 1 

coefficients, C, have the simple form C,.,~,(~z)p = fir,,,C.,,(xz),p; that is, the label l 
becomes redundant in this case, and the number of possible m, (22) values is 15. With 
2 c and #c both non-zero the representation (22) may occur with a d-fold multiplicity 
in the Kronecker product (2d~¢)x (#~2~), with d > 1; so that coupled SU(3) tensors 
and their coefficients must both be characterized by a multiplicity label p 
(p = 1, 2 . . . . .  d). In many simple a + heavy cluster systems, however, either 2c = 0 or 
#c = 0 so that d = 1, and the multiplicity label p can be dropped. On the other hand, 
with an A = 10 heavy fragment, e.g., (2c#~)= (22) for highest space symmetry; 
and d = 1, 2, 3, 2, 1 for (22) = (00), (11), (22), (33), (44), respectively. Even in this case 
the number of possible m, (2~.), p values is a manageable number, viz. 27. For an 
a + ( A - 4 )  cluster system for which the heavy fragment is an sd shell nucleus 
(A - 4 > 16), mma x ~ 8 ; but the number of m, I combinations with non-zero coefficients 
is at most 15. 

The form of H(K,  K), eq. (15), can be established from the general structure of the 
BS transform of the norm for an (n + 1)-cluster system made up of n + 1 fragments 
with 0s internal wave functions In a-clusters and a single k-particle cluster (with 
k = 1, 2, 3, 4) in our special case]. If all oscillator wave functions in such an (n+ 1)- 
cluster system have equal size, the BS transform of the norm has the simple Gaussian 
form 

H(K, K) = ~ ap exp { ~ tro(flXg , • K*)} (16) 
fl i , j =  ! 

[see eqs. (4.4)--(4.6) of ref. 6)]. 
By using a double coset (DC) decomposition for the antisymmetrizer, ~ ' ,  in the 

cluster function the fl-sum in eq. (16) can be restricted to one over DC generators 
with simple weighting coefficients aa. For large n this can still be a very large number 
of terms. For the restricted cluster function made up of a single a-cluster and a 
heavy A = [ 4 ( n - 1 ) + k ]  particle fragment, frozen into the lowest Pauli-allowed 
state, (2d~¢), the number of DC generators is reduced to five, and the equivalent 
fl-sum contains at most five terms. However, the general structure of the BS transform 
for the unrestricted n a-cluster + k-particle cluster function can be used to derive 
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the form of the BS transform for the restricted heavy fragment plus a-particle cluster 
function, by expanding the exponentials of eq. (16) and limiting the powers of 

K1 . . . .  K , - I , K * , .  * .. K._ 1 to their minimum Pauli-allowed values for the internal 
function of the heavy fragment. Since the scalar products Ki" K* are also SU(3) scalars, 
the polynomials in the K-space variables resulting from this expansion must be built 
from SU(3) irreducible tensors coupled to resultant (2/~) = (00). All expansions make 
use of the basic relation 

(K~-K*)  ~ 
n ! - [e(Ki)("°)x  P(g*)(°')]t°°)[dim (nO)] =. (17) 

To carry out the full expansion of eq. (16) it is convenient to split the exponentials 
in H(K, K) into three factors: 

(i) The first component is to include only those terms in the sum with both 
i, j < n -  1 ; i.e., it can carry only oscillator excitations of internal degrees of freedom 
of the heavy (A = [4(n-  1)+ k] particle) fragment. It must thus be built from tensors 
of the form 

[ P ( g ,  . . . .  , g . _ , ) " ' " ' )  x P(K~ . . . . .  g*_,)( . '~')](°°) ,  (18) 

where (2'#') corresponds to a U(3) representation [ f ;  f ; f ; ]  = [,~' + I£ + f ; ,  ~' + f ; ,  f ;1  
which carries a number of oscillator quanta ft' + f~ + f ;  = Q'x + Q~ + ... + Q',- 1 < Qo. 
Here, Qo is defined as the minimum Pauli-allowed Q-value for the A = [4(n-  i )+  &J- 
particle fragment; e.g., Qo = 8 for n = 4, k = 0; and Qo = i i  for n = 4, k = 3. 
The expansion of this factor of the exponentials is thus limited to relatively low 
powers. 

(ii) The second component is made up of the cross terms 

n-1  n -1  

exp { ~ 6in(K i " K * ) +  ~, a, j~K,.  K*)}. (19) 
i=1 j = l  

The number of oscillator quanta which can be contributed to Q, by the K* term 
of this factor, to be denoted by the integer m, must be equal to the number of oscillator 
quanta contributed by the K1, K2 . . . .  , g ,_  ~ terms of this factor, so that 

m = Q o - ( Q ' I + Q ' 2 +  . . .  +Q;- I ) .  

Similarly, the number of oscillator quanta contributed to Q, by g , ,  to be denoted 
by m', must be equal to the number of oscillator quanta carried by K*, K* . . . .  , K*_ 1, 

' ' + ' • m. This second so that m' = Qo-(Q1 + Q 2 +  . . .  Q~- 1), and consequently m' = 
factor in the exponential thus contributes terms of the form 

I'['P(KI . . . . .  K,_ l)(mO) X P ( K * n ) ( ° m ) ] ( ° ° ) [ P ( g n ) ( r a ° )  x P ( K *  . . . .  , KSn - l)(0m)](00)](O0) 

("") [dim (22)] ~ 
= ~ dim (m0) [[P(KI . . . . .  g , _  1) (m°) x P(K'~ . . . . .  K*_ ~)(or~)'](~) 

(a~) = (oo) 

X [P(gn)(m°) x P(K*)(°ra)]('t'~)] (00) (20) 
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to the expansion. The second line of eq. (20) is obtained from the first by a trivial 
SU(3) recoupling transformation. 

(iii) The third factor of eq. (16) is left in its exponential form 

exp {a,,(g, "K*) I. (21) 

Only the a,,  for the five double coset generators of the a+ (A  = [-4(n-1)+k])  two 
component cluster function are needed. These can be read from the p-sum of eq. (15) 
(the p = 2 term, e.g., corresponds to a permutation which exchanges two particles 
from the a-cluster component with two particles from the heavy fragment). 

Finally, the SU(3) (00) tensors ofeqs. (18) and (20) are combined with as yet unknown 
coefficients c,., l, (a,u,) to make the ruth degree terms of the polynomials in K, and 
K* needed for the full expansion of the BS transform H(K, K) of eq. (15): 

~ c,, ,, (a, ,) f ( ~ ) [ - d i m ( 2 2 ) ] ~  
(~'~') u~)=(oo) dim (m0) 

x [-[-P(K1 . . . . .  K,,_ 1) ('v~'') x P ( K *  . . . . .  K*_  1)(u"v)] (°°) 

x [[-P(K1 . . . .  , K._ 1) (m°) x P(K* ..... K*_ 0(°")] (a~) 

x [P(g.)(m°) x P(K*)(°m)](~)](°°)](°°)}. (22) 

In principle, the c,., t, (z,u,) can be evaluated from the aij and the DC expansion of 
the full (n + 1)-cluster problem. In practice, it is easier to calculate them by indirect 
means from the norms of the cluster functions, eqs. (1), with Q1, Q: . . . . .  Q, all set 
equal to their minimum Pauli-allowed values. Such an antisymmetrized cluster 
function is equivalent to a simple (valence) shell model wave function; and its norm 
can be calculated by shell model techniques 11, 14). [-For both p and sd shell nuclei, 
the four-particle c.f.p, needed are available 17, 18). For sd shell nuclei the norms for 
a few very simple core excited states 11) may also be needed.] 

To make this calculation it is necessary to reorganize the terms in ~,,.~ by an 
SU(3) recoupling transformation 

~m,I  = c,., ~, (a'.') ~ dim (m0) (a'~,)p Ldim (2/~ ) dim (m0)J (,cu') (~)=(oo)  

x U((2¢#¢)(ff2')(22X0m); (m0)- -; (/~¢2c) - p) 

X l IP(K1  . . . . .  Kn-,)(Xo"o) x P(K*,..., K*_ ,)("°a°)](~)o 
x [P(g.)("°) x P(K*)(°m)]('~'~)] (°°), (23) 

where the U-coefficients are SU(3) Racah coefficients in the notation of refs. 11, 19). 

These are readily available through the computer code of Draayer and Akiyama 19, 2 0). 
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For the most general 6(2#) recoupling transformation the U-coefficient 

U((21//1)(22//2)('~,//)(23//3); (~12//12)/912Pl 2, 3; (223//23)P23P1,23) 

is a unitary transformation matrix whose rows are specified by (212//12)Pl 2P12, 3 and 
columns by (223//23)/923/91,23; and in the most general case four multiplicity labels p 
are required. For the recoupling transformation needed for eq. (14), only one of the 
four SU(3) products has a multiplicity d > 1. Only the multiplicity label P1,23 
for the product (2c//~) x (//~2c) -~ (22) is needed and is abbreviated by p. Unnecessary 
multiplicity labels are replaced by a dash. Comparing with eq. (15), the coefficients 
C,., t, (a,~)p and c,., ~, ~..,) are related by 

r dim (22! dim (2¢//¢) 1 
] 

x U((2¢//~)(//'2')(22)(Om); (mO)- -; (//<2c) - p). (24) 

3 .  T h e  n o r m  e v a l u a t i o n  

The BS transform of the norm kernel is now established in suitable SU(3) 
irreducible tensor form with the evaluation of the coefficients Cr.,t, ta,u, ). Both to 
calculate these coefficients from the norms for the minimum Pauli-allowed Q. values, 
and to calculate the norms for higher excitations, it will be useful to expand the 
exponentials exp {a..(p)(K.'K*)} by the use of eq. (17) and combine the (Q. -m) th  
term in this expansion with the ruth degree polynomials p(g.)t,.o) and P(K*) t°m~ of 
eq. (23) to attain the full expansion of H(K, K) in the form of eq. (14). For this purpose 
an SU(3) recoupling transformation has to be made to take us from the 

[[[(2d.tc) x (pc2~)](22)p x [(m0) x (0m)](22)3(00) x [(Q. - m, 0) × (0, Q. - m)](00)](00) 

scheme to the needed [[(2jt~)x (Q.0)](X/~)x [(#c2~)x (0Q.)](#~-)](00) scheme. This 
recoupling transformation, together with an application of eq. (8), yields the BS 
transform H(g, K) in the form needed: 

m m a x  

: o . : .  ,:o t,eo ] ; t m )  

_ ~= +.< + o . -  x- ~,~ [ d i m  (2c//¢) dim (0.0)1½ 
x ~. ( , ~m.t, tz.~,) Ldim (Z#')(dim (m0))4] 

(ram) d 

x { E E [dim(22)]  ~ 
(2A)=(Ob) p= I 

x U((2da~)(//'2')(22XOm); (toO)--; (//c2)- p) 

x U((Q.0X0, Q. - mX22)(Om); (mO)- -; (OQ.)- -) 
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x C((Q.O)(2c#,)(Q.O)(#c2c); (X/2)--; (22)p -)} 

x [[P(gx . . . . .  g ,_  1) (z°~°) x p(g.)(o,o)](xm 

x [P(K'~, u .  ~(ucz~) v pt~:.~(OQ,)-lt~n(oo) (25) 
• " " " I n - -  1 !  ""  a ~ . ' l n  ! J J " 

The coefficient of a specific/(-space tensor 

l iP(g1 . . . . .  g . _  1)(~o~o) x p ( g j e , o ) ] ( ~ . . . ] ] t o o )  

is [dim (~)]*/[N((;~o~XQ.0)(~))] 2 and can thus be used to calculate N. 
The evaluation of the c~,~,(~w)proceeds along slightly different lines for nuclei 

with (i) A = 16, (ii) 16 < A =< 20, and (iii) A > 20. In the first two cases, when the 
heavy fragment is a p-shell nucleus, the index l is redundant: cm, t,(~,~, ) = 6mzc~,(~,~, ). 
This is related to the fact that the removal of m oscillator quanta from the (A -4 ) -  
particle wave function ~(~o)  of the heavy fragment to make a wave function of 
symmetry (2'#') can yield a wave function ~(~'~') with at most ( A - 4 - m )  particles• 
The removal of m oscillator quanta requires the removal of m p-shell nucleons. Only 
exchange terms with p __> m can thus contribute to such a term; and the non-zero 
values of D,(p) begin with I = p (cf. table 1). In addition, in cases (i) and (ii) the SU(3) 
symmetry (2~#~) of the heavy (p-shell) fragment must correspond to a Young tableau 
with at most four columns, so that m -<_ 4 since the product (2'#')x (m0) for m > 4 
would have product functions with tableaux of more than four columns• With 
A = 14, e.g., with an A = 10 heavy fragment of highest possible space symmetry 
(2~#c) = (22), there are nine possible m, (;~'#') values; determined by the number of 
ways in which m symmetrically coupled squares can be removed from the Young 
tableau for (2c#~) = (22): 

m = 0, (2'#') = (22); m = 1, (2'if) = (31), (12); m = 2, (2'#') = (02), (40), (21); 

m = 3, (2'#') = (11),(30); m = 4, (2'/~') = (20). 

The nine c,,,(a,u,) can be evaluated from the first Pauli-allowed term of the norm 
kernel, with Q. = 4. In eq. (25) Pauli-forbidden terms with Q. < 3 are automatically 
equal to zero via the p-sum. This is guaranteed by the structure of the D~(p). With 
Q, = 4 there are nine possible (~-~) values in this case since 

(2d~J x (Q.0) = (22) × (40) = (62) + (43) + (51) + (24) + (40) + (32) + (13) + (21 ) + (02). 

Of these nine (2-/]) values, however, only the single one, (X/~) = (02), gives a Pauli- 
allowed wave function, the ordinary shell model ground state configuration wave 
function for A = 14: ](0s)4(0p)l°(X/2) = (02) S T  = 01 or 10). The nine c,.,(~,u,) can 
thus be evaluated from the coefficients of the [(,;t~#j x (Q.0)](X/2) = [(22) x (40)](~/~) 
terms of eq. (25), where these coefficients have the value zero for the eight Pauli- 
forbidden (2-/]) and the simple shell model value TM 14) 

[dim (X/2)]½/N 2 = x/6[(32 x 5/26)(14/10) 4] 

for the only allowed state with (5/2) = (02). 
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The calculation for a nucleus of  type (2) can be illustrated by the example A = 19 

with a heavy fragment (2~#~) restricted to ()%/~¢)= (01), the only possible SU(3) 
wave function for the A = 15 fragment. In this case there are eight possible m, (2'#') 

values: 

m = 0,(2'~') = (01); m = 1,(2'~') = (10),(02); m = 2,(2'~') = (11),(03); 

m = 3, (2'#') = (12),(04); m = 4, (2'/f) = (13). 

The first Pauli-allowed Q. value is now Q, = 7. The Pauli-forbidden terms in 
eq. (25) with Q. < 3 are again automatical ly  equal to zero via the structure of  the 

Dz(p). The eight Cm,~X,,,~ are evaluated from the Pauli-forbidden terms with 

4 < Q, < 7 and the single Pauli-al lowed term with Q, = 7. As required, these are 
eight in number  corresponding to 
possibilities with 

Q, = 4, (2-/]) = (41), (30); 

Q. = 6, (2-/]) = (61), (50); 

the [(2c#c) × (Q,0)](2-/]) = [(01) × (Q,0)](2-/]) 

O, = 5, (2-/]) = (51), (40); 

Q, = 7, (2-/]) = (71), (60). 

The coefficients in eq. (25) corresponding to the seven Pauli-forbidden terms are 

again equal to zero. The coefficient for the single Pauli-al lowed term with 
Q, = 7, (2-/2) = (60) has the value [dim (2-/])]~/U z = x / ~ [ ( 3 4  × 5/213)(19/15) ~] where 

N 2 for the shell model  configurat ion (0s)4(0p)lZ(sd)3(60) has been calculated by the 
SU(3) recoupling techniques of  refs. 11, 14). 

For  a nucleus of  type (3) with A > 20 and a heavy fragment cor responding  to an 
sd shell nucleus, higher m-values come into play, and both  indices m and I are now 

needed. For  A = 23, e.g., the A = 19 heavy fragment of  highest possible SU(3) 
symmetry  has (2c/at) = (60) with a shell model  configurat ion s4[p lz(00)sd3(60)](60). 
In this case the possible m, l, (2'/a') values are 33 in number :  

m, 1 = 0, 0: (2'/Y) = (60); m, l = 1, 1: (2'/Y) = (61), (50); 

m,l = 2, 2: (2'p') = (62),(51),(40); m,l = 2, 1: (2'p') = (40); 

m,l = 3, 3: (2'p') = (63),(52), (41),(30); m,l = 3, 2: (2'p') = (41),(30); 

m, l = 4, 4: (2'/a') = (64), (53), (42), (31), (20); 

m,l = 4 ,3 : (2 '# ' )  = (42), (31), (20); m,l = 4, 2: (2'/a') = (20); 

m,l = 5,4: (2'p') = (43),(32), (21), (10); m,l = 5 ,3 : (2 '# ' )  = (21), (10); 

m,l = 6 ,4 : (2 '# ' )  = (22),(11),(00); m,l = 6, 3 : (2 ' / f )  = (00); 

m,l = 7,4: (2 '~ ' )  = (01). 

These can be unders tood from the following examples:  (i) For  m = 1 the removal  of  
one oscillator quan tum from the A = 19 heavy fragment wave function, with 
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(2c#c) = (60) and 12 + 6 = 18 oscillator quanta,  can yield wave functions of symme- 
tries (2'#') = (50) and (61) only. Both  of these (2'#') can be made  only from shell model  
configurat ions s'[pXl(01)sd3(60)](Zff), with r ___ 4, which therefore cor respond to 
clusters with at most  eighteen particles. To  make  functions of these (2'if) at least 
one nucleon must  be removed from the A = 19 heavy fragment,  and only exchange 
terms with p > 1 can contr ibute  to these terms. The D~(p) which begin with p = 1 
are given by 1 = 1; see table 1. The four non-zero Dl(P) give the relative fractional 
parentage contr ibut ions  of the srpl lsd 3 configurations with r - - 4 ,  3, 2, 1, corre- 
sponding to p = 1, 2, 3, 4. [A detailed group-theoret ical  interpretat ion of the Dr(p) 
in terms of the concept  of fractional parentage will be given in a subsequent  publica- 
t ion which will deal with more  complicated cluster systems.] (ii) For  m = 4, the 
removal  of four oscillator quanta  from the A = 19 function with (2c#~) = (60) yields 
functions of symmetries ( 2 ' # ) =  (64),(53), (42),(31),(20). Of  these, functions with 
(2'#') = (64) and (53) can be constructed only from the shell model  configurat ion 
s4[p8(04)sd3(60)](2'# ') with fifteen particles. At least four nucleons must  be removed 
from the A = 19 heavy fragment to make  functions with these (2'if). Only  the single 
exchange term with p = 4 can contr ibute  in this removal  process so that  only the 
l = 4 term, [with only D4( p = 4) =p 0], can contr ibute  to coefficients with these (2'if). 
Funct ions  with (2'if) = (42) and (31) can be constructed both  from the shell model  
configurat ion s4[p8(04)sd3(60)](2'ff) and from configurat ions s~[pl°(02)sd2(40)](2'p ') 
with r = 4 or 3. The  first one corresponds to an l = 4 term, as before. The  second 
one can get contr ibut ions  from exchange terms with both  p = 3 and 4 and corresponds  
to l = 3. Finally, the function with (2'#) = (20) can be constructed from the above 
two shell model  configurat ions leading to l = 4 and I = 3 contributions.  In addition, 
it can also be constructed from the configurations g[pl2(00)sdl(20)](20) with 
r = 4, 3, 2 which can get contr ibut ions from exchange terms with p = 2, 3, 4. These 
are made  possible by including terms with the index l = 2. The K-space polynomials  
with m = 4, (2'/~') = (20) are thus fully determined by three coefficients %.t,~a,,,) 
with I = 4, 3, 2. 

In all, there are 33 different c,,,t,~,,,). The  first Pauli-al lowed Q, value is now 
Q, = 8, but  states with 4 < Q. < 8 are now only 32 in number,  corresponding to 
the [(2c/~c) x (Q,0)](2/~) = [(60) x (Q.0)](~/~) possibilities with 

Q, = 4, (2-fi) = (10,0), (81), (62), (43), (24); 

Q, = 5, (X/~) = (11,0), (91), (72), (53), (34), (15); 

Q, = 6, (2/~) = (12,0) (10,1), (82), (63), (44), (25), (06); 

Q, = 7, (2/~) = (13,0), (11,1), (92), (73), (54), (35), (16); 

Q. = 8, (2-fi) = (14,0), (12,1), (10,2), (83), (64), (45), (26). 

Of  the Q. = 8 states the last four, which are underl ined above, are now Pauli-allowed. 
The  norms for these states can be found in table 1 of ref. 11). Norms  for a few simple 
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additional states with Q, > 9 can also be calculated by the SU(3) recoupling 
techniques of ref. 11). [-All Pauli-allowed states with Q, = 9 are included in table 1 
of ref. 11).] It is thus easy to choose a simple set of 33 equations with known norms 
from which the 33 coefficients c,., t, (2.., ) can be calculated. 

Once the c.,, l, {2'.') have been calculated, the norms for c(- ( A -  4) heavy fragment 
relative motion of arbitrary excitation, Q., follow at once from the BS transform of 
the norm kernel, eq. (25), by choosing the Q., (2/~), (2d~c). It is convenient to absorb 
some trivial factors into the definition of the coefficients, and in place of c.,,~,(2,.,) 
introduce 

Cm'i'(2'u') 1 [4(A--4)1". (26) 
Y,., t, ~2'.'} -- [dim (2'if)] ½ m ! dim (m0) 

The norm is then given by 

(_)2o+.c+Q.-2-~ 
L F~lim dim (2/]) ]½ 

Y.,t,(2'u'} Q.' E_4 A ] " 
= Z ~ e .  dim(m0) (Q.-m)~ (A---4) mt(2'U') 

(ram) d 

×( Z 
(44)=(00) p= 1 

x U((2d~c)(#'2'X22)(0m); (m0)--; (/~2c) - p) 

x U((Q.0)(0, Q . -  m)(22)(0m); (m0)- -; (0Q.) - -) 

x U((Q.O)(2~kt¢)(Q.O)(i.tc2¢); (2-/])--; (22)p-)}, (27) 

where 

= 

.=o L 4(A-4) _] 
The D((p) are given in table i. The Ym, l,(2'.') for all nuclei with 12 ~ A __< 24 and 

heavy fragment (2cpc) corresponding to highest possible SU(3) symmetry are very 
simple numbers and are collected in tables 2a, b and c. The expression in curly 
brackets in eq. (27) involving the sums over (,;L2), p is akin to a 9-(2#) coefficient. The 
U-coefficients needed are readily available through the computer code of Akiyama 
and Draayer 20). For ,4 < 20 the number of terms in the m, (2'if) sum is < 9. Even 
for A = 24 the number of m, l, (2'#') values is only 35. For even heavier sd shell 
nuclei the technique can be made practical with very simple computer codes. The 
case ,4 = 20 is particularly simple. In this case (2c#¢) = (00), hence (22) = (00) only, 
and the expression in the curly brackets is replaced by the trivial factor 1; with 
(2'#') = (0m)the norm is given by a sum over five very simple terms. Numerical 
values for A = 20 norms have previously been given by BandO 15). For A = 20 a 
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general algebraic expression for the norm, in very different form, has previously 
been given by Tomoda and Arima ~3). Insofar as the present method uses the 
generating function properties of A(K, R) the method is akin in philosophy to that 
employed by Suzuki 21) and Horiuchi 12). By expressing the B-S transform of the 
norm kernel in full SU(3) irreducible tensor form, however, all sums over angular 
momentum or other subgroup labels are avoided altogether. The present method 
has the advantage that it automatically propagates information from the space of 
lowest Pauli-allowed excitations to arbitrarily high excitations of the relative motion 
functions of the cluster basis. 

TABLE 2a 

The coefficients y~,~,u,~for the [(A - 4 ) + ~ ]  cluster function norms 

m 

A = 12 A = 13 A = 14 A = 15 

(2 ' i f )  Y,,. wu'~ (2'/~') Y~,. ~a'u'~ (2 ' i f )  Y,,. ~a','~ (2 '# ' )  y,~. ~a.u.~ 

0 (40) 1 (31) 1 (22) 1 (13) 1 

1 (30) 1 (40) ± (31) ] (22) ] 16 

(21) 15 (12) ~ (03) 5 
16 6 8 

2 (20) l (11) ~ (02) ~ (31) 1 
(30) ~ (40) 5 (12) 12 18 4 

(21) 

3 (10) 1 (01) ~ (11) ~-~° (40) 
(20) ~ (30) ~ (21) ~-~ 

4 (00) 1 (10) ¼ (20) ~ (30) 

TABLE 2b 

The coefficients Ym. l.vu'~ for the [ ( A -  4 ) +  ct] cluster function norms 

A = 16 A = 17 A = 18 A = 19 A = 20 
m 

(2 '# ' )  Ym. ~.~,.~ (2'/~') Y~,. ~.,.~ ()-'P') Ym. ~.,.~ (2"/a') Ym. i~','~ (2'/t '~ Ym. ~.~,.~ 

0 (04) 1 (03) 1 (02) 1 (01) 1 (00) 1 

1 (13) 2 (12) ~ (11) -~ (10) ¼ (01) 3 
(04) ] (03) ~ (02) 3 

2 (22) 3 (21) 2 ~ (20) ] (11) 1~ (02) 6 
(13) 1 (12) ~-~ (03) 

(04) ± 12 

3 (31) 4 (30) 5 (21) 2~ (12) 2~ (03) 10 
(22) 9 (13) _5 3 (o4) ¼ 

4 (40) 5 (31 ) 6 (22) 1~ (13) 10 (04) 15 
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TABLE 2c 

The coefficients y~.l.(~,u,)for the [(A - 4 ) + a ]  cluster function norms 

m , l  

A = 21 A = 22 A = 23 A = 24 

(2'#') Y,,,  t, (:,'u') (Z ' # ' )  Y,,,, i. (z'u') (2'#') Y,,., l, (~'u') (2',u') Y,,, t, i,vu'} 

0,0 

1,1 

2 ,2  

2,1 

3,3 

3,2 

4 ,4  

4,3 

4,2 

5,4 

5,3 

6,4 

6,3 

7,4 

8,4 

(20) 1 (40) 1 (60) 1 (80) 1 

(21) 25- (41) ~ (61) 9 (81) ,1 T 
(10) ½ (30) ~ (50) ¼ (70) 

(22) 9 (42) 4 (62) 1~ (82) 18 
(11) 4 (31) s (51) ~ (71) 16 5 Y 
(00) - ~  (20) 2 (40) 2515 (60) 4528 

(00) ~ (20) ¼ (40) 8 a (60) 2 ~ 

(23) 7 (43) 6 (63) ~t (83) 26 
(12) 5 (32) 1~ (52) 28-~ (72) ~ 
(01) ½ (21) 1 (41) ¼ (61) 

(10) ~ (30) ~ (50) 7 14 15 

(01) ~ (21) ~ (41) ¼ (61) '~ 12 12 12 

(10) 41 (30) ½ (50) ¼ 

(24) 10 (44) 2~ (64) 1~ (84) 7 
(13) 4 (33) 64 (53) ~ (73) 64 

15 T g  

(02) 1 (22) 9 (42) ~ (62) 
(11) a (31) 6 (51) ]-~ 15 

(00) 2o (20) 3 (40) ± 
3 14 3 

(02) l~ (22) 2~ (42) l 3~ (62) 11 
16 20  112  8 -  

(11) 7 (31) s~ (51) 1~ 10 70  

(00) ~ (20) 2o9 (40) '*~56 

(00) ± (20) : (40) ¼ 2 4  8 

(03) 7 (23) 242 (43) 9956 (63) t4~ 75 
(12) _7 (32) 8~ (52) 891 

5 4 0  3 5 0  

fOl) 2150 (21) ~-~ (41) 1~ 
(10) 3 (30) s 

1o 7 

(01) 7 (21) 2_77 (41) 1~ 
4-0 8 0  20  

(10) 3 (30) ½ 16 

(02) ~ (22) 2__7 (42) 33 
15 4-0 35  

(II) ~ (31) 24-~ 
(00) ~ (20) -~ 

l (00) a~ (20) g 

(01) 9 (21) l~ 56 28 

(lO) ¼ 
1 (00) 1~ 
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4. Concluding remarks 

By combining SU(3) recoupling techniques with the use of BS integral transforms, 
a very general yet simple expression has been gained for the norm of a cluster wave 
function for a two component cluster system consisting of an ~-cluster and a heavy 
fragment. This simple example has been chosen for purposes of illustration. The 
combined use of BS transforms and SU(3) recoupling techniques can also simplify 
the evaluation of matrix elements of more challenging operators or more complicated 
cluster systems. The BS transforms of more complicated kernels will again be 
constructed from linear combinations of exponentials and polynomials in the BS 
space variables gl  . . . .  , K., K]',..., K*. Besides the SU(3) scalar variables K,-g*,  
the exponentials will also contain variables such as K. .K,  and K * . K *  which are 
SU(3) irreducible tensors of ranks (20) and (02). For an ~+heavy fragment two- 
component cluster system with different harmonic oscillator constants for the 
~-particle and heavy fragment, e.g., the construction of the BS transform of the norm 
kernel can be carried out by steps which parallel the construction given here. The main 
difference comes from the fact that the exponentials exp {tr.,(K. • K*)} will have to be 
replaced by products of the form 

exp {p..(K, "Kn) } exp {a,.(K.-K*)} exp { z . , ( K * ' K * ) } .  

An expansion of such products, combined with SU(3) recoupling techniques of the 
type illustrated here, will now lead to BS transforms of the norm in which the BS 
transforms of the ~+heavy fragment wave functions of the bra and ket sides of a 
matrix element, viz. 

[ P ( g l  . . . .  , K . _  l) (lout) x p(g.)t0,o)]~x~ and [P(K*,  . . ., K*_ 1)("°Zc)x P(K.)* toe,)],o,~) 

can now be coupled to SU(3) irreducible tensors with resultant (2o#o) ~ (00); cf. 
eq. (14). The SU(3) recoupling techniques can furnish an even more powerful tool 
in the construction of the BS transforms of such kernels. Some details of this technique 
have been given elsewhere 22) for the simple 12C = (~-~ tX-'~ 0~ cluster system for which 
the kernel of the interaction is considered. The combination of SU(3) recoupling 
and BS transform techniques can also lead to a ready evaluation of matrix elements 
in an angular momentum coupled basis for cluster systems involving more than 
two fragments. By merging the power of the integral transform techniques with 
readily available SU(3) technology, the detailed microscopic treatment of relatively 
complicated cluster structures, with several fragments including p-shell nuclei, e.g., 
may now be within striking distance. 

It is a pleasure to acknowledge valuable discussions with T. H. Seligman. 
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