
111 

Journal of Non-Newton&an Fluid Mechanics, 6 (1979) 111-126 
0 Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands 

ON THE SIMULTANEOUS ELONGATION AND INFLATION OF A 
TUBULAB MEMBRANE OF BKZ FLUID 

ALAN WINEMAN 

Department of Applied Mechanics and Engineering Sciences, The University of Michigan, 
Ann Arbor, Michigan 48109 (U.S.A.) 

(Received April 10.1978; accepted in revised form February 28,1979) 

This work considers a viscoelastic fluid membrane which is initially tubular 
and bonded at each end to a rigid circular disc. The membrane is subjected to 
prescribed elongational and internal pressure histories causing it to undergo 
quasi-static axisymmetric deformation. This example is intended to simulate 
an experiment which has been recently proposed for the determination of 
constitutive properties for viscoelastic fluids as well as some polymer sheet 
forming process. 

The constitutive equation is presumed to be of integral type. The formula- 
tion of the problem leads to a basic system of equations which is intended for 
numerical solution. It has the structure of a two-point boundary value prob- 
lem for a system ordinary differential equations at each time. The formula- 
tion has the advantage that the equations do not have to be rederived if the 
constitutive equation is changed. A change in the sub-program for computing 
stress from stretch history is all that is needed. 

A numerical method of solution is presented. In a numerical example, the 
material is taken to be polyisobutylene, modeled as a BKZ fluid. 

1. Introduction 

Polymer forming processes such as drape or vacuum forming subject poly- 
mer sheets to large stretching type deformations. If the sheet is suffi&ently 
thin and the variation of stretching sufficiently gradual, it can be regarded as 
a membrane. This implies that bending effects are negligible compared with 
stretching effects and that the variation of stresses through the sheet thick- 
ness can be neglected. It also permits the process to be studied in the con- 
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text of the theory of large deformations of membranes [ 11. 
The polymer materials used in such processes can be regarded as visco- 

elastic fluids. Consistent with the membrane nature of these processes is the 
determination of constitutive equations for such materials under conditions 
of planar stretching. A number of experiments have been devised for this pur- 
pose. The simplest such experiment, conceptually, is to subject a specimen to 
homogeneous unequal biaxial stretch histories. However, it is difficult to 
develop a mechanism for applying independent stretch histories in two per- 
pendicular directions. A rheological experiment which avoids this difficulty 
is the inflation of a thin circular sheet by pressurizing one side [ 21. The 
sheet, clamped at its outer boundary, undergoes an axially symmetric defor- 
mation. At each time it forms a sphere-like membranous cap. The polar 
region, which undergoes a locally homogeneous equal biaxial stretch history, 
is a source of data. Although useful, such data is inadequate for a complete 
characterization of material response. 

A more promising experiment has recently been developed by Chung and 
Stevenson [ 31. An initially circular viscoelastic tube, bonded at its ends to 
rigid plates, is subjected to simultaneous extension and internal pressure. The 
deformation is symmetric not only about a central axis, but also with respect 
to a plane which is perpendicular to this axis and midway between the end 
plates. This central region is cylindrical and has an essentially homogeneous 
unequal biaxial stretch ratio distribution. By adjusting the internal pressure 
and either the extensional force or elongation histories, the stretch ratio his- 
tories can be varied. In the analysis, the tube is not necessarily thin-walled 
and only the cylindrical region is considered. It is shown that sufficient con- 
stitutive data can be obtained to characterize the materials. 

The purpose of the present paper is to provide a means for determining 
the deformation history of the complete tube under the assumption that it 
can be regarded as a membrane. The approach will be applicable for an 
arbitrary choice of constitutive equation of integral type. There are several 
reasons for developing such a procedure. Because of the end constraints on 
the tube, the deformation will be non-homogeneous. By solving the problem 
for the complete tube, an estimate can be made of the size of the region in 
which the deformation is approximately homogeneous. Secondly, suppose a 
specific form for a constitutive equation is developed from experiments. 
Using this, the profile history of the deformed membrane can be computed. 
It can then be compared with a measured profile history in order to assess 
the accuracy of the constitutive equation. Finally, this study presents an 
opportunity for the continued development of numerical procedures which 
could be of use in studying actual polymer forming processes. 

The problem is defined and the governing equations are presented in Sec- 
tion 2. In Section 3, these equations are reduced to the.basic system which is 
intended for numerical solution. This formulation is such that the system of 
equations is unaffected by a change in constitutive equation. A change in the 
latter requires only a change in the subprogram for computing stress from 
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deformation history. The general numerical procedure reduces the problem 
to solving a system of ordinary differential equations at each time step. In 
previous work [ 4,5], boundary conditions required determining a single quan 
tity at one end of an interval in order to satisfy one condition at the other 
end. In this problem, two conditions must be determined at one end to 
satisfy two conditions at the other. These numerical procedures are discussed 
in Section 4. Although the procedure is valid for any constitutive equation, it 
is illustrated for a particular choice. One such choice is presented in Section 2. 
Results for an example are presented in Section 5. It was found that the 
numerical procedure solved the two point boundary value problem success- 
fully at a fixed time t,. However, the method for determining the initial esti- 
mate for the end conditions at the time tn+l needs to be improved. This is 
also discussed in Section 5. 

2. Formulation 

The undeformed membrane has a circular cylindrical midsurface of radius 
a and length 2 L,, . Its wall thickness is initially uniform and is denoted by he. 
The ends are bonded to rigid circular discs of radius a. These are considered 
attached to a loading device which applies a prescribed internal pressure his- 
tory p(t) and either a prescribed extensional force history F(t) or an elonga- 
tion history L(t). 

As indicated in Fig. 1, the deformation is referred to a cylindrical polar 
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Fig. 1. Undeformed and deformed configurations of the tubular membrane. Dashed lines 
denote the undeformed state. 
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coordinate system with the polar-axis along the tube center line and the origin 
at mid height. The membrane is assumed to undergo quasi-static motion, with 
a typical particle initially at (a, 8.2) moving to (P(z. t), 8, s(z, t)) at time 
t > 0. In view of the axisymmetry, the principal directions of stretch and 
stress are known at each time t. At each particle these sre in the meridional 
(1) and circumferential (2) directions and also normal (3) to the surface. The 
principal stretch ratios in these directions are given by, respectively, 

A1 = [(%)” + (gy2, x2 =f, AS =&, (2-l) 

where hs is determined by the assumption of incompressibility. It is conve- 
nient to introduce the following associated kinematic variable: 

q = apjaz. (2.2) 

If CJ~ denotes a principal stress, its stress resultant per unit length of circum- 
ferential or meridional line in the membrane surface is T, = h&u,, (a = 1, 2). 
The force balance equations appropriate to the study of large axially sym- 
metric deformations of membranes are presented in [ 1, Section 4.111. In the 
meridional and normal directions relative to the membrane at time t, these 
are, respectively, 

aT,+ 
a2 

WI - 7’2) = o 

aA2 
, (2.3) 

KATE + u2T2 =p. (2.4) 

In (2.4), /cl and ~~ are principal curvatures given by 

K1 = www - Www [hf - q2]1’2 
g[xf _,)2]1/2 9 K2 = aAlA * 

(2.5) 

Equations (2.3)-(2.5) have been expressed in terms of the kinematic quanti- 
ties X1, X2 and q instead of p and 5 for the reasons discussed in [ 41. Note that 
these equations have been transformed to be in terms of the independent vari- 
able z which serves as a particle label in the initial configuration. 

As in the case of the problem of the deformation of an initially plane visco- 
elastic membrane by lateral pressure [4], eqns. (2.3~(2.5) can be simplified. 
Recall the Codazzi relation satisfied by the principal curvatures, [ 1, p. 1511, 

(2.6) 

Let F denote the force on an end-plate. It can be shown, using (2.6), that 
(2.3) and (2.4) can be replaced, at each time t, by (2.3) and 

!i?~rp~~,Ti =pnp2 + F, o<z< Lo. (2.7) 

Since, as (2.5) indicates, this equation does not contain spatial derivatives 
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Fii. 2. Fblaxation Function G(t) for the assumed model. 

of hI, Xs or 11 it can be regarded as a first integration of the system of equa- 
tions. 

The membrane material is assumed to be an incompressible homogeneous 
viscoelastic fluid. The solution procedure presented later can be applied for 
any type of constitutive equation in principle. However, for purposes of illu- 
stration, it is assumed that the fluid can be modeled by a non-linear single 
integral constitutive equation. Let X(s) denote the pair (AI(s), X,(s)). Then 
the models under consideration have the form 

o,(t) = A,[h(t), t] + ] B,[h(t)/X(s), t-s] ds, (a = 1, 2). w3) 
0 

Functions A, and & depend on the choice of material. 
One material which has been used in the membrane inflation experiment 

and other thin sheet forming studies is polyisobutylene [ 21. A specific con- 
stitutive equation of form (2.8) for polyisobutylene which can be used for 
sheet problems does not appear to be available. For the present purposes, 
one was constructed using the BKZ [6] model, for which some experimental 
data is available. With respect to principal directions, it has the following 
form: 
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where a = 1, /3 = 2 or a = 2, /3 = 1, 

r,Ct,sJ=& (& h.(t) 2 1 3 X.(s) 2 , -)=E (& 1 ’ (2.10) 

k(s) = dG(s)/ds and G(t) + 0 as t + 00. The relaxation function G(t) has the 
form shown in Fig. 2. 

The general tensorial form for the BKZ constitutive equation and the 
procedure for computing stresses associated with a given deformation are 
presented by Bernstein [ 71. A detailed discussion of how (2.9) was developed 
was presented in [5], and will be omitted for the sake of brevity. 

3. Reduction to basic system of equations 

Using an approach introduced in a previous work on non-linear viscoelastic 
membranes [5], the field equations will be reduced to a more convenient 
form. First, let co be a parameter with the dimension of stress. The latter will 
be suggested by a specific form for (2.8). For example, when (2.9) is used, 
co = G(0). The following dimensionless variables are introduced: coordinates 
Z = z/Lo, j?i = p/L,, r = c/L,, stress 0, = u,/co, length z = L/L,, pressure p = 
p(t)a/(hoco), and force F = F/(nahoco). By (2.1) and (2.2),x, = hI, x2 = X2 
and !j = 11. Let a = Lo/a. 

Second, define the transformation 
I 
01 =&/Al, 62 =32/A2, 4=7)/h- (3.1) 

The basic set of dependent variables consists of X1, h2, fi, 61, G2, for which 
equations are now developed. The force balance equations (2.3) and (2.4) 
become, using (2.5) and (3.1), 

aii,/az = b2ij~, (3.2) 

86 
z = 

[ 
(1- $2) ;: I_ -p&x, (1 _?8)lla a . 

01 1 (3.3) 

An alternative to (3.3) can be derived. Using (2.5), (2.7) and (3.1) and 
then nondimensionalixing, the following explicit expression for +j is obtained: 

.$=- [l_ (yyl’“. (3.4) 

The negative coefficient is chosen because of (2.2) and the assumption that 
the membrane will bulge out during deformation. The system of equations 
includes the compatibility condition 

ax21az = h&, (3.5) 

which is derived from (2.1), (2.2) and (3.1). The system is completed by the 
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two equations obtained by combining (2.8) and (3.1), 

((Y = 1,2). (3.6) 
0 

Equations (3.2), (3.3), (3.5), (3.6) or (3.2), (3.4)-(3.6) are alternate systems 
which must be satisfied at each time t for 0 < Z =G 1. 

Boundary conditions are now stated in terms of the basic set of variables. 
By the assumed symmetry of deformation about the mid-planeZ = 0, it fol- 
lows from (2.2) and (3.1) that 

6(0, t) = 0. (3.7) 

Since the radius of the material which is bonded to the end plates cannot 
change, (2.1) implies 

Xa(1, t) = 1. (33) 

If the length history Z(t) is prescribed, (2.1) and (3.1) give 

F(l, t) = 1 xi [l - *all’s dz = L(t). 
0 

(3.9) 

Alternatively, if the force history F(t) is prescribed, the variables must satisfy 

F(t) = (261 -A&o. (3.10) 

In the remainder of this paper, the bars will be dropped for notational con- 
venience. 

The formal procedure for solving either of the alternate systems subject to 
(3.7), (3.8) and either (3.9) or (3.10) wiII be outlined here. The numerical 
details wiII be presented in Section 4. Let time t be fixed and suppose the 
past histories h,(z, s), X2(2, s), 0 d s < t, have been found. Then (3.6) can be 
regarded as equations relating 6i or C2 to X1 and X2 at time t, i.e. 

h(t) = ktGh(~L x,(t), t, 21, (a = 1,2). (3.11) 

The dependence of these relations on past history is denoted by t. The known 
spatial variation of the past history induces a z-dependence. Now, since its 
spatial derivative is not present in (3.2)-(3.6), h2 can be expressed in terms 
of Xi, X2 using (3.11). It is then assumed that the equation for bi in (3.11) 
can be inverted to give 

xl(t) = g[htt), h,(t), t, 21. (3.12) 

This is then used to eliminate h,(t) from (3.2~(3.6). System (3.2), (3.3), 
(3.5), (3.6) reduces to a system of ordinary differential equations at time t of 
form 

dA/dz = I;( A, z, P) , (3.13) 
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where A = (&, ;i, XZ)T. In view of (3.4), the alternate system (3.2), (3.4)-- 
(3.6) reduces further to a second-order system where A = (a,, AZ)=. 

Equation (3.13) together with end conditions (3.7~(3.10) define a two 
point boundary value problem at time t. The nature of this problem depends 
on whether the axial force F(t) or the elongation L(t) is specified along with 
the internal pressure P(t). If the axial force is specified, system (3.2), (3.4)- 
(3.6) can be used since (3.4) is expressed in terms of F and l? Integration of 
(3.13), with A= (Ci, Xs)T, requires values for Xs and C1 at z = 0. A value for 
&(O, t) can be estimated and hs(0, t) can be found from (3.10). It can be 
seen from (3.4) that this automatically satisfies (3.7). The estimates of 
B1(O, t) are corrected in order to satisfy (3.8) by a shooting method. The 
elongation L(t) can be computed once the solution to the boundary value 
problem has been obtained. 

If the elongation is specified, the axial force F is determined using (3.10) 
only after the solution has been obtained. In this case, (3.4) cannot be con- 
veniently used and system (3.2), (3.3), (3.5), (3.6) is the one to be solved. 
Integration of (3.13), with A = &, X2, fi)=, requires values for bl, Xs and 6 
at z = 0. The initial value for G is given by (3.7). The values for hs(0, t) and 
6i(O, t) must be estimated and then adjusted by a shooting method in order 
to satisfy (3.8) and (3.9) at z = 1. Thus, if elongation is specified, a two-dimen- 
sional shooting method is needed, whereas if force is prescribed, a onedimen- 
sional method is used. 

In the remainder of this work, it is assumed that elongation is prescribed. 
There is an experimental and a computational reason for this choice. It is ex- 
pected that an experiment could be designed so that either an axial force or 
an elongation could be controlled. If force is prescribed, it is hard to estimate 
a priori the size of the deformation or the range of values of the stretch ratios 
near z = 0. On the other hand, if the elongation is specified, then hl(O, t) is, 
in dimensional variables, approximately L(t)/& at least initially. This allows 
some control over experimental conditions. 

Regarding computation, the one-dimensional shooting method required in 
the axial force approach would be essentially the same as that used in previ- 
ous work [ 4,5]. On the other hand, the elongational problem requires the 
development of a two-dimensional shooting method. The experience gained 
with this more advanced procedure could be useful in the numerical solution 
of problems involving other deformation configurations, e.g. as in the model- 
ing of drape forming. 

4. Numerical procedure 

There are two classes of numerical methods which are used in the solution 
of the problem. The first has to do with the numerical means by which the 

~system(3.2), (3.3), (3.5), (3.6) or the system (3.2), (3.4)-(3.6) is reduced to 
form (3.13) and then integrated. Since this is essentially the same as the 
procedure described in [ 51 it will be omitted for the sake of brevity. The sec- 
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ond, which is the method of two-dimensional shooting used to satisfy the 
boundary conditions, wiU be discussed here. 

For the system (3.2), (3.3), (3.5), (3.6), subject to boundary conditions 
(3.7 j-(3.9), let t1 = 0, t,, .., tn--l, t, be a set of times and let z1 = 0, z2, . . . . 
Zi, _**, %?l = 1 be a set of space mesh points at which the solution is to be 
found. Then, as described in [ 51, (3.13) is integrated at each fixed time step 
t, from z1 = 0 using (3.7) and assumed values for X2(zlr t,) and &(zl, t,). In 
the actual computation, it was found convenient to assume values for h2(z1, t,) 
and hl(zl, t,), and compute bl(zl, t,). This avoided the numerical inversion 
of (3.11) at the first node. Introduce the notation X1@,, t,) = x1, h2(z1, t,) = 
x2. The end values X2(1, t,) and c(l, t,) can be regarded as functions of x1 
and ~2, 

X2(1, fn)="Xh Jcz), 

w, hl) =&I, x2). 
(4.1) 

An explicit form for these functions cannot generally be found. They are 
known only through the values of X2(1, t,) and r(l, t,) obtained for the 
various choices of the initial conditions xl, x2 arising during iteration. The 
proper choice of the initial conditions xi, ~5, by (4.1), (3.8) and (3.9), satis- 
fies 

i;(x;t, x;, = 1 

F(x;, xi) = L(t,) = L”. 
(4.2) 

The solution of this system is obtained by Newton’s method. Let xp, # be 
the results of the ith iteration. Then the corrections Ax1, Ax2 are found by 
solving 

ai; 
+,-ax,=l-i(&#), 

(4.3) 

where the superscript on the partial derivatives indicates that they are to be 
evaluated at (xr, #). 

The derivatives are updated using data from the ith, (i - l)st, (i - 2)nd 
i&rations, referred to as points A, B, C, respectively, in Fig. 3. Expanding 
X(x,, x2) in a Taylor series about point A, retaining terms in the first deriva- 
tives, and evaluating at B and C gives 

ai ai 
ax,. 

(xf -xf)+- (xp-xi)=1 
ax2 A 

-C__r;A , 

~j*cr:-x:,+~l*(x:-x:,=~*-h*. 
(4.4) 

Solving this system gives the partial derivatives for use in the first of (4.3). 
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Fig. 3. Points A, B, C in the method for estimating derivatives using (4.7). 

Repeating this for c(~i, 3~~) gives the partial derivatives for use in the second 
of (4.3). The procedure is initiated with Points A, B, C defined at (XT, xi), 
(x0(1 + E), x”,), (XT, x:(1 + E)). The boundary conditions are considered satis- 
fied when the sum of the squares of the right-hand sides of (4.3) is less than 
some tolerance. 

An initial estimate xy and x2 must be made at each time. At ti = 0, the 
membrane is undeformed and 3c1 = x2 = 1.0. At ts, XT and X$ are specified as 
input data. For later times, X! and xi are determined by extrapolation from 
converged values at previous times. At ts, the extrapolation is linear. For 

. . 
ti > t3, it is quadratic. 

5. Numerical example and discussion 

For the purposes. of a numerical example, the membrane is regarded as a 
viscoelastic fluid whose constitutive equation is given by (2.9). The method 
for determining an expression to fit the relaxation function shown in Fig. 2 
is discussed in [ 51. This reference also contains a discussion of the method 
used to select the times ti at which the solution is to be obtained. 

In the numerical example presented here, Lo/a = 1. The pressure history 
is given by P(t) = 0.25 t, t Q 9.36, P(t) = 2.34, t Z 9.36. The elongation his- 
tory is given by L(t)/L, = 1 + 0.01 t. This causes the length to double after 
100 seconds. These histories along with the computed axial force history are 
shown in Fig. 4. 

This rate of pressure increase was selected because at lower rates the mem- 
brane would draw in. The pressure was held constant for t > 9.36 for reasons 
motivated by previous studies. In the elastic membrane version of the prob- 
lem treated here [8] the following was found. For a fixed elongation, the 
internal pressure increases with the radius at z = 0, the maximum radius, to 
some maximum value and then decreases. If the pressure becomes greater 
than this maximum or limiting value, either an equilibrium solution is not pos- 
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Fig. 4. Prescribed length history L(t), pressure history P(t) and computed axial force 
history F(t). 

sible or the radius has a jump discontinuity. The limit pressure decreases with 
increasing elongation. In another study involving the inflation of a viscoelastic 
spherical membrane [9], a similar situation is shown to occur. There is a limit 
pressure at each time. If the actual pressure is below this limit at time t, a con- 
tinuous deformation history is possible. This limit pressure decreases with 
time as the sphere inflates in a manner which depends on deformation his- 
tory. For pressures in the neighborhood of the limit pressure, the radius 
increases very rapidly. In the present problem, the combination of viscoelas- 
ticity and increasing elongation could cause a rapid decrease in the value of 
the limit pressure. For a monotonically increasing pressure history, the limit 
pressure could be exceeded at a very early time. Preliminary results using 
such a pressure history suggested this might be occurring. A determination of 
the limit pressure history, the time when it might be exceeded by a given pres- 
sure history and the deformation history, as in [9], would be useful. How- 
ever, the computation is very difficult and should be the subject of a separate 
study. It was felt that these difficulties would be avoided or delayed for the 
pressure history specified above. 

The deformed profiles at several times and the particle paths are shown in 
Fig. 5. The stretch ratio histories at the midplane, z = 0, are shown in Fig. 6. 
Recalling (2.1), the graph for Xa also represents the midplane radius history. 
The stress histories at z = 0 are shown in Fig. 7. The distributions of the 
stretch ratios and stress with respect to the reference coordinate are shown 
in Figs. 8 and 9. 

Figures 6 and 8 show that the distribution of hr can be considered uniform 
for t < 50. This implies that within this time range the approximation Xi(t) = 
L(t)/& is reasonable. Figure 6 also shows that the midplane X2 history 
increases rapidly at first until P(t) becomes constant, after which it increases 
slowly. Then at about t = 50, both X1 and Xe begin to increase very rapidly. 
In other terms, the radial inflation of the tube accelerates, indicating, perhaps, 
the onset of an instability. Results were not obtained for t > 62.0. At the 
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Fig. 3. Distribution of principal stretch ratios with respect to the reference coordinate. 

Fig. 9. Distribution of principal stresses with respect to the reference coordinate. 

next solution time, numerical difficulties arose and computation ceased. This 
will be discussed further below. 

This behavior suggests that the earlier discussion applies here. There appears 
to be a limit pressure history whose value is decreasing. As this value ap- 
proaches P = 2.34, dha(0, t)/dt + 00, which is consistent with the results in 
[ 91. If the limit pressure becomes less than P = 2.34, a continuous equilibrium 
solution is not possible. This suggests further that an instability is developing. 

The axial force history F(t), shown in Fig. 4, is not a strictly monotonically 
increasing function as might have been expected. It increases until t = 7.11 
and then decreases while the pressure is still increasing. When the pressure is 
held constant at t = 9.36, F(t) again increases until t = 46.4 when it begins to 
decrease a second time. These decreases are apparently not due to stress 
relaxation, since the stresses at the midplane increase monotonically, as seen 
in Fig. 7. This behavior can be explained using (3.10), which expresses the 
balance of forces acting on the portion of the tube to one side of the mid- 
plane z = 0. Let FT and Fp denote the first and second terms in (3.10). FT 
represents the tensile force on the annular cross-section of the tube mat&al 
at z = 0, equal to the product of the stress and the current material cross- 
sectional area. Fp represents the resultant force due to the internal pressure, 
equal to the product of the pressure and the area enclosed by the circum- 
ference. Since Fp acts in the same sense as the externally applied axial force, 
the negative sign is needed. As t increases, FT increases. A greater portion of 
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FT becomes balanced by the increasing pressure acting on the increasing 
enclosed area. This results in a decrease in the externally applied axial force 
required for equilibrium. When the pressure is held constant, the radial tube 
expansion is slowed down, as indicated by the graph of Xs for 10 < t < 40 in 
Fig. 6. FP increases more slowly and the axial force must increase in order to 
maintain equilibrium. For t > 40, the radius and hence Fp begin to increase 
rapidly. As this balances a larger portion of FT, the axial force once more 
decreases. 

The evaluation of the inverse (3.12) during the integration of the system 
(3.2), (3.3~ (3.5~ (3.6) caused no numerical difficulties. The iteration proce- 
dure for satisfying the boundary conditions worked reasonably well. Solutions 
were obtained at 57 times for this numerical example. The convergence toler- 
ance was lo- 8. The problem of satisfying the boundary conditions appeared 
to be quite sensitive to the initial estimate (& xi) at the earlier times. At ts, 
this estimate was determined by trial and error. If (xp, xi) wa8 not sufficiently 
close to the required value, the argument of the square root in (3.3) became 
negative and computation ceased. Choices for (& x$) at later times were 
determined automatically by extrapolation. Twenty iterations were required 
at tar 27 at t4 and 15 at t5. The number of iterations then decreased. Gener- 
ally, between t8 = 7.11 and td6 = 49.75 at most 10 iterations were required. 
Then from t4, = 50.87 to tg7 = 62.1, as the deformation began to increase 
rapidly, 12-14 iterations were needed. In the long middle interval, (xl, x$) 
was very close to the accepted iterate. This can be attributed to the decreased 
sensitivity of the problem to the initial estimate, to the smoothly varying X1 
and As histories, as shown in Fig. 6, and to the quadratic extrapolation. At 
the last time, tb8, one of the values x:) became negative, which is physically 
unreasonable. The above-mentioned square root problem arose and computa- 
tion ceased. It is not clear whether this is a consequence of the approxima- 
tions involved in (4.3) and (4.4) or whether it reflects numerical difficulties 
arising from the rapid rate of increase of X1 and X1. 

For values of L&I > 1, results for only a few steps were obtained. If at 
some step t, an iterate (xii), x#)) was not sufficiently close to the solution of 
(4.5), the argument of the square root in (3.3) became negative and computa- 
tion ceased. This was caused by either (1) a poor initial estimate (x:, ~8) ob- 
tained by extrapolation or (2) _a largeshange in a subsequent iterate. 

It was found that functions X and 5 in (4.2) varied rapidly with their argu- 
ments. This indicates that the extrapolation problem (1) appears to be a con- 
sequence of the high sensitivity of the solution to the choice of (LX!, ~8) at 
early times. The iteration problem (2) appears to be caused by the numerical 
error in approximating the derivative8 using (4.4) and the possible poor con- 
ditionality of (4.3). 

For future work, it would be desirable to develop a method for correcting 
an iterate in the event either (1) or (2) occurs. The simplest general two-dimen 
sional correction scheme appears to involve the modification of the computer 
program to allow operator-computer interaction. When an iterate leads to a 
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stoppage of computation at some time t,, the operator would specify a new 
choice for (x:, JC~) and computation would resume. The choices would be 
based on experience gained by trial and error. 

In conclusion, it appears that the method presented here is adequate for 
the simulation of the tube inflation-extension experiment under certain con- 
ditions. With the inclusion of the modifications discussed above, this method 
should become more generally useful. 
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