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In this paper we investigate some special nuclear Frechet spaces in 
regard to their infinite dimensional closed subspaces and, in theme, 
continue the earlier work of [7] ; in its general technique this is similar 
to Zahariuta’s [lo] proof of the result that no power series space of in6nite 
type can contain a subspace isomorphic to a power series space of finite 
type; Zahariuta proved this result by showing that all linear continuous 
maps from a power series space of finite type into one of infinite type 
are compact. 

Following Zahariuta we shall say that for locally convex spaces (1~s.) 
X and Y, (X, Y) E R if all continuous linear maps of X into Y are also 
compact. Crone and Robinson [3], De Grande-De Kimpe [4], De Grande- 
De Kimpe and Robinson [5] and Zahariuta [lo] have obtained necessary 
and/or sufficient conditions for (X, Y) E R to hold for various pairs X, Y 
chosen from among power series spaces (finite or infinite type) and the 
spaces L&, r). In this paper we build into this pairing the smooth sequence 
spaces of infinite type; we first prove a sufficient condition for the relation 
(&(b, CQ), A(A)) E R to hold when A(A) is a Schwartz space and obtain 
a partial converse of this. This result is an analogue of a result of 
Zahariuta’s [lo]. Then we consider the problem of (X, Y) E R where Y 
is either an infinite type power series space [or an Lf(b, co) space] and 
show that if Y is stable and X is a nuclear Frechet space with a (d3) 

[or a (&)I-basis then (X, Y) #R. This result is actually a consequence 
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of the following more general result proved in Theorem 3 of this paper: 
if X is a nuclear Frechet space with a (ds) [or ($)J basis and if &,(a) 
[or L&J, m)] is nuclear and stable, then X has a complemented subspace 
which is isomorphic to a subspace of A,(a) [or Lf(b, CQ)], This last 
mentioned result is derived by using a result of the first author [l]. 

DEFINITIONS, NOTATIONS, PRELIMINARY RESULTS 

1) A (monotone) Kiithe set A is a collection 

A=(ak k=l, 2, . ..I 

of sequences of positive numbers such that 
(i) at<ch k+l, k, n El-l, 

(ii) B/c 81 Zj 3 &=O(af) and aJ=O(aj). 
The K6the space ;Z(A) is defined to be the sequence space of scalar 

sequences 

A(A) = (t= (tn): lltjlk = 2 It&z~<co for all E in) 
n-1 

and is topologixed by the seminorms 11 e Ilk, k =: 1, 2, . . . . 
2) Grothendieck-Pietech criterion. A Kijthe space L(A) is nuclear if and 

only if 

Bk 3z 3 (uk,/a,) E Zl. 

3) A Kijthe set A = (a”) is said to be normalized if of= 1 for all n. 
It can be shown that every Kijthe space is isomorphic to a Kijthe space 

1(B) where B is normalized. 
4) AKijthesetA=( } ak is said to satisfy the normalized (4) condition if 

WC 3Z 3 (ak)2= O(al). 

5) A K&he space A(A) is called a G,-space if 
(i) 1 <aE<aZ+i, k, n En, 

(ii) the KGthe set A satisfies the normalized (ds) condition. 
6) From the Grothendieck-Pietsch criterion it follows that a G,-space 

J(A) is nuclear if and only if for some k EYQ (l/at) E h. 
A G,-space J(A) is a Schwartz space if and only if for some k in, 

(l/at) E co (see [S]. 
7) Let a= (a,) be a non-decreasing sequence of positive numbers. The 

in$nite type power series space (P.s.s.) A,(a), generated by OE, is the 
Cm-space l(A) where a; = 1%“~ (or, equivalently, a$= exp (L or,)). 

8) Let f be an odd, increasing, logarithmically convex function (i.e., 
the function 4 defined by d(x)= In f(exp x) is convex); b= (b,), b, t 00. 
Then the space .&(b, co) is defined to be the Cm-space l(A) where a”,= 
= exp f(k: bn). 

An odd, increasing, logarithmically convex function is called a Dragilev 
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function. For a Dragilev function f, the limit 

exists for all q> 1. Moreover, there are two possibilities : either 
(i) Ba>l, -c(a)= $00 or 

(ii) Ba>l, lcz(a)< +oo and ~(a) t $00 as at +oo. 
In the first case f is said to be rapidly increasing, and in the second 

case f is said to be slowly increasing. It is known that a space .Lf(b, 00) 
is isomorphic to a p.s.s. .&(a) if and only if f is slowly increasing. 

9) A 1.c.s. X is called stable if XxX g X. For G,- and power series 
spaces we have the following criteria: 
(i) a Cm-space &A) is stable if and only if 

Bk 313 sup (a!&/a$) < 00, 
n 

(ii) a p.s.s. A,(E) is stable if and only if 

sup (m&n) < 00. 
R 

10) Let X be a 1.c.s. For two absolutely convex zero neighborhoods 
V and U with V < U (i.e., V C rU for some r > 0), the n-th Kolmogorov 
diameter of V with respect to U is defined as 

d,(V, U)= inf(r>O: VCrU+L}: L is a linear 

subspace of X with dim Len). 

The diametral dimension A(X) of X is then defined to be the set of all 
scalar sequences (tn) such that 

VU 3V 3 V < 77 and lim tndn( V, U) =O. 
N-+00 

RESULTS 

We shall start with .the discussion of sufficient conditions for 

(-W> c=), W)) E 3. 

Throughout this section we shall assume that f is a Dragilev function 
which is either rapidly increasing or slowly increasing, in which case we 
take it, without loss of generality, to be the identity function. 

THEOREM 1. Suppose A is a normalized Kiithe set and 1(A) is a 
Schwartz space. Assume that for each k there exists an 1 such that 

f-l log a: 
Fz f-llog a: =O' 

Then for each (Bn) t 00, (L&S, co), 1(A)) E R. 
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One can supply a proof of this modelled on the proof of a theorem of 
Zahariuta’s ([lo]; Theorem 4) which this generalizes. 

REMXRK : Later in this paper we shall actually show that the sufficient 
condition appearing in the theorem also implies that the normalized 
K&he set A satisfies the normalized (ds) condition. 

COROLLARY. Under the conditions on A and f in Theorem 1, A(A) 
does not contain a subspace isomorphic to L&9, a) for any /?= (/L) t 00. 

Examples where the above results apply are either known or easily 
constructed. 

(a) Taking f =identity in the corollary, we obtain Corollary 10 in [‘7]. 
(b) Take rapidly increasing Dragilev functions f and g and take 

A(A)=L,(y, bo); then we obtain a result of Zahariuta [lo]. 
(c) Start with a nuclear G,-system A = {a”> such that for each k there 

exists an I such that 

and let f be a Dragilev function. Define (79) by setting bi= exp f(log a!). 
Then 1(B) has no subspace isomorphic to L&, m). 

The result in Theorem 1 can be used to construct for each given Dragilev 
function f a suitable G,-space 1(B) such that A(B) is isomorphic to 
L&3, co) x A(&), for a suitable ,& t 00 and such that A(&) is a Cm-space 
which has no subspace isomorphic to Lf(y, 00) for any y. One such con- 
struction is given in [7]. 

Now we shall obtain a partial converse of Theorem 1. 

THEOREM 2. Suppose f is a Dragilev function and A is a normalized 
KGthe set and that 1(A) is nuclear. Suppose 

(a) for each k, m E $& 3Z=Z(k, m) in such that 

f-1 log ai 
k >m for all n (or for n>n0(k, m)), 

f-l log a, 

(b) 

(c) A(A) is not isomorphic to L&3, co) for any ,9. 
Then for each k there exists an I such that 

PROOF. Write b$ = f-l log ai, k, n E ‘JR. If possible the conclusion in the 
theorem be false; then there exists a k (fixed) so that lim, @=m and 
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for each 1, there is a subsequence (m$=(m,) of positive integers and 
iIIl> 0 such that l&,/b&, G MI, n = 1, 2, . . . . But then, because of (b) above 
b:/b:<Ml, n=l, 2, . . . . and hence log ai<f(Mz CL%), n = 1, 2, . . ., where 
(x~= f-l log $= bi (k already fixed). Also by (a) above, for each m there 
is an 1 such that f(m am) <log a;, n= 1, 2, . . . . This shows that I,(A) is 
set theoretically equal and topologically isomorphic to I(B) where 
bE= exp f(k 0~~). 

Let now fl; be a permutation of II such that (&) = (all) is increasing. 
Then by the nuclearity of L(A) and the fact that J,(A) z L(B) we have 
W) =h(f% cQ)r and this gives a contradiction to (0). 

REMARK. The strange looking condition (a) is only an analogue of the 
normalized (ds) condition in the presence off ; if f =identity then (a) gives 
exactly the normalized (ds) condition. So we shall now prove 

PROPOSITION. Suppose f is a Dragilev function and A={ak} satisfies 
condition (a) in Theorem 2. Then A satisfies the normalized (ds) condition. 

PROOF. Pick c so that z(c)>2. For this c and a given k pick, using (a), 
al so that f-l log a;> c f-l log a”,. Then 

exp [f (t f-l log a:)] >a:, 

since f increases. But 

f (f-l 1s 4 

i(+bg 4) 
--z-z(c) as n-too; 

so for n>no, 

a: = exp [f(f-1 log a,)] > exp [ (c 2 f if-1 log az n)] > (a?d2. 

REMARKS 

1) The above proof could also be adopted to show that 

Thus if A is as in Theorem 1 and satisfies the condition there for some 
Dragilev function f then it satisfies the same condition for the identity 
function and so J(A) contains no subspace isomorphic to a p.s.s. (of 
infinite type). 

2) That A is a Kothe set satisfying the normalized (ds) condition 
does not imply (a) of Theorem 2 for every Dragilev function f is seen by 
taking A = (e”“) and f(x) = ez. 
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3) Take a,= exp (I&), where a= (ala) is a nuclear exponent sequence 
(i.e., cl,(a) is nuclear) and f(z)=es. Then conditions (a) and (b) of 
Theorem 2 are satisfied, but (c) is not true since 

f-1 log ai log z 
f-1 log a$ = log . 

Thus in this case I&4) is isomorphic to L@, 00) but has no subspace 
isomorphic to a p.s.s. 

This remark also shows that condition (a) of Theorem 2 which is a 
weaker assumption than the condition in Theorem 1 is not sufficient to 
obtain the conclusion of Theorem 1. 

Now we shall reverse the roles of the spaces considered in Theorem 1 
and consider the problem “(L(A), L&3, co)) E R”. The following definitions 
and results are relevant to our discussion. 

Let X be a nuclear Frechet space with a basis (xn) and a continuous 
norm. The basis (x,) is called a (&)-basis (see Dubinsky [S]) if there exists 
on X a fundamental sequence (11. lIti) of norms so that 

Given a Dragilev function f, the basis (x~) on X is called a (&)-basis (see 
Alpseymen [l]) if there exist M > 1 and a fundamental sequence of norms 
(]I.]Ik) on X so that 

Mf-1 loge <tl log E, k, n EIO. 
12 12 

Putting f =identity, the (&)-condition reduces to an equivalent form of 
the (Q-condition (see [6]). 

The following result of the first author [l] is needed in our proofs. 

LEMMA. Let f be either a rapidly increasing Dragilev function or the 
identity function. Assume the space &(b, CO) is nuclear and stable. X be 
a Frechet space with a basis (xn). Then X is isomorphic to a subspace of 
Lf(b, co) if and only if 

(a) the basis (x,) is a (&)-basis and 
(b) ~(-b(b, 00)) C d(x). 
For the case f =identity and bn= log (n-t 1) (so that &(b, co) = (s), the 

space of rapidly decreasing sequences) the above result is due to Dubinsky 
[6] and to Vogt [9]. 

We are now in a position to state an interesting consequence of the 
above result and derive useful corollaries. 

THEOREM 3. Let f be a Dragilev function which is rapidly increasing 
or be the identity function and let I$@, m) be stable and nuclear. Let 
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X be a nuclear Frechet space with a (&)-basis (xn). Then X has a com- 
plemented subspace isomorphic to a subspace of Lf(b, m). 

PROOF. Since (x,) is a (&)-basis, there exist a fundamental sequence 
(/].]lk) of norms on X and M>l such that 

It fokws that (lI~~llk+l)~~ ~IxnJI~I~x&+l. Define 

Ib& a$=-----. 
llX41 

Then /l= {uk) is a normalized Kijthe set and satisfies the normalized (ds) 
condition since 

(1) (aF1)2< a?+‘. 

Since X is nuclear we may assume that 

pJ IIX&+l -= 
It llX& 

< co and lirn ,lXnl,l lirn c$+~=co, k ED. 

Next we choose strictly increasing sequences (i(k, n)), of indices so that 

(i) (i(k+ 1, n)) C W, n)), 
(ii) (cc&$), is increasing and 

(iii) kb, < f-l log (c&$). 
Now let j(n) denote the diagonal sequence i(n, n). Then for n> k, (j(n)) C 
C (i(k, n)) and j(n)>i(lc, n) and a$$l,,<a$~; therefore, again for n>k, 
we have 

(2) kb, G f-1 log a$$: or exp f (kbn) c a$$“(t’. 

Since c$&$J is increasing with n and since {j(n) 
we have 

:n>k}C{i(k,n) : n>k) 

(3) a:&’ is increasing with n, for n> I% and k E 32. 

Now since (1) is true also for (c&f), by using, if necessary a small pertur- 
bation for the first (k- 1) elements of (a$$:) we may assume that A(&,) 
is a G--space ; this space is isomorphic to the complemented subspace Y 
of X generated by (xj(%)). Also by [8], 

Li( Y)=d(l(&)))= {(tn): 3k, 3C>O 3 It,\ 4?&,>. 

Then (2) shows d(Lf(b, 00)) C d(Y). Also the basis (xjcn)) of Y is a (c$)- 
basis. Now it follows from the above lemma that Y is isomorphic to a 
subspace of Lf(b, 00). 

NOTE. In the above theorem, taking f =identity we obtain that each 
nuclear Frkhet space X with a (&)-basis has a complemented subspace 
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isomorphic to a subspace of (a pre-assigned) stable, nuclear p.s.s. &,(ol). 
In this context the following result of Aytuna and Terzioglu [2] is of 
interest: a subspace X of Ai with basis is either isomorphic to a sub- 
space of &,(a) or X has a complemented subspace which is isomorphic 
to a power series space of finite type. 

COROLLABY TO THE0REIv.f 3. If X is a nuclear Frechet space with a 
(c&)-basis (xn) and Lf(b, 00) is nuclear and stable, then (X, Lf(b, CO)) #R. 

PROOF. By Theorem 3, we have a complemented subspace Y of X 
which is isomorphic to a subspace of Lf(b, CO). Let T denote the iso- 
morphism map and P the projection of X onto Y. Then clearly TP is 
continuous but not compact. 

REFERENCES 

1. Alpseymen, M. - Basic sequences in some nuclear KGthe sequence spaces, Thesis, 
University of Michigan (1978). 

2. Aytuna, A. and T. Terzioglu - On certain subspaces of a nuclear power series 
space of finite type (preprint). 

3. Crone, L. and W. Robinson - Diagonal maps and diameters in K&he spaces, 
Israel J. Math. 20, 13-21 (1975). 

4. DeGrande-DeKimpe, N. - Lf(a,r)-spaces between which all the operators are 
compact, I, Comment. Math. Univ. Carolinae 18, 659-674 (1977). 

5. DeGrande-DeKimpe, N. and W. Robinson - Compact maps and embeddings 
from an infinite type power series space to a finite type power series space, 
J. Reine Augew. Math. 293/294, 52-61 (1977). 

6. Dubinsky, E. - Basic sequences in (s), Studia Math. 59, 283-293 (1977). 
7. Ramanujan, M. S. and T. Terzioglu - Subspaces of smooth sequence spaces, to 

appear in Studia Math. 
8. Terzioglu, T. - Die diametrale Dimension von lokalkonvexen Riiumen, Collect. 

Math. 20, 49-99 (1969) 
9. Vogt, D. - Charakterisierung der Unterraume von s, Math. Z. 155,109-117 (1977). 

10, Zahariuta, V. P. - On the isomorphism of the Cartesian products of locally 
convex spaces, Studia Math. 46, 201-221 (1973). 

224 


