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THE EXPONENT OF UNil
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INTRODUCTION
CApPPELL[3] HAs introduced obstruction groups for his splitting theorem—

UNil*(R; M, M,) and UNil3(R; M;, M,). (Here R is a ring, M; and M, are R-
bimodules, and k is an integer.) He showed they are 2-primary in the geometrically
interesting cases. In these cases, we prove the exponent of UNil4(;,) divides 4. (See
Theorem 1.3.) Our techniques probably give the same result for UNil%.(;,) and
UNili(;,); we don’t attempt this to avoid obscuring our argument with technical
details. It occured to the author, after completing this paper, that a sufficiently general
localization theorem in L-theory would probably yield reasoning as in [9] and [5], a
direct proof that 8 annihilates UNil%(;, ) (for the same cases as above). Ranicki[10]
has recently constructed such a localization theorem.
We obtain some additional information about L(Z, * Z,). (See Theorem 4.1.)

§1. MAIN RESULT

Let R be a ring with 1 and involution r > 7, and M a R-bimodule with involution
also denoted by x —» % (see e.g. [3]). Let ¥ = (P, A, 1) be a (—1)* Hermitian form over
M and f: VXV —>Z a symmetric (integral valued) bilinear form on a finitely
generated, free, abelian group V. Define f =(V® P,A’,pn") to be a new (— 1)}
Hermitian form over M. We explain the terms occurring in f%. First, V & P is tensor
product with respect to Z; V &) P inherits a right R-module structure from P; clearly,
V®P is a free, finitely generated R-module. Next, the bilinear pairing A’ is
determined by the equation

e)) Mo @x,w®y)=f(v, wA(x, y)

for v, w € V and x, y € P. Finally, the quadratic map u' is determined by

(2) w'( @ x)=f(v, v)u(x)

forvEV and x € P.

We collect together some notation. Let P*¥=Homg(P,R) and A*: P> P*Xrx M
be the adjoint of A; i.e. the composite of the map P —Homgz(P, M) defined by
x = A(x, ) with the inverse of the canonical isomorphism

P*®RM—->H0mR(P,M).

Similarly, let V* = Hom(V, Z) and define f*: V- V* by f*(m) = f(m, ). The following
diagram commutes
ar
VROP—— (VR P)Y* QM

3 P

V*®(P*®r M)
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where the vertical map is the canonical isomorphism. Recall f is non-singular if f* is
an isomorphism. When f is non-singular, define

LV *xV*s7Z

by requiring (f "Y* = (f*¥)"\.

Let D,, denote the dihedral group of order 2n. Fix generators a and y for D,, with
a’=1=+v" and aya ' =y7'; define B = ya. (Note B*=1.) Let £=(V, f) be a ZD,,-
lattice; i.e. V is a finitely generated, Z-free, D,,-module and f: VXV —>Z is a
symmetric, D,,-invariant, non-singular form. Define associated, symmetric, non-
singular forms f, f: VX V—>Z by

4 filv,w)=f(av,w),  fiv, w)=f(Bv,w)

for v, w € V. Notice that f* is the composite of f* and multiplication by a; f* the
composite of f* with multiplication by B. Set £ '=(V* ), then £ ' is also a
ZD;,-lattice.

Let M; and M, be R-bimodules with involution which are free as left R-modules,
€ =(F; %) a (— 1)* UNil form over (M;, M,), where % = (P, A, u;) are (— 1)* Her-
mitian forms over M; (i = 1,2) with P,= P¥ (see e.g. [3]).' Define a new (— 1)* UNil
form %€ = (F;, F) by F; =%, and F} = (f ),%,. (To be precise, ¥} is the pullback
of (f),%; to (V ® Py)* via the canonical isomorphism (V ® P))* - V* & P*.) Using
(3), we see F%€ satisfies the nilpotent condition in the definition of a (— 1)* UNil form.
(See [31)

Recall € is a kernel if there exist free summands S; of P; (i =1,2) with
S, C P, = P* the annihilator of S; C P, and with A,|S; X S; and w,|S; zero; we call the
pair (S;, S,) a subkernel for €.

LeEmMaA 1.1. If either € is a kernel or &£ is a split lattice, then £ is a kernel.

Proof. First, assume € = (P, Ay, i1; Pa, A, ) 1s a kernel with subkernel (S, S,)
and £ =(V,f), then (V® S,, V*® S,) is a subkernel for £%.

Next, assume £ is split (see [6], p. 294) and let W be a Lagrangian in V;i.e. Wis
a D,,-submodule such that W = W* where

(5) Wt={v € Vif(v,w)=0 forall we W},
then (W ® Py, f*W @ P,) is a subkernel for 4.

COROLLARY 1.2. The pairing (¥, €)— %% induces a unital GW(D,,, Z)-module
structure on UNil%(R; M, M).

(See {6] for the definition of GW(,).)

In certain cases, Cappell constructs a map from UNil to the Wall surgery group.
Namely, let RCA; (i=1,2) be inclusions of rings with identity and involution.
Assume that A; has an R-bimodule with involution decomposition A; =R @ A, A; a
free left R-module. Let A denote the amalgamation ring A, #g A,, then there is a map

(6) p: UNil5(R; Ay, Ap) —> Li(A).

(See [3].) We now describe the situation of particular interest to us. Let H, G,, G, be
finitely presented groups with H C G; (i =1,2) and w;: G; —{*= 1} homomorphisms
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with w|H = w,|H; these determine involutions on Z[H], Z[G,), Z[G.}, Z[G] where
G = G, *y G,. Let Z[G;] denote the Z[H | subbimodule with involution of Z[G;] additively
generated by g € G; — H. This fits into the above terminology with R = Z[H ], A; = Z[G],
f\i = Z[G,-], and A = Z[G]. But, in this specific situation, Cappell [3] shows the map p of (6)
is a monomorphism. We use this fact in proving our main result.

THEOREM 1.3. The exponent of UNil%(Z[H; Z[G)), Z[G>)) divides 4 (for all k).

To prove this, we first show that p factors through UNil4(A; A, A) which we
abbreviate to UNily(A). Let the (— 1)* UNil form € = (Pi, A1, p1; Pa, A, ) represent
an element in UNilé'k(R;f\h f\z); associate to it the (— 1)* UNil form over (A, A)

0 € = (P ®r A, A1, fir; P ®r A, Xy, i)
where A; and i (i =1,2) are determined by

®) N(x® s,y ®t)=35\(x,y)t, and

£i(x @ 5) = Spi(x)s
for x, y € P; and s,t € A. The correspondence € — € induces a homomorphism
) p: UNIl%(R; A, A2) > UNily(A).
Cappell’s procedure for defining p also gives a map
p': UNily(A)— Li(A).

Namely, p' is determined by associating to a (— 1)* UNil form (Py, Ay, w13 P2, A, p2)
over (A, A) a (- 1)¥ Hermitian form (P, A, ) over A with P = P, ® P, and

(10) Ax, y)=(x,y) forx€P,=P%, y€EP;
Alx, y)=Ai(x,y) forx,y € Pi;;
p(x)= pi(x) for x € P..
Thus, we obtain the factorization.

LemMA 1.4. The map p factors as the composite of p with p'.

Therefore, it suffices to show the exponent of image p’ divides 4; for this, we need
some more lemmas. Denote the identity of D,, by e and the cyclic subgroups
generated by a, B, v, and e, respectively, by (a), (8), (), and (e); their inclusion maps
into D, by i, j, k, and I, respectively.

LEMMA 1.5. For each r €« GW((y), Z) and x € UNily(A), k«(r)x =0.

Proof. Let & =(V,f) represent r and € = (P, A, u1; P2, Ay, p2) represent x, then
kyr is represented by the ZD,,-lattice (W, g) where W=V @ V,

¥
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and a, B act (relative to this decomposition) via the matrices

" (5 e ()

respectively. Then, V| P, is a subkernel for £% where V| is the first component of
w.

PROPOSITION 1.6. For each x € UNily(A), there exists an integer N, such that for all
n > N, and every r EGW((a), Z) and s € GW((B), Z),

p'(ix(r)x) = 0= p'(jx(s)x).
ProposiTioN 1.7. When n is a power of 2,
ix(2)+j(2) + k() - 1:(2) =4
is an equation in GW(D,,, Z).
We postpone the prooofs of these propositions to §2 and §3 and complete the

proof of Theorem 1.3. As already observed, it suffices to show 4p’'(x) = p'(4x) =0 for
all x € UNily(A). Let n be a power of 2; n > N,. By Proposition 1.7,

(13) i4(2)x +jo(2)x + k«(2)x — 1,,(2)x = 4x,

but Lemma 1.5 shows k4(2)x = 0= [4(2)x. (Note that [ factors through k.) Applying p’
to (13), we obtain

p'(i:(2)x) + p'(jx(2)x) = p'(4x).
The result now follows from Proposition 1.6.

Remark 1.8. Proposition 1.6 was geometrically motivated by Browder’s paper[1]
and Lemma 1.5 by the Browder-Levine paper[2].

§2. PROCF OF PROPOSITION 1.6.

The proof of Proposition 1.6 divides into a few slightly different cases; we prove
only one of these (Proposition 1.6") and leave the others to the reader.

PrOPOSITION 1.6’. For each x € UNily(A), there exists an integer N, such that for
all even integers n > N, and every r € GW((a), Z), p'(ix(r)x) =0.

Proof. Let & =(V,f) represent r and € = (P, Ay, 13 P*, Az, p2) represent x. For
any even integer n = 2m, p'(i+(r)x) is represented by a (— 1)* Hermitian form (Q, A, n)
with

(14) Q=P ®P,® - - ®P.OPTD - -®P:

where P, = V ® P. The forms u and A have certain nice properties; first, u|P%¥=0
for all i and w|P; =0 for i# m and n. Next, we discuss the properties of A; define
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forms
¢:VR®PXV®P—-A, and

Y VFQP*X VE@P*>A

(15)

by the equations

(16) (v ®x,w @ y)=flav, wlAi(x, y)
for o,w € V and x,y € P, and

(17) Yo @x, w®y)=f "(av, W)hax, y)

for v, w € V* and x, y € P*. Then, A is described by the equations (where x; € P¥ and
yi EP))

[0 if i#j
Alxi, y) = {<xf, yiy ifi=j
0 ifi+j#n
18 i Yi) =
(18) Ay i) {‘P()’i,yl') if i+j=n,and

ifi+j-n+1

0
Axi, ) = {d,(xi, xp) ifi+j=n+1.

In matrix terminology, A has the form
A =1
9) (7 %)
where I is the identity matrix; B a ‘‘n X n-matrix” with ¢ along the skew diagonal and
zero elsewhere; and A a “n X n-matrix” with ¢ along the diagonal above the skew
diagonal, also in the bottom, right corner and zero elsewhere. _
Since € is a UNil form, ATA%: P*-> P* is nilpotent; i.e. there is an integer N’ such

that (A*A%)? =0 for all p = N’, hence h” =0 for p =N’ where h = o*y*. Now, if
m — 1= N’, we can-construct a subkernel S for (Q, A, u); namely,

(20) S=P,® P 1 @WOPL. @ DP}

where it remains to describe W. To each x € (V & P)*, associate x' € Q where the’
i-th component x}{ of x’ is given by the formula

0 if either i=m or i >3m
1) xi={ —¢*hi(x) if m<i=n, where j=i—(m+1)

" (x) if n<i<3m;ie.,

x'=,...,—*x), ..., —¢*h"'(x), A"(x), ..., x,0,...);

let W be the submodule consisting of all x’. A straightforward calculation verifies that
S is a subkernel.

" §3. PROOF OF PROPOSITION 1.7.
Let Q denote the rational numbers, E, the equation posited in Proposition 1.7 for
n=2, and D" = D, Since Dress ([6], Theorem 5) has shown that the map
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GW(D',Z)-> GW(D’, Q) is a monomorphism, it suffices to verify E, in GW(D’, Q).
We proceed by induction on r; the case D' (the Klein 4-group) can be checked
directly and is left to the reader. When r = 1, Wall (see e.g. [12], p. 68) has observed
that

(22) QD™= QD" ® Mx(Q(cos 0))

where 6 = w/n and M(Q(cos 6)) denotes the 2 X 2-matrix ring over the field Q(cos 6).
In this decomposition, the map QD"*'— QD" is induced by the group homomorphism
D' D" which sends y,a in D' to v, a, respectively, in D’; the map QD' —
M>(Q(cos 8)) is determined by sending

a—(? 1), and

\i v/
23
(23) ( cos 6 sin())
-> . .
-sinf coséb

Frohlich and McEvert[8] have defined for a ring R with involution a group #(R)
which reduces to the Wittring when R is a field with trivial involution, and for a finite
group G, #(QG) = GW(G, Q). Applying H() to (22), we obtain

(24) GW (D™, Q) =GW(D'", Q) ® M(M:AQ(cos 6)));

therefore, to verify E,., it suffices that it projects to a valid equation on each factor
of (24). One shows, without much difficulty, that E,., projects to E, on the first factor
of (24).

Next, observe that both 4 and k «(2) project to 0 in the second factor of (24). Now,
M,(Q(cos 0)) is Morita equivalent (in the standard way) to Q(cos 6); via which, we
identify 4 (My(Q(cos 8))) to #(Q(cos 8))—the ordinary Wittring of the field Q(cos 6).
After this identification, [(2) clearly projects to 4 € #(Q(cos 8)); also, i+(2) goes to 2,
while j+(2) projects to the element represented by the form (1 +sin @) L (1+sin ).
Since 2 is the sum of two squares (2=12+1%), (1+sin9) L(1+sind) and 2+
2 sin 0) 1 (2+ 2 sin 8) represent the same element. But, 2+ 2 cos @ is also the sum of
two squares in Q(cos 6); namely,

25) 2+2sin 6 = (cos 8)°+ (1 + sin 8)%.

(Note that sin 8 € Q(cos 8) since § = 7/2".) Hence, (2+2sin8) L (2+2sin8)and 1 1L 1
represent the same element in #(Q(cos 0)); namely, 2.

§4. EXAMPLE

Let D be the infinite dihedral group generated by a, y subject to relations a’=1
and aya ' =y!, D(n) the subgroup of index n generated by « and ", and T, the
normal subgroup generated by y". Note D(n) is isomorphic to D and T, is infinite
cyclic; T, C D(n) C D; denote these inclusions by i and j,, respectively. Equip D with
the trivial homomorphism w: D - {* 1} and let Z, denote the cyclic group of order 2.
Let B, = y"a and (a), (8,) denote the subgroups of D(n) generated by these elements.
(These subgroups are cyclic of order 2.) Wall ([11], p. 162) shows LyZ(a)) =Z,=
Ly(Z(B,)); identify the sum of their images in Ly(ZD(n)) with Z, ® Z.
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THEOREM 4.1. Either Ly(ZD) is Z,® Z, or it is not finitely generated

We deduce this from two lemmas whose proofs are postponed to the end of this
section. When j: G — H is an inclusion where G is a subgroup with finite index in H,
recall there is a transfer map j*: L (ZH)— L«(ZG). :

Lemma 4.2. To each x € Ly(ZD) corresponds an integer N, such that

x)ezZ,.® 7,
for all primes p = N,.

LEMMA 4.3. When p is an odd prime,
tipa0) = x + B %)
for all x € L:(ZD(p)).
Proof of Theorem 4.1. By [3],

(26) Ly(ZD(n)) = Z,® Z. @ UNil(Z)

where Z has the trivial involution. Qur proof is by contradiction, hence assume
UNily(Z) is non-zero but finitely generated. Since UNil;(Z) is a quotient group (by
definition) of UNil(Z[H; Z[G\], Z[G:]) for appropriate choices of H, G,, and G, its
exponent divides 4 (Theorem 1.3); in particular, L3(ZD(n)) is a finite group annihilated
by 4. It is well known there are arbitrarily large primes of the form 8m + 1, hence
there is a prime p such that

@7 $: L{ZD) > Z:®Z; C LyZD (), and

(Jp) (jp)+ = identity: Ly(ZD(p))— L3(ZD(p)).

(Use Lemmas 4.2 and 4.3.) But, (27) is self-contradictory.

It remains to discuss Lemmas 4.2 and 4.3. The first can be proven geometrically.
Let N be a 10-dimensional, connected, orientable manifold containing a simply
connected (connected), codimension-1 sub-manifold M which separates N into two
components A and B with cyclic fundamental groups of order 2 and universal covers
diffeomorphic to M x [0, 1]. (Such spaces are easily constructed.) Note that 7N = D
and its universal cover is diffeomorphic to M xXR. By Wall ([11], p. 66), each
x € Ly(ZD) determines a surgery problem

(28) f: W-N %[0, 1], with

f-:-W >N x0 the identity map

and having obstruction x. Associated to D(p) C D, we have p- sheeted covers N w
and an induced surgery problem

29) fiWoNx[0,1]
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with obstruction j¥(x). Now, M lifts to N and
(30) fira,W-Nx1

splits along M for all p sufficiently large by Browder’s result{1]. Making f transverse
to the rest of M x [0, 1] and completing surgery on this membrane, we see that j¥(x) is
the sum of elements coming from L:(Z(«)) and Li(Z(B,)).

Finally, Lemma 4.3 would be an immediate consequence of the Mackey subgroup
property. Dress ([6], p. 302) shows that L-theory satisfies such a property for finite
groups and subgroups. It’s probably true for arbitrary groups and subgroups of finite
index. In any event, a simple direct argument, similar to that used to prove ([7],
Lemma 2.7), can be given for Lemma 4.3; the details are left to the reader.

Remark 4.4. Our proof of Theorem 4.1 was motivated by Cappell’s paper[4]
where he showed that Ly(ZD) is not finitely generated.
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