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Ah&met-The work is concerned with eigenfunction-expItnsion solutions to the forward Fokker- 
Planck equation associated with a specific, non-linear, first-order system subject to white noise 
excitation. Using a digital computer, a substantial number of new terms in the expansions have been 
generated. With this new information, inverted Domb-Sykes plots revealed a pattern in the coef- 
ficients for certain ranges of values of the parameters. Through this pattern, Dingle’s theory of 
terminants was used to recast the series into a more favorable computational form. 

1. INTRODUCTION 

Random excitation of non-linear systems is a challenging field of perennial interest (see 
Caughey’s review [l]) and several approaches to obtaining solutions to associated Fokker- 
Planck equations have been developed. The present work is concerned with ei,genfunction- 
expansion procedures, as described by, for example, Atkinson [Z]. Specifically, the work of 
Payne [3,4] on a first-order, weakly non-linear system is considerably extended. This is 
achieved by means of tools developed elsewhere for the analysis and improvement of 
perturbation series (see Van Dyke [S]). Also, the theory of terminants developed by Dingle 
[6] is harnessed in the work 

The spirit of the approach is to obtain a sufficient number of computer generated terms 
that a pattern, if it exists, emerges. This pattern is then used to recast the expansion into a 
more favorable computational form. Using this approach, a substantial body of new 
information on the steady-state, mean square response of a specific first-order system to a 
white noise excitation is presented. 

2. EIGENFUNCTION-EXPANSION SOLUTIONS 

Following Payne [3,4], the system considered is 

dx 
dt+x+&x%t(r) (1) 

where E is a small parameter and n(r) is a white noise process with the properties: (i) n(ti), 
i=l,2..., are mutually independent and (ii) n(t) has a Gaussian probability distribution 
with EC&)] =0, E[n(t)n(s)] = 2D6(t --s), E denoting expected value, 6 being the delta func- 
tion, and D a constant which measures the white noise intensity. The response x is modeled 
as a Markov process and the forward Fokker-Planck equation associated with equation 
(1) is 

aP a 
x=ax [(x+cc’)p]+D$ t>o 

where p=p(x, tlx,; E) is the transition probability density andsatisfies 

s 

00 
p(x, tlx,; s) dx = 1 

-0D 

315 

(3) 
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Lim 
I 

= p(x, tlx,; E&(X) dx = h(x,) (4) 1+0 -a, 

where h(x) is an arbitrary continuous function. Also, on integrating (2) with respect to x 
and using (3), it follows that 

xvnrim ap D z + (x + sx3)p 1 = 0. (5) 

Introducing the variable c = x/m, the expression 

P(& rlr, ; 4 = pit; ; 4 “z. v.(Co ; .MC; 4 exp C - Wit 

where the subscript s stands for ‘steady-state’, is a solution to (2) provided 

(6) 

-2C -$+2&(s) 1 o,,(c; c)=4eDC3 $ v#; 4. (7) 

It can readily be shown that the steady state solution is 

~~(~;&)=[exp(-~‘-&Dr~~~ exp t-v2 -sBj4)dr/ . -03 1 Also, by definition 

03) 
u&,; E)= 1, uo(C; &)= 1, A,(&)=O. (9) 

Payne has shown that (2) and (7) constitute an eigenvalue problem. Moreover, he gave 
conditions on p, assumed to be true here, under which the spectrum would be discrete. 
Thus, (6) constitutes an eigenfunction-expansion solution. The eigenfunctions have the 
orthogonality property 

s 

m 
_ m PXC ; 4qtK ; h,,Vi ; 4 &I = 4,,,, w 

where 6, denotes the Kronecker delta. 
When s = 0, (1) is linear and then (7) reduces to Hermite’s equation, the solution to which 

is 

u.,(C) = &(C)IJ2”a ! (11) 

I n “O= (12) 

where the Hermite polynomial is defined by 

(13) 

In (11) and (12) the additional subscript 0 designates the E= 0 case. Equations (8) and (10) 
now combine to give 

I 

co 
_ m ~sK)~.oKb,,,oK) dC = h,,, (14) 

where 

JSpXC)=e+. (15) 

When s#O, but small, one may think of the process as perturbing the eigenfunctions 
umo and eigenvalues A,,. Within this conceptual framework the following expansions are 
set forth (see Courant and Hilbert [7]): 

u.(C; 4 = f u”Jck+ 
j=O 

(16) 

A,@)= f &d. 
j=O 

(17) 
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Substituting Eqs. (16) and (17) into Eq. (7), and setting the coefficients of the various powers 
of E separately to zero yields 

m 

LV,j+2 C 6~-i-k)l,iv,,=4D~3v~~j_ 1) j=o, 1,2,. . . (18) 
i.k=O 

where the operator L is given by 

L=-$ -25$ (19) 

and the prime denotes differentiation w.r.t. [. Here, and throughout, any quantity with a 
negative subscript is to be understood as having a value of zero. 

Still another expansion is introduced at this stage, namely 

vJQ= 2 %jvjO(U i=O, 1,2,. . . (20) 

j=O 

where the Unij are constants to be determined and the vi0 are the scaled Hermite polynomials 
given by equation (11). Using their orthogonality property, (14), the Q.i, may be written 

%ij= tvmi9 vjO) (21) 

where an inner product notation has been introduced, namely 

(u, v)= j- zd%(Ou(;) dC. (22) 
-CO 

Recursion relations will now be developed. Multiplying (18) by p&Qu,,(~) and integrating 
giVeS 

ho, LvJ + 2 i sg’ - i - @Lolo, ~3 = 40(vIo, t;3~bti- 1J j=o, 1,2,. * . (23) 
i,k=O 

L is a self adjoint operator, i.e. (Lu, v)=(u, Lv). Using this together with equation (7) with 
s=O and (21), (23) may be written 

2 5 ~-i-k)~.ia.u-22,oa,jI=4D(vlo, c3vl,o-,J j=O, 1,2,. . . . (24) 
i,k=O 

To obtain recursion relations for the A’s, consider I=n. Using a property of the delta 
function, (24) may be written 

i J4j_i)n=2D(Vno, [‘tin(j-iJ j=O, 1,2,. . . . 

i=l 
(25) 

Equations (12) and (25) give the recursion relations 

I,=n (26) 
I al =2m,o, C3v’,l) (27) 

j-l 

Aj=W%O9 C”%jJ- C +n(j-i)n j&2. (28) 
i=l 

Consider now I# n. Equations (12) and (24) give 

(n-kj~+i~l h%(j-i)l=2D(v10* i’G_j-lJ j=O, 1,2,. . . (29) 

from which it follows that 

a.jl -+J 

[ 
2D(v,0, C3G(j- l))- t: L&j-i)l 

i=l 1 (30) 

n#l, j=l, 2,. . . . 
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The recursion relation for CZ,~” must now be calculated. Expanding exp ( -sDC4) and 
exp ( -tDq4) in (8) in Maclaurin series can be shown to lead to 

/yw v4n.‘c2ch] 
m (-D~[1.3.5:~~(4n-1)]~ 

22nn 1 - * 1 (31) 

When the indicated division of series is performed, (31) can be written 

where 

bo=l,b,=-l;r: 
m (-D)‘[1.3.5:**(4j-l)] b 

2Uj! m j 
_ 

m>l. 
j-1 

(32) 

(33) 

Equations (lo), (16), (20) and (32) give, on interchanging summation and integration 

5 (-Dy+jbj i a p ,g4ivo v30)Ei+j+k+1=6 
i! nLn r 2 mm* 

i, j.k.1 = 0 r,s=O 
(34) 

Let m = n and group according to Bowers of s, denoting the coefhcient of 9 by cP To satisfy 
(34) with n = m, it must follow that c o = 1, which can readily be shown to be true, and cN = 0, 
N > 0. This latter condition together with (34), requires that 

i. j,k,l = 0 

By systematically isolating terms of the form Q,, and anIn in (35), the recursion relation for 
a nNn can be obtained as 

. . 

a nNn= -2 ’ 5 6(N-i-_i-k-l)~j[ :z, Q,u,,&~~v,~, vso) 
i,j.k,l=O 

+ ‘X1 f tkkP,k + 4d4drM~4iv,o~ so) + f a~~~~4~v~o, h30) 
r=o s=n+l r,s=n+ 1 1 

-) i Ni1 S(N-i-j-k-I)qbj [‘“it (u~~~+u”~u,~,X~;~‘V,O, ~~0) 
i,j=O k,t=O r=O 

+ h6dC4ivn09 so) + f (ankdh + ~nkh.MC4iv,0, hoI N>O. (36) 
r=n+l 1 

Finally, the requirements of (9), together with (16), (17) and (20), can be shown to yield 

lOj=O all j (37) 

aoij - -0 i>O. (38) 

The recursion relations for the eigenvalues and the eig~functio~ can be employed once 
the various inner product expressions have been evaluated, a task postponed until later. 
First an expression for the mean square response of the system will be developed. The 
autocorrelation function of the response, which is assumed to be a stationary Markov 
process, is given by, where t denotes a time lag 

w 

R,(r) = 2DE[Ut), C(t + r)] = 20 
SI 

C, +&G+rr t + $,, 0P(lt, $0) dr, d& +r 

-w 

or, noting that a stationary process is independent of a shift in the time origin 
m 

R,,(z) = 20 Lim 
ss 

i,+XdC,+, t+rlC, &Jo,, $0) dC, dl,,,. 
f--c0 

--m 
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Using (6) and taking the limit inside the integral, (39) gives on rearranging 

R&)= 21) 5 af(s) exp [ -1,(s)r] 
#I=0 

where 

O” a&) = 
s 

MC ; 4a ; w 
--m 

w 

(41) 

By means of (6), (16) and (20), Eq. (41) can be written 

i,j,k,l=O 

Noting that u,,([)=& and using (22), (42) gives 

(42) 

(43) 

(44) 

(45) 

Setting r = 0 and employing (40) and (43), the mean square response is obtained as 

E[x’]= 5 a,,,~?” 
m=O 

where 

a,=2D f (7, 
W=O 

fJ,=f 5 a(m-i-i_k-p-9-~)~(-D)“‘] 
i.hk.p,w= 0 

(46) 

The recursion relations involve inner products of the form (t+,, c”u” and (&J,, v&O) and 
these will now be evaluated. Noting that the Hermite polynomials satisfy 

lib(C) = 0, K(I) = 2nH, - I(0 

it follows from (11) and (20) that in fact all the inner products can be reduced to an evahta- 
tion of the general form (cv@, u&& which can be written 

(clivj09 vkiJ)= - ' 

s 
m &(~K’&(r)&(od!. J2’+kj!k! -* (47) 

Using (13) and (IS), (47) can be shown to yield 

where 

N even. 

(49) 

By means of (48), the recursion relations for the eigenvalues and eigenfunctions, and the 
perturbation expansion for the mean square response can be calculated to any desired 
order using a digital computer. 
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3. COMPUTER EXTENSION OF PERTURBATION SOLUTIONS 

The recursion relations to obtain the eigenvalues and the eigenfunction expansion 
coefficients and the formulas for the perturbation expansion of the mean square response 
were programmed on the Ford Motor Company Honeywell 6000 computer in the STRAN 
(Structured Fortran) computer language. Not surprisingly, the programming involved 
considerable effort and the authors would be pleased to supply interested readers with 
details on program listings and organization. 

Payne [4] presented results for the present system out to the second order. Here the 
perturbations were carried out to the eighth ordee for values of the white noise intensity D 
ranging between 0.0001 to 100 and this substantial body of new information is given in 
Table 1. Agreement with Payne to the second order should be noted4 

Table 1. Mean square response perturbation coefficients for various 
values of the intensity D 

D=0.0001 D=O.ool D=O.Ol 

a0 

a1 
a2 
a3 
a4 
as 
a6 

a7 

a8 

O.l~E~3 
-0.150045OE-03 
-0.4874324E-03 
-0.410603OE-02 
-0.5262706E-01 
-0.8891938E-00 
-0.1853723E 02 
-0.4588644E 03 
-0.131479OE 0.5 

D=O.l 

O.~~E~2 
-0.15045OOE-02 
-0.4868214E-02 
-0.4104062E-01 
-0.5261046E-00 
-0.88898lOE-01 
-0.18533638 03 
-0.4587894E 04 
-0.1314604E 06 

D=0.2 

O.lWOWOE-01 
-0.1545ooOE-01 
-0.14803938E-01 
-0.4084888E 00 
-0.524458OE 01 
-0.8868638E 02 
-0.184978OE 04 
-0.45804188 05 
-0.1312752E 07 

D=O.5 

a0 O.lOWOOOE 00 

al -0.195OOOOE 00 

a2 -0.384375OE 00 

a3 -0.3981656E 01 

a4 -0.50828748 02 

a5 -0.8670164E 03 

a6 -0.1815437E 05 

al -0.4508292E 06 

a.3 -0.12947878 08 

D=0.7 

0.2OOOOWE 00 
-0.48OOWOE 00 
- 0.42OOOOOE OR 
-0.8424WOE 01 
- 0.962154OE 02 
-0.1703229E 04 
-0.3555803E 05 
-0.8868724E 06 
-0.2551653E 08 

D=l 

0.5OOOWOE 00 
-0.1875ooOE 01 
-0.3703125E 01 
-0.475664OE 02 
-0.129497OE 00 
-0.6158097E 04 
-0.591344lE 05 
-0.246033OE 07 
-0.5595717E 08 

D=5 

a0 
al 
a2 
a3 
a4 
a5 
a6 
a7 

a8 

0.7OCOOOOE 00 
-0.3255ooOE 01 
-0.1211438E 02 
-0.1355898E 03 
-0.8872697E 03 
-0.2135682E 05 
-0.1454986E 06 
-0.7849864E 07 
-0.2337453E 08 

D= 10 

O.lWOOOOE 01 
-0.6OOOOOOE 01 

0.375OOOOE 02 
- 0.486OOOOE 03 

0.6505884E 04 
-0.1401909E 06 

0.2938146E 07 
-0.88657128 08 

0.2493584E 10 

D=lOO 

0.5OGOCOOE 01 
-0.12OOOOOE 03 

0.45975OlE 04 
-0.2647349E 06 

0.20377078 08 
-0S976074E 10 

0.2317035E 12 
-0.3188347E 14 

0.4928034E 16 

a0 
aI 

a2 
a3 
a4 
a5 
a6 
a7 
a8 

O.lOOKOOE 02 
-0.465OWOE 03 

0.3625 126E 05 
-0.4186026E 07 

0.6461296E 09 
-0.1255596E 12 

0.2947952E 14 
-0.811805OE 16 

0.2510452E 19 

0. 1oooooOE 03 
-0.4515QOOE 05 

0.3569202E 08 
- 0.4139694E 11 

0.6407094E 14 
-0.1247123E 18 

0.29315lOE 21 
- 0.80798008 24 

0.2499916s 28 

tAfter this order, computer costs became prohibitively high. 
$The authors confirmed with Payne in a private communication that there is a typographical error in Reference 

[4]. The term &,a,., in his notation, should be subtracted from 48. 



Solutions of a Fokker-Planck equation--I 321 

These results, though valuable in themselves, can be made considerably more useful by 
means of the theory of terminants advanced by Dingle [6], and recently used by Buchanan 
[8] in a study on improvement of series representations. A basic aim of Dingle’s work is the 
analysis and improvement of divergent asymptotic series, and inspection of Table 1 clearly 
shows that the series at hand are divergent. It should be noted that the sign pattern of the 
series changes from a single-sign series for small values of the intensity D to an alternating- 
sign series for large values of D, with the exception of the range 0.2 <D < 1.0. These values 
represent a transition region and, presumably, with more terms of the series available a 
stable pattern would emerge. They will not be pursued any further in this work. The overall 
sign pattern indicates that for small values of D, the expansion contains a Stoke’s discon- 
tinuity, but that this does not occur for large values of D. 

Further insight can be gained by constructing inverted Domb-Sykes plots, that is, plots 
of a,_ i/a. versus l/n, a feature impossible before this work since sufficient data was not 
available. Figure 1 shows such a plot for D=O.OflOl, and is a typical result in that the 

0.4.- 

0.3 - 

= 0.2- 
P 
T 

d 

0.1 - / 

/’ / 

4-J / 0.3 
/ 1.0 

/ 
./ 

0 
L/ 

I I 
0.5 1.0 
I/n 

Fig. 1. Inverted DombSykes plot for D=O.OOOl. 

establishing of a linear relationship for large values of n is becoming apparent. The best-fit 
slope for that relationship is indicated by the dashed line on the figure. This behavior is 
reproduced by taking a, = c(s)-% !, where c is a constant and s stands for slope, but following 
related work of Bender and Wu [9] on asymptotic series, more flexibility is obtained by 
taking a.=c(s)-“(PI+@!, where O<a < 1. Note that for large values of n this gives a very 
good approximation to a straight line on an inverted Domb-Sykes plot. The parameters 
c, s and a are to be determined using the higher order terms in the series. Adopting this 
procedure the general form of the series coefficients can be determined and is given in 
Table 2. 

With this information the theory of terminants can now be employed. Consider the 

Table 2. General form of the coefficients of the 
asymptotic series representation of the mean 
square response for various values of the intensity 

D 

D n-th order coefficient on 

0.0001 -0.720118E-05 x (1/0.3)“(n+i)! 
0.001 -0.719998E1-04~(1/0.3)“(n+~)! 
0.01 -0.718805E-03~(1/0.3)“(n++)! 
0.1 -0.707305EXt2 x (1/0.3)“(n ++)! 
5 0.491496E 01 x (- l/0.05)%1! 

10 0.977591E 01 x (- l/O.O25)“n! 
100 0.972859E 02 x (- l/O.O025)“n! 

U.L.M. 145 6--o 
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case f) -0.0001. The series can be written 

E[x']= i a,~"-(0.720118E-05) f (n+#! 
n=O ?I=6 

(50) 

Using Dingle’s terminant for a single-sign asymptotic series, equation (50) can be written 
in the much more useful form 

E[x']= i 
(51) n=O 

where the terminant X, a tabulated function, is given by 

%,H=-$ P 6 EdC (52) 

P denoting principal value. The results for the other values of I) are given in Table 3. 

Table 3. Terminated asymptotic series representing the mean square 
response for various values of the intensity D 

D EEx’l 

a.&“-(0.71QQ98E-04)(6+$)! & 6 
(.I 

& + ,,2( -0.3/s) 
“=O 

0.01 & a&“-(0.718805E-O3(6+f)! (&y &,+ 1,2( -O.~/E) 

0.1 i a&‘-(O.707~SE~2~6+~~! 
“=* 

5 i a,~“+ (0.491496E 01)6! &S 
“SO (. > 

bh,(O.OS,~) 

10 i a,z”+(O.Q77591E 01)6! 
(. > 

& 6 &(0.025/E) 
.?=O 

100 i a~~~+(O.Q72~59~ 02)6! 
“=O 

In this table the terminant A, also a tabulated function, is given by 

A&)=$ 
s 

O” C”e+ drq 
0 l+& 

(53) 

Dingle has also developed absolutely convergent expansions for the terminants A and A, 
Using them, absolutely convergent representations of the mean square response can be 
found and are given in Table 4. 

In Table 4 

1 qE+ x(O.3/s)‘*5 exp (-0.3/s) 
(6.5)! tan 6.5~ 

$(t)=L 2 I-(t+l) 
I-(t+l) dt (57) 

I’ denoting the gamma function. 
For purposes of comparison, calculations based on (i) linear system, (ii) first-order 

(54) 

(56) 
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Table 4. Absolutely convergent expansion representation of the 
mean square response for various values of the intensity D 

0.0001 

0.001 

0.01 

0.1 

5 

10 

100 

i a,&“-(0.719998E-04)(6.5)! & 6 @(~)+fI(s)] 
I=0 (.> 

; a#-(0.718805Ea3)(6.5)! 
n=O 

i a,&“-(0.707305E-O2)(6.5)! 
“-0 

i a,a”+(0.491496E Ol)e(O.OSa) 
n=Cl 

5 ag”+(0.977591E 01)6(0.025~) 
“=O 

5 
c a,~” + (0.972859E 02)0(0.0025s) 

expansion, (iii) second-order expansion, and (iv) terminant expansion, were carried out for 
s=O.15 and various values of D, and the results are shown in Table 5. 

Several observations can be made. Note that for values of DGO.1 the linear portion of the 
system is dominant and that the first-order expansion essentially gives the response of the 
nonlinear system. The second-order and terminant expansions adjust the accuracy for the 
third and fourth significant figures, respectively. As the excitation increases in intensity, 

Table 5. A comparison of mean square response E[x’] according to the linear system, first-order 
expansion, second-order expansion and terminant expansion for various values of intensity D 

ECx’l 

Linear 1st order 2nd order Terminant 
D E system expansion expansion expansion 

0.0001 0.015 O.lOOOOOOE-03 0.9774932E-04 0.97639658-04 09762209E-04 
0.001 0.015 0.lOOOOOOE-02 09774325E-03 0.9763372E-03 09761616E-03 
0.01 0.015 O.lWOOOOE-01 0976825OE-02 09757441E-02 0.9755693E-02 
0.1 0.015 O.lC-KMOOE 00 09707500E-01 09698851B01 0.9697149E-01 
5 0.015 0.5ooooooE 01 0.32OOOOOE 01 0.4234438B01 0.3756974E 01 

10 0.015 O.lOOOOOOE 02 0.3025ooOE 01 0.1118153E 02 0.3775957E 01 
100 0.015 O.lCCJOOCOE 03 -0.5772500E 03 0.7453455E 04 -0.3772789E 07 

significant deviations from the linear response occur, as can be seen from the results for 
Da 5. In these cases, decisions based on truncating the expansions at second order can be 
quite misleading, as the terminant expansion shows. With increasing values of D, the 
influence of the non-linear portion of the system can be expected to increase until eventually 
the basic underlying assumption that the solution can be represented as a perturbation 
about the linear solution is questionable. This is presumably what occurs when D= 100, 
since the calculated negative value of the response is of course impossible, even though a 
linear pattern had been established on the inverted Domb-Sykes plot. To further pursue 
this point, the behavior of the system when D = 100 was investigated for four other values of 
E and the results are shown in Table 6. As expected, all responses are seen to be positive. 
For s=O.OOl and 0.005 note that the second-order expansions are inadequate and the 
terminant expansion is needed. Finally, observe that as E gets progressively smaller, the 
linear portion of the system again begins to dominate. 
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Table 6. A comparison of mean square response E[x’] according to the linear system, first-order 
expansion, second-order expansion and terminant expansion for various values of E 

E[x*l 

Linear 1st order 2nd order Terminant 
D E system expansion expansion expansion 

100 0.001 O.lOOOOOOE 03 0.5485c0OE 02 0.9054202E 02 0.6995111E 02 
100 0.0005 O.loooooOE 03 0.77425OOE 02 0.8634801E 02 0.8323705E 02 
100 0.00025 O.lOOOOOOE 03 0.8871250E 02 0.9094325E 02 0.9046707E 02 
100 O.ooO125 O.lOOOOOOE 03 0.9435625E 02 0.9491394E 02 0.9484574E 02 
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Resume: 

Dans ce travail, on s’interesse aux solutions en 
developpement de fonctions propres de i’equation directe 
de Fokker - Pianck associee a un systeme particuiier non 
iineaire du premier ordre soumis a une excitation avec un 
bruit bianc. En utiiisant un ordinateur, on a genere un 
nombre substantiei de nouveaux termes dans ies deveioppe- 
ments. Avec cette nouvelie information, des graphiques 
inverses de Domb - Sykes reveient un modeie dans ies 
coefficients pour certains domaines de vaieurs des para- 
metres. On a alors utilise avec ce modeie la theorie de 
Dingle pour refondre ies series sous une forme plus 
favorable au caicui. 

Zusammenfassung: 

Diese Arbeit befasst sich mit Losyngen mit Eigenfunktions- 
entwickiungen fur die vorwarts wirkende Gieichung nach 
Fokker und Planck, die ein bestimntes, nichtlineares 
System erster Ordnung unter Erregung durch weisses Rauschen, 
beschreibt. Mit Hiife eines Digitairechners wurde eine 
betrachtiiche Anzahi neuer Gleider in der Entwickiung 
bestimnt. Hit dieser neuen Information zeigte sich 
in umgekehrten Domb-Sykes Diagramnen ein Muster in den 
Koeffizienten fur gewisse Zahlenbereiche der Parameter. 
Dingies Terminantentheorie wurde benutrt um mit Hiife 
dieses Musters due Reihen in eine fur die Brechnung 
besser geeignete Form zu bringen. 


