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Abstract-Many federal and state programs require the geographic partitioning of states into regions for health 
services planning, monitoring, and/or administration. A common consideration for such programs is that region 
boundaries should be drawn so as to maximize the proportion of the state’s population that receives health care 
services in its region of residence. Defining region boundaries thus may be viewed as a problem of partitioning a set 
of N small area1 units (e.g. counties) into M subsets (regions) so as to minimize interactions (patient flow) among 
subsets. This paper describes three algorithms for region design and compares them in terms of computer- 
processing efficiency and solution value based on results from a number of test cases. Application of two of the 
algorithms, one based on the greedy heuristic and the other incorporating a max-flowlmin-cut procedure, to a 
problem of dividing a metropolitan region into separate service areas for clusters of hospitals is also described. 

BACKGROUND 

The concept of organizing health services on a regional, 
or multi-community basis in the United States was first 
proposed in 1932[1]. However, regionalization was not 
promoted as official national policy until the late 1960s 
when areawide comprehensive health planning agencies 
were mandated under Section 314(b) of the Public Health 
Service Act. Since then, regionalization has become a 
cornerstone of Federal health policy and is reflected in 
legislation for, among other things, utilization and quality 
review (P.L. 92-603, 1972), health manpower (P.L. 92- 
585, 1972), emergency medical services systems (P.L. 
93-641, 1974). By coordinating resources on a regional 
basis, it is expected that the availability, quality, and 
efficiency of health services will be enhancedHI. 

Each of the programs cited above, as well as others 
recently initiated by Federal and state governments, 
requires that states be partitioned geographically into 
regions for health services planning, monitoring, and/or 
administration.+ Partitioning typically is performed along 
county lines, so that each region is composed of several 
counties. While some region design criteria such as limits 
on individual region size may vary from program to 
program, a common consideration for health services 
regions is that boundaries should reflect existing patient 
ilow patterns; i.e. boundaries should be drawn so as to 
maximize the proportion of the state’s population that 
receives health services in its region of residence. 

Several measures of patient flow have been suggested. 
However, because of data availability, the only com- 
monly used measure is transit patterns of hospital in- 
patients. By sampling patient records at each hospital 
and noting county of residency for patients in the sam- 
ple, a matrix can be developed showing the number of 
patients residing in county i who obtain medical care in 

tPortions of the research reported in this paper were included 
in the author’s doctoral dissertation for the Department of 
Decision Sciences, The Wharton School, University of Pennsyl- 
vania. 

#Small or sparsely populated states sometimes may be treated 
as a single region. 

county j. In a number of states, hospitals routinely report 
to the state health department detailed information on all 
inpatient admissions, and the health department is able to 
publish revised patient flow statistics annually. 

While Federal regional health programs normally 
require that an entire state be divided into multi-county 
regions, it is sometimes necessary to partition a city, a 
county, or a multi-county region into smaller geographic 
subunits. For example, large cities often are divided into 
health districts for decentralized administration of 
municipal health department programs. Also, individual 
counties or regions containing several counties may be 
divided into discrete service areas for individual hospi- 
tals or clusters of hospitals, with area boundaries 
drawn so as to reflect observed hospital use patterns of 
the’population[2]. Where districts are formed by grou- 
ping zip codes, census tracts, minor civil divisions or 
other small areal units, and district boundaries are selec- 
ted to minimize out-of-district patient flow, district 
design is equivalent to the health region design problem 
at the state level. 

TECHNIQURS FOR DEFINING HEALTH REGION BOUNDARB$S 

Defining boundaries for health regions may be viewed 
as a problem of partitioning a set of N area1 units (e.g. 
counties) into M subsets (regions) so as to minimize 
interactions (patient flow) among subsets. As noted 
above, additional criteria, such as location of at least one 
major hospital in each region or a minimum population 
level for each region, may also be applied. The problem 
is expressable as a O/l integer program, but solutions 
even for small states with few counties and regions 
involve a prohibitively large number of constraints and 
integer variables [3]. Emphasis thus has been on heuristic 
techniques for locating approximately optimal solutions. 

Techniques have been reported for such related ap- 
plications as school districts [4-91, election districts [lO- 
121, police patrol sectors[13], and fire irispection 
districts[l4]. However, since these problems do not in- 
volve criteria for interaction among geographic subunits, 
the proposed methods are not generally applicable for 
selecting health region boundaries. Three algorithms 
which can accommodate interaction criteria and are 
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therefore relevant for health region were investigated in 
the study reported here. These include an implicit enu- 
meration algorithm, an algorithm based on the greedy 
heuristic, and one based on Ford and Fulkerson’s max- 
flow/min-cut theorem. 

Imp[icit enumeration algorithm. Implicit enumeration 
is a combinatorial technique wherein every possible 
assignment (in this case, of counties to regions) is expli- 
citly or implicitly evaluated. If it can be determined, for 
certain partially completed assignments, that no pattern 
of assigning the remaining unassigned counties will yield 
a completed solution that is feasible in terms of included 
constraints or one that represents an improvement over 
previously identified solutions, then further enumeration 
along that branch of solutions may be abandoned. 

Based on an approach first proposed by Graves and 
Winston[lSl, the mean and standard deviation of solu- 
tion values associated with all completions of each par- 
tial assignment are employed to determine, within a 
specified probability range, whether the partial assign- 
ment will lead to any completed solution that is better 
than the current best solution. This optimality test is 
applied each time one of the N counties is considered 
for assignment to one of the M regions. Each of these 
potential assignments is also evaluated for feasibility 
with respect to (a) contiguity of counties assigned to a 
region and (b) a requirement for at least one hospital in 
each region. 

Because of the optimality test, each newly completed 
solution will be superior, in terms of the proportion of 
patients receiving health care services in their regions of 
residence, than previously identified solutions. However, 
the procedure cannot assure that a globally optimal solu- 
tion will be located, since the branch on which that 
solution lies may be prematurely terminated with a small 
but finite probability through application of the opti- 
mality test. 

Similar implicit enumeration approaches have been 
used by Graves and Winston for quadratic assignment 
problems[16], Duncan and Scott for a virtual storage 
computer paging problem[17], and Liggett for a school 
districting problem [9]. 

Greedy algorithm. Assume that an initial assignment of 
one county to each region has been specified. The greedy 
heuristic then may be used to assign each of the (N-M) 
remaining counties. At each step of the algorithm, the 
unassigned county and the developing region that share 
the greatest amount of patient flow are identified and the 
county is assigned to that region. Thus regions “grow” as 
counties are assigned one by one. The procedure ter- 
minates when all counties have been assigned. 

Variants of this heuristic were employed by Taliaferro 
and Remmers [ 181 and Transaction Systems, Inc. [ 191 for 
selecting health region boundaries, and it is the basis for 
a manual approach to defining health region boundaries 
described by Ciocco and Altman in 1954[20]. The greedy 
heuristic also has been employed in algorithms for the 
uncapacitated plant location problem 1211, the capacitated 
plant location problem[22,23], the knapsack 
problem [24], and the p-median problem 1251. 

Max-flow/min-cut. Instead of building up regions 
through sequential assignments of counties (as with the 
greedy heuristic) or by using a combinatorial approach 
(as in implicit enumeration), an alternative method is to 
define regions by “cutting” the state into ever-smaller 
pieces. As a first step, the state is divided into two 
regions. Another partition is then made to yield three 
regions. The next partition yields four regions; etc. 

Let each county of the state to be partitioned 
represent one node of a network. The capacity of the arc 
connecting counties (nodes) i and j is defined to be the 
sum of the patient flows from i to j and from j to i. Ford 
and Fulkerson’s max-flow/min-cut theorem, which states 
that the maximum possible flow from the source node to 
the sink node of any network equals the minimal cut 
capacity of all arc cuts separating the source and sink, 
then provides a basis for defining the partitions[26]. 

Assuming that N counties are to be partitioned into M 
regions, M of the counties are selected to serve as 
source and sink nodes. The first of these counties is 
designated as the source node and the second as the sink 
node for the first cut. The minimum cut partition is then 
determined using the max-flow/min-cut procedure. Next, 
the third county on the list is selected as the sink for the 
second cut. The source node for the second cut is the 
previous end node, either the source or sink of the first 
cut, that is located in the same partition as the new sink. 
The max-flow/min-cut procedure is used to divide this 
partition into two parts, yielding a total of three par- 
titions. 

This process is repeated until M partitions have been 
defined. At each step, the next county on the source/sink 
list is selected to be the new sink. The corresponding 
source node is specified (an end node of a prior cut, 
located in the same partition as the new sink), and the 
max-flowlmin-cut procedure is applied. When no coun- 
ties are left on the source/sink list, the procedure ter- 
minates, and the cumulative flow across all cuts is the 
inter-region flow of the newly defined system of regions. 

Let x be the source node and y be the sink. The 
procedure for locating each minimum-flow cut proceeds 
iteratively as follows: 

(1) Initialize all arc flows gij for arcs (j, j) to 0. 
(2) Beginning at the source x, put a plus (+) sign by 

each arc (x, j) for which the current arc flow gXr is less 
than the arc capacity fX,, and label node j with a check 
mark (d. Node x is now scanned, so mark it with a ($‘). 

(3) Select any node j that is labelled with a (d. For 
every arc (i, k) for which (1) gjk is less than fjk, and (2) 
node k is unlabelled, put a (t) mark on arc (j, k) and 
label node k with a (d. After all arcs from j have been 
checked, mark node j as scanned (q). 

(4) Continue the operation of Step 3 until either (Case 
(a)) sink node y is labelled, or (Case (b)) all labelled 
nodes have been scanned. Case (a): Breakthrough has 
occurred, since a flow-augmenting path from x to y has 
been discovered. This path is identified by tracing back 
from y to x over those arcs marked with a (t). Calculate 
the flow augmentation, which is the minimum value of 
(fii -gii) over all arcs (i, j) on the flow-augmenting path. 
Erase all labels (v, q) and ( t ) signs, and go back to Step 
2. Case (b): If node y is still unlabelled at the completion of 
Step 3, then the current solution represents the maximal 
flow through the network. The minimum cut separates all 
unlabelled nodes, including y, from all nodes labelled (q), 
including x. 

SELECTION OF CORE COUNTIES 

The greedy algorithm described above starts with an 
initial assignment of one county to each of the M 
regions. Similarly, the max-flow/min-cut algorithm 
requires an initial specification of A4 counties to serve as 
source/sink nodes. Conceptually, the selected counties in 
each case serve as region “cores” or centers. 

If patient flow data are based on transit patterns of 
hospital inpatients, only those counties which contain 
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one or more hospitals need be considered for inclusion in 
V={v’,v2 )..., urn-‘, urn}, the set of region centers. 
Because region boundaries are defined to reflect existing 
patient flow patterns, the elements of V should be the M 
most active counties (contai~ng hospit~s), where 
activity refers to the amount of patient flow that one 
county shares with al1 other counties. Letting fik 
represent the sum of patient flows from county i to 
county k and from county k to county i, and H the set of 
all counties which contain hospitals, and selection rule is: 

that is, the Ith eIement of V is that county which 
contains at least one hospital and which has the greatest 
amount of patient flow interaction with counties not 
already assigned to V. 

TESTS AND ~PL~CA~O~S 

Each of the three algorithms were programmed in 
PL/l, and twelve test problems were run on an IBM 
370/K% computer. Results are shown in Table 1. Cases 3 
through 10 were based on actual patient flow data com- 
piled in 1974 by the North Dakota State Health Depart- 
ment (case 3 considered only the 23 eastern-most coun- 
ties), while other cases employed hypothetical data. In 
the cases considered, computer time requirements for 
both the greedy and max-flow/min-cut algorithms were 
observed to increase approximately linearly with prob- 
lem size. However, the increase in computer time for the 

War a discussion of the concepts underlying measurement of 
hospita1 performance, see GriEth[Z]. The Hospital Performance 
Measures Project is financed by the W. K. Kellogg Foundation 
and sponsored by the Michigan Health Data Corporation in 
collaboration with the Bureau of Hospital Administration, School 
of Public Health, University of Michigan. 

Table 1. Con mu tation time and soiution value comparisons based on twelve test problems 

No. of No. of 
:ase :ountie: - Regions 

1 10 . 2 3.2 97.7 

2 10 4 15.4 94.2 

3 23 2 48.1 96.3 

4 53 2 * 

5 53 3 * 

6 53 4 * 

7 53 5 x 

8 53 6 * 
9 53 7 * 
10 53 8 * 
11 90 4 

12 90 8 * 
- 

iProport~on of patients residing in the region III which they receive medical care 

*Not run because of excessive computer time requirements 

Greedy 
Solution 

PIJ sec. Value(%) 

1.4 97.7 

1.4 94.2 

1.6 92.5 

3.1 97.1 

3.2 96.4 

3.4 95.4 

3.6 93.5 

3.8 92.6 

3.9 91.6 

4.0 92.1 

6.7 96.8 

8.2 9s.o 

Max-Flow/Min-Cut 
Solutior 

CPU Sec. Value(X) 

1.3 97.7 

1.3 94.2 

1.4 96.9 

2.9 98.1 

3.0 96.7 

3.0 95.4 

3.1 93.8 

3.1 92.8 

3.2 92.1 

3.2 91.4 

5.6 97.4 

6.0 95.7 
- 

nplicit Enumeration 
solution 
"PU sec. Value(%)t 

implicit enumeration algorithm was approximately of 
order (iV3), and cost considerations prohibited using the 
algorithm on the larger test problems. All three al- 
gorithms were able to define region boundaries yielding 
high solution values. However, the max-flow~min-cut 
solution was in every case equal or marginally superior 
to solutions from the other algorithms. 

Figure 1 illustrates the max-flow/min-cut and greedy 
algorithm solutions for partitioning North Dakota into 
eight regions. The two algorithms yielded the same four- 
region solution for North Dakota, and this was identical 
to the one defined earlier by State ofhcials who utilized 
the relatively time-consuming manual procedure of 
Ciocco and Altman [ 191. 

As a part of a project concerned with demonstrating 
new methods of monitoring hospital performance, the 
greedy and max-flow/min-cut algorithms were employed 
to identify natural groupings or clusters of hospitals and 
the geo~ap~c service area associated with each chis- 
ter.l The initial application involved partitioning the 
seven-county metropolitan Detroit region, which in- 
cludes 82 hospitals and is composed of 174 zip code 
areas, 84 zips within Detroit and its immediate suburbs 
and 90 in the outlying counties. Data from 1975 giving 
the number of patients from each zip code area that 
utilized each hospital were obtained by summing 
patient discharge information routinely reported by all of 
the hospitals. 

Attempts to partition the entire 174 zip code region 
into cluster service areas were not successful. After five 
minutes of cpu time on the University of Michigan’s 
Amdahl 47OV16 computer, the rn~-~ow~min-cut al- 
gorithm had manned to comptete only three cuts. 

Problem size for the max-flowlmin-cut algorithm is 
determined not only by the number of area1 units (zip 
codes) and the number of cuts to be made, but also by 
the number of node-to-node (in this case, residence zip 
code to hospital zip code) connections defined by the 
patient flow data. In densely pop~ated cities like Detroit, 
geographic zip code areas are small, and patients often 
bypass nearby community hospitals, travelling on the 
freeway system across many zip code areas in order to 
utilize one of the major medical institutions located 
downtown. (Several large hospitals in downtown Detroit 
draw patients from all over the city and suburbs.) Con- 



sequently, the number of patient flow conneotions among 
the city zip codes is quite large. 

We the gJoedy *or&m was able to d&ne lli 
service areas in 2 t.5 cpu see, the ~orn~a~~e~s and refa- 
tive size of these areas were considered unsa~sfa~~~~~ 
Again the problem was traceable to characteristics of the 
patient flow data, specifically the impact of the large 
downdown hospitals. The algorithm defines service areas 
that reflect patient flow patterns; and where a few hosp& 
tak &mated in close pixie to each other attract large 
numbers of patients from diverse parts of the city, some 
of the ‘*natural” service areas identi&d by the ~~o~t~rn 
turn out to be very large. 

To make the analysis more tractable, the algorithms 
were applied independently to the 84 zip codes compriss- 
ing Detroit and its close suburbs and to the 90 zip codes 
making up the ousts r&m. The rn~-~o~~m~n~~ut 
algorithms in ~a~~~o~g the Detroit zip codes &to tbk 
teen cfuster areas, consumed lXI cpu set and located a 
solution where 4&% of patients utilized hospitals in the 
patients’ areas of residence. The greedy algorithm took 
only 4.7sec to find a solution with a value of 44%. 
Neither solution was considered acceptable, however, 
because each corttained a number of ?en&ves” (single 
zip code areas embedded in farger ohsster areas) and 
each included one excessively iargo area contain@ ap- 
proximately one-third of the zip codes and hospitals. 
Other runs were made, some with certain of the larger 
hospitals removed from the data. While six clusters on 
the periphery of the city remained fairly stable during 
these runs, problems tv$h enclaves and un~~ep~~~ 
Iarge c&star areas in the centrat city tongued to occur- 

30th argo~thms performed s~~~tfy better wlxert 

appiied to the 90 outlying zip code areas. The mm-cut 
algorithm consumed 7.7cpusec to define six partitions 
with an associated solution value of 94%; and the greedy 
algorithm in 3.7 set located a shghtly dierent solution 
that also had a vahte of 94%. These soktions are shown 

From the applications discussed above, several COl’b 

elusions can be drawn concerning the strengths and 
limitations of the three algor&hms considered, 

First, it is clear that the imph& enumeration afgornhm 
is a~p~o~~ate only for problems of relagvegy small size, 
~n~~~o~ of ~o~~a~ts on region aeon Sk& nom- 
ber of hospitals per region, etc,, wih Iin-& the number of 
feasible combinations that must be considered and 
thereby improve the algorithm”s efficiency. But such 
constraints often are not a part of the problem 
specification for health regions, 

Second, tests indkate that the gr&dy modern is 



Greedy Max-Flow/Min-Cut 

SOlUtiOll Solution 

3se Description CPU sec. Value(%)+ CPU sec. Value(%)+ 

1 SE Mich. Health Service 21.5 64 * * 

Area, 174 zip codes, 

divided into 15 cluster 

areas 

2 Detroit & close suburbs, 4.7 44 122.0 48 

84 zip codes, divided 

into 13 cluster areas 

3 Detroit & close suburbs 4.1 56 139.6 56 

(without 5 central hos- 

pitals), 83 zip codes, 

divided into 11 cluster 

areas 

4 Same as case 3, except 4.0 59 131.2 59 

with 10 cluster areas 

5 Outlying region around 3.7 94 7.7 94 

Detroit, 90 zip codes, 

divided into 6 cluster 

areas 

6 same as case 5, except 4.2 92 10.5 92 

with 7 cluster areas 
L 
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Table 2. Computation time and solution value comparisons based on six partitionings of Southeast Michigan zip 
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tProportion of patients residing in the cluster area in which they receive 

medical care 

*Run terminated after 5 minutes, only 3 cuts completed 

capable of efficiently locating solutions to problems of 
any practical size. The greedy algorithm is conceptually 
the simplest of the three and has, in various forms, been 
employed in other efforts to define health region boun- 
daries. 

Third, the computational efficiency of the max- 
flow/min-cut algorithm is inthtenced not only by the 
number of counties (zip codes, etc.) and regions to be 
considered, but by the density of the county-to-county 
patient flow matrix. For applications involving the par- 
titioning of urban areas into smaller districts, this al- 
gorithm is likely to consume excessive amounts of com- 
puter time. However, it is very efficient in partitioning 
states into multi-county regions and in other applications 
with low density patient flow matrices. 

Fourth, solutions located by the max-flow/min-cut al- 
gorithm are superior to those of the other algorithms in 
terms of the proportion of patients utilizing health ser- 
vices in their regions of residence. Differences in solu- 
tion values may be small, however. 

Fifth, size and shape of individual regions defined by 
the algorithms are determined by documented patient 
flow patterns. In situations where urban areas are to be 
divided into smaller districts, the size and compactness 
of some of the districts defined by the algorithms might 
be considered unsatisfactory. This likely will occur if 
area residents frequently travel outside of their local 
communities when seeking health care. Although con- 
straints on district size and shape are easily incorporated 
into the implicit enumeration algorithm, the inability of 
this algorithm to deal with larger problems severely 
limits its utility in such cases. 

A further consideration, one not previously discussed 
explicitly but relevant when comparing the relative 
efficiencies of the algorithms, is that decision makers 
often do not know in advance the number of regions 
(districts) that should be defined. A decision on this 
question is usually made after examining several alter- 

native solutions, each containing a different number of 
regions. The max-flow/min-cut algorithm produces two 
regions with its first cut; three regions with its next cut, 
etc., until M regions are defined. Thus solutions with 
(M-l) regions, (M-2) regions, etc. are provided as a 
byproduct of the process of defining M regions. In Table 
1, for example, all the solutions for different partitionings 
of North Dakota (two to eight regions) were available 
from the final eight-region run. (Separate runs were made 
for each different number of regions merely to provide 
cpu time estimates for comparison with the greedy al- 
gorithm.) The greedy and implicit enumeration al- 
gorithms, by contrast, require separate computer runs for 
each number of regions considered. 

In summary, the max-flow/min-cut and greedy al- 
gorithms appear to have greater general applicability 
than the implicit enumeration algorithm. The greedy al- 
gorithm utilizes less computer time for areas charac- 
terized by relatively dense patient flow matrices. But the 
max-flowlmin-cut algorithm can usually identify a mar- 
ginally superior solution, and it can provide solutions for 
varying numbers of regions at no extra cost. 
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