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This paper provides general techniques for the characterization of optimal plans 
resulting from stochastic dynamic programming, We show that under standard 
assumptions the optimal plans in both finite and infinite horizon problems can be 
obtained by an application of the Implicit Function Theorem to first order 
conditions. Further, we show that under certain checkable conditions, optimal plans 
and value functions are p-times differentiable for any integer p > 0. Finally, we 
apply our technique to obtain a C” plan and value function in a one sector infinite 
horizon growth problem under uncertainty. Journal of Economic Literature 
Classification Numbers: 022, 111. 213. 

The analysis of many problems in economics requires the consideration of 
both time and uncertainty. One of the standard tools for solving such 
problems is stochastic dynamic programming. A frequent criticism of the 
application of this technique to economic decision problems is that although 
solutions are shown to exist they are not adequately characterized. The aim 
of this paper is to rebut this criticism for a broad class of finite and infinite 
horizon stochastic dynamic programming problems. We show that under 
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standard assumptions, optimal plans can be obtained by an application of 
the Implicit Function Theorem to a system of first order conditions. Hence, 
plans can be shown to be differentiable and comparative statics results can 
be obtained. Further we show that under certain checkable conditions, 
optimal plans and value functions are p times differentiable. The assumptions 
that we use are, for the most part, similar to those commonly used in 
economics for classical comparative static analysis, i.e., differentiability and 
concavity of the objective function and the constraints. As we demonstrate in 
the final section, our approach can be applied to the one sector infinite 
horizon growth problem under uncertainty. 

1. OPTIMAL PLANS FOR FINITE AND INFINITE HORIZON PROBLEMS 

In this section we setup the discrete time dynamic programming problem 
under uncertainty. We also state, without proof, two theorems regarding 
existence and continuity of optimal value functions and plans. Our analysis 
will build from these results. 

DEFINITION 1. A stationary Markov decision model is characterized by 
the tuple (S, (Q, #), A, U, g, b), where 

(i) S is the state space for the system, s E S. 

(ii) 52 is the random events space, o E J2. Let 29 be the sigma-algebra 
on R and let 4: ~2 x 9 + [0, 1 ] define the Markov transition probability on 
(a 9). 

(iii) A is the action space for the decision maker, a EA. 
(iv) The function U: S x A x l2 -+ R + is the immediate reward, i.e., 

U(s, a, w) is the reward to the decision maker of taking action a when the 
state is s and the random event o occurs. 

(v) The function g: S x A x f2 + S is the transition equation, i.e., 
g(s, a, w) is tomorrow’s state if the current state is s, current action is a, and 
tomorrow’s realized random event is o. 

(vi) The function b(s, a, o) > 0 is the constraint equation. 

The objective of the decision maker is to choose a sequence of actions 
which will maximize his expected discounted (discount rate p) total return 
subject to his constraints. Let X= S x Q denote the state of the system, 
where x, = (s,, w,,) is an element of the state space at date n. We will now 
make precise the notion of an optimal plan. 

DEFINITION 2. (i) A plan is a sequence a = (a,) of measurable maps 
a,:XX “‘n X X+ A with the property that b(s,, a,,(~, , x2 ,..., x,J, w”) > 0 
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for x, E X, for all n. Let JJ denote the set of all plans. (ii) A Murkov plan is 
a plan a = (a,) such that, for each n, a, (xi ,..., x,J depends only on x,. (iii) 
A stationary plan, denoted a = acoo’, is a Markov plan with the property that 
a n = a’“O’ for all n. 

DEFINITION 3. Given the plan a, an expected discounted total return for 
the N period problem (1 < N < co) is 

N 
I”(a)(x) = E c P”-‘U(s,,, a,(x, ,..., x,), wn) , where x, = x. 

n=1 I 

DEFINITION 4. The value function for the N period problem 
(l,<N<co)is 

V”(x) = pt.3 I”(a)(x). 

Thus, the value function represents the maximum feasible total return to the 
decision maker. 

DEFINITION 5. A plan a* is optimal for the N period problem if 
ZN(a *) = vN. 

Let P(X, Y) = (8 X+ Y: f is continuous, bounded and has p continuous 
derivatives}. If Y = R define Cp(X, R) = Cp(X). Where the argument is clear 
Cp(X) is written Cp. 

In order to guarantee even the existence of an optimal plan additional 
assumptions are necessary. Assumptions from the following list will also be 
used in the proofs of continuity and differentiability of optimal plans. 

ASSUMPTION 1. The spaces S, A and R are Bore1 subsets of Rh, R’ and 
R q, respectively. 

ASSUMPTION 2. (i) A is compact, S and A are convex. 

(ii) U is bounded above 

ASSUMPTION 3. (i) UECP(SxAxR)firp>O. 

(ii) U(.,.,w) is concave and nondecreasing on S x A, for all o E 8. 

(iii) U(s,.,w) is strictly concave on A, for all (s, o) & S X 8. 

ASSUMPTION 4. O<p< 1. 
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ASSUMPTION 5. (i) g E C”(S X A X Q). 

00 g= (g,4 2,..., g,) where each cordinate function gi(.,.,W) is 
concave on S x A and, for all a E A, gi( ., a, w) is nondecreasing on S, for 
all w E D. 

(iii) g( .,., w) E P(S x A), for all w E Q, for p > 0. 

ASSUMPTION 6. (i) b E Cp(S x A x Q; R”) for p > 0. 

(ii) Let F(x) = {a E A Ib(s, a, u) > O}. Then r is a continuous 
correspondence, T(x) is a convex set for all x E X, and T(s, w) c T(s’, w) for 
s’ > s and T( ., w) has a convex graph, for all o E 0. 

ASSUMPTION 7. (i) (w”) follows a stationary Markov process with tran- 
sition probability 4: Q x 9 -+ [0, 1 ] and @(w, .) is a weakly continuous 
function of 0. 

(ii) For all A E 9, #(w, A) = .J’A f(w, (3) d& and f E CP(Ll x Q) for 
P > 0. 

Given Assumptions 1, 2, 3(i) and (ii), 4, 5, 6 and 7(i) it is known that a 
continuous value function and an optimal plan exist for any N < co. To state 
these results we first define an operator T which generates a value function. 
Let C:(X) = {f E P(X): f is concave and nondecreasing on S}. Define a 
norm on C:(X) by 11 f 11 = sup 1 f (x)1 + sup IIDF(x)ll + a.. + sup ljD”f (x)11. 

With this norm C:(X) is a Banach space. Define the operator T, for 
VE C;(X). by 

TV(x) = s,.y U(s, a, w) + P f  V( g(s, a, G), 6) d$(w, &,)I 0 < b(s, a, Q) 1 . 

The following two Theorems present standard results about the operator 
T, the value function, and optimal plans. See Benveniste and Scheinkman 
[ 11, Blackwell [2] and Maitra [6]. 

THEOREM 1.1. Given assumptions 1, 2, 3(i) and (ii), 4, 5. 6 and 7(i) and 
N= co: 

(i) T: Cl(X) + C,“(X). 

(ii) T is a contraction map on C:(X) and T has a unique fixed point 
V”O which is the value function for the infinite horizon problem. 

(iii) There exists an optimal plan for the infinite horizon problem, it is 
stationary and is given by solutions to: 

;:; 
I 

Us, a, w) +Pl Vco(g( s, a, 3), cj) d4(w, (3)j b(s, a, w) > 0 
I 

. 
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(iv) If we add A3(iii), there exists a unique optimal plan a: X--f A for 
the infinite horizon problem and further a E C”(X, A). 

The following theorem provides an initial characterization of the value 
function and optimal plan for the finite horizon problem. Let 
T”f = T(Tn-’ f) for n > 1 and 7”f E 0. 

THEOREM 1.2. Given the assumptions of Theorem 1.1 and 1 < N < co : 

(i) The value function for the N period problem is given by 

V”(x)=::; U(s,a,w)+~]‘T”-‘O(g(s,a,c3),(3)d~(w,(3)~b(s,a,w)>O , 
I i 

where 0( g(s, a, 6), &) = 0. 

(ii) There exists an optimal plan a = (a,) for the N period problem, it 
is Markov and is given by solutions to 

max W,, a,, 
I 

o,)+P” 1. VN-n(g(s,,a,,(3,+,),~~+,) 

x Won9 4,+JlWn7 a,, w,> 2 0 
i 
, 

where Y”(. )=O and sn+, =g(s,,a,,&,+,)forn=l,..., N. 

(iii) If we add Assumption 3(iii) then there exists a unique optimal 
plan for the N period problem, 

a = (a, ,..., a,) and further a, E C”(X, A) for all n. 

Although the theorems presented in this section demonstrate the existence 
and continuity of value functions and optimal plans for both the finite and 
infinite horizon problems, they provide no apparent means for characterizing 
either value functions or optimal plans. We know from Theorems 1.1 (iii) and 
1.2(ii) that the optimal plans must solve a stated maximization problem, but 
this problem involves a value function about which very little is known. At 
this stage the value function has not been shown to be differentiable, so 
classical maximization techniques cannot be applied to find optimal plans. In 
the next two sections we will show, for a wide class of problems, that the 
value function and optimal plans are Cp, that optimal plans can be obtained 
by classical techniques and that these plans can be characterized by an 
application of the Implicit Function Theorem. 
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2. CHARACTERIZATION OF FINITE HORIZON OPTIMAL PLANS 

The analysis of the previous section presupposed only continuity and 
concavity properties of the various functions involved in defining a dynamic 
programming problem. In this section we explore the implications of Cp 
assumptions for p > 1. We will characterize the differentiability properties of 
the functions in the range of the operator T. These characterizations can then 
be used to derive first order necessary and sufficient conditions for optimal 
plans. Although similar first order conditions have been shown to charac- 
terize optimal plans in a number of specific problems (primarily in the 
optimal growth literature; see [3, 4, 8,9]) the results stated here are general 
and can be applied to many problems. Further, we obtain Cp results for both 
optimal plans and value functions. 

To simplify the analysis we assume that optimal actions satisfy the 
constraint b with equality so that b can be treated as an equality constraint. 
For most economic problems, including the example in Section 4, this 
involves no loss of generality. We first show that when interior solutions 
result, the value function is a C’ function on S if p > 1. For this result we 
need the following assumption. 

ASSUMPTION 8. g(s, a, 5) = $(h(s, a), (3), where h E Cp(S x A; R “) and 
g E Cp(Rn x Q; S). 

D~~~~~G:SXAXR+R~‘” by 

G(s, a, w) = 
b(s, a, w> 

h(s, a). 

Then for all (s. a, w) E S x Int A x 0, D, G(s, a, w) is surjective. 

Note that this assumption implicitly requires I> m + n and is a checkable 
condition for any specified b and g. 

Choose VE C!(X) and let Xint = (x E Int S x 8: a(x) E Int A }, where 
a: X+ A is the solution to 

mf;: u(s, a, co) + /? 1‘ v( g(s, a, ~$4 Mw 4: b(s, ~9 w> = 0 1 . 

THEOREM 2.1. Given assumptions 1 to 6, 7(i), and 8 and p > 1, D, TV 
exists and is continuous on Xint. 

This theorem follows directly from a lemma due to Benveniste and 
Scheinkman [ 11. For a similar result in the context of a one sector model see 
Harris [S]. The proof of Theorem 2.1 is given in the Appendix. 

Theorem 2.1 has the following important corollary. Let 
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Xz = (x E Int S x fin: a,(x) E Int A, where a,(x) is the nth period optimal 
plan for the N period problem } . Let ieN= (xEX7: 

(g(s,, un(xn), On+ J, G3,+ ,) E Xf,, for almost every c3,+, E Q, @(on, a), for 
all n = 1 ,..., N - 1 }. 

COROLLARY 2.1. Given the assumptions of Theorem 2.1. For any given 
N, 1 <N < 00, if x, E 2”, then a necessary condition that a,,(x) = a’, for 
any 1 < n <N, is that there exist A, E R” such that 

6) DoU(s,,~‘,w,)+pJ’D,~~-“(g(s,,a’,(3,+,),~,+,) 
Dads,, a’, G,,,) d#(wn, G,+ ,) -Q,Ws,,, a’, o,,) = 0, 

(ii) b(s,, a’, 0,) = 0. 

Proof Since x, E X”, a”(~“) E IntA for all 1 < n <N. For N < co, 
V-” is given by Theorem 1.2 and hence it follows from Theorem 2.1 that 
D, V’-” exists and is continuous. For N = 00 it follows from Theorem 2.1 
and the fact that TV” = Va‘ that D, V”s exists and is continuous. Thus both 
the maximand and the constraints for the N period problem are C’ in a. 
Conditions (i) and (ii) are the classical necessary conditions of Lagrange for 
maximizing a C’ function subject to non-degenerate C’ equality constaints. 

Q.E.D. 

This corollary is useful because it is often possible to state a priori 
conditions guaranteeing that XV is nonempty and contains most of the 
interesting points in X. The Inada conditions that are often used in optima1 
growth models yield a nontrivial IE”, for an example see Majumdar and 
Zilcha [ 8 1. 

Although Theorem 2.1 and its Corollary provide necessary conditions 
when optima1 plans are interior, these equations have not previously been 
shown to be differentiable. Hence, they cannot easily be used to characterize 
optima1 plans. In the remainder of this section we demonstrate that, for 
certain finite horizon problems, these equations are differentiable and 
optima1 plans and value functions are Cp. 

The next theorem makes use of the envelope theorem to study differen- 
tiability properties of functions in the range of T. Define a Lagrangian for 
the maximization problem, L: Rm x S x A x f2 + R, by 

L(k, s, Q, co) = U(s, a, co) + /3 ( V( g(s, a. CC), G) d&o, (3) 

+ A’ b(s, a, 0). 

For V E Cp(X),p > 0, the optimization problem clearly has a solution a(x). 
Hence, for VE C:(X), x E Xint,p >, 1 and D,b(s, a(x), o) of maximal rank 
the first order conditions D,u,.t) L(& s, a, o) = 0 have solutions a(x) and 
4x1. 
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Condition 1. Suppose that V E C:(X), x E Xint, p > 2, and along a(x) 
and n(x), D,b(s, a(x). of is of maximal rank and D:,,,, L@(x), s, a(x), o) is 
surjective. 

This type of assumption is standard in classical optimization and is 
checkable for specific stochastic dynamic programming problems. In many 
problems the surjectivity condition can be verified directly from the 
properties of U, g, b and the concavity of V, and hence it need not be 
checked recursively. The optimal growth example at the end of this paper is 
a problem satisfying this assumption. 

THEOREM 2.2. Assume Al to A7(ii) and Condition 1. Then 
T: C;(X) --f Cp(Xint). 

Proof It follows from standard classical optimization that if x’ E Xint 
then a necessary condition for a(x’) = a’ is Dca,n,L(,4’, s’, a’, w’) = 0 for 
some A’ E R”. Since U and V are continuous in a and T(x) is compact there 
exist optimal plans, hence the first order conditions have solutions a(x) = a’ 
and n(x) = A’. By Condition 1, L is C2 and D:,,,, L(1’, s’, a’, w’) is 
surjective, hence by the Implicit Function Theorem the optimal Q: X -+ A and 
d: X-+ R” are locally C-l. In particular, since the optimal a is unique and 
locally CpP’ on Xint, u E. CP-i(Xint). 

Returning to the Lagrangian, observe that, for each (s, w) E S X a 

TV(s, w) = U(s, a(s, o), w) + j3 1’ V( g(s, u(s, w), (3), c3) f(o, (3) d6 

= INS, w), s, a@, u), 0) since b(s, u(s, w), w) = 0. 

Hence, 

D, TV(s, o) = D, L@(s, w), s, a(& co), co) . D,@, w) 

+ D&W, w), s, a(~, u), w> e D, a(s, w> 

+ D, L@(s, w), s, a@, w), 0). 

Since D,L(A(s, o), s, a(s, o), w) = 0 and D,L(A(s, w) s, u(s, co), w) = 0 we 
have D, TV(s, w) = D,L(n( s cc) , ), s, u(s, co), w). Since L is Cp, D, L is Cp- ‘. 
Hence D, TV(s, o) is CPM’. A similar envelope theorem argument shows that 
D, TV(s, w) is C p i Hence we conclude that TV is Cp on Xint . - . Q.E.D. 

COROLLARY 2.2. Assume Al to A7(ii) and Condition 1 with V replaced 
by the value function VN-“. If VN-” E C!(X) then the optimal plan is 
a,, E Cp-‘(Xc, A). 

By a simple induction argument we also have: 
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COROLLARY 2.3. Assume Al to A7(ii) and p > 2. For the N period 
problem, N < co, let LNp”(A “, s,, a,, w,) = U(s,, a,, qJ +B.i V”-“(g(s,, 

e adkl ), Q,,) f(q,, G,,, ,> d4,+1 + A:,b(s,,, an, q,). for n = I,..., iv. 
Suppose that x, E iN and that for each n = l,..., N, along a,(x,) and 
,X,(x,), Dob(s,, a,,(x”), 0,) is of maximal rank and Dfa “..,“, L(I,(x,), 
s,. a,(x,), w”) is surjective. Then for all n = l,..., N: 

(ii) a” E Cp-‘(Xf; A). 

For problems with a finite horizon Theorem 2.2 and Corollaries 2.2 and 
2.3 demonstrate that the value function and optimal plans are well behaved. 
The optimal plan can now be characterized by an application of the Implicit 
Function Theorem to the system of first order conditions defining the 
optimal action. More important for many applications is the result that if 
x, Ed” then optimal plans are Cp-’ and the value function is Cp, for any 
P> 2. 

3. CHARACTERIZATION OF INFINITE HORIZON OPTIMAL PLANS 

For finite horizon problems the result of Theorem 2.2 that 
T: C:(X) -+ C’(X,,,) is sufficient to demonstrate differentiability of optimal 
plans. For infinite horizon problems this result is not sufficient; essentially, 
we must show that lim,,, T”VE C2(Xint), for any VE C:(X). A direct 
method for doing so is to show that T is a contraction map on C’(X). Yet, 
although intuitively appealing, it is difficult to establish reasonable suffkient 
conditions for this approach. Fortunately, however, there is another method 
of establishing the necessary properties of T. In this section, we use the 
uncertainty about future states given by the transition equation and the 
random events to “smooth out” possible discontinuities in the derivatives of 
V. Approaching the problem this way only requires assumptions that are 
analogous to the standard assumptions made on the stochastic processes 
used in continuous time optimization problems. 

ASSUMPTION 10. (i) R = 0, x f12 and we write g(s, a, w) = g(s, a, w  ’ ), 
b(s, a, w) = b(s, a, w2) and U(s, a, w) = U(s, a, w’) to indicate that on& co’ 
enters g and only co2 enters b and U. 

(ii) W’ and w2 are independent with densities f, E Cp(f2,) and 
f2 E CPP2>, P > 1. 

(iii) g: S x A x f2, + S is invertible on L?, with inverse 
hECP(SxAXS;R,),p>l, where for any (s,a)ESXA,h(s,a,.) is a 
one-to-one map of S into Rq. 
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The structure of the uncertainty and the transition equation in Assumption 
10 allows a wide range of problems. The crucial part of this assumption is 
that the random variable in the transition equation, w’, has a Cp density. 
Part (iii) is included only to insure that the random variable s,+ , has a Cp- ’ 
conditional density function. The global invertability of g is convenient but 
certainly not necessary for this result. 

The indirect transition law given by g and f, implies a probability on s, + , 
given s, and a,. Using Assumption 10 we can transform this indirect tran- 
sition law into a direct transition law of the form q(., s, a). If the original 
specification of the decision problem involves a transition law of this form, 
with a Cp-’ density, then Assumption 10 is unnecessary and Theorem 3.1 
applies directly. 

Let B E .5Ys (the Bore1 sets of S c Rk) and define 

q(B, s, a) is the probability that s,+ I E B given that s, = s and a, = a. 

Now L,a,m f&j’) CflG’ = 1, f,(h(s, u, ST)) j D,?h(s, u, sf / df. Define 
r(s, a, f) =f,(h(s, a, sJ)>l D,h( s, a, s?) and note that r E Cp-‘(S x A X S). 
Now for any B E .szP, , q(B 1 s, a) = (, r(s, a, f) dS: 

We now want to exploit the properties of the value function derived 
earlier to write the problem of selecting an optimal action as a classical 
maximization problem. Note that this theorem requires only x E Xint (where 
Xint is defined using I’“) and not x EJ?“. The conditions used in this 
theorem are checkable for any specific problem, for example they are clearly 
satisfied in the infinite horizon optimal growth problem presented in the next 
section. 

THEOREM 3.1. Given Assumption 1 to 6 and 10 and S, f2 campuct; 
I$ p > 2 then the Lugrungian, L : R” x S X A X Q + R, defined 
by, L(n, s, a, co) = U(s, a, w’) + p J‘ V”‘( g(s, a, (3’), c3*) (f,(G’), 

f,(~2))(d~‘, dw2) + A’b(s, a, w’) is Cp-‘an R” X S X A X 0. Suppose that 
D, b(s, u(x). co’) is of maximal rank far all x E Xi,t. Then far any x E Xi,, , 
D (a..l, L(A’, s, a’, w) = 0 is a necessary and suflcient condition far a 
maximum at (a’, n’) in the infinite horizon problem and there exist solutions 
a(x)=a’ and n(x)=n’. If Df,,,, L(& s, a, w) is surjective along a(x) and 
l(x) far all x E Xint then V” E Cp-‘(Xint) and u E CP-*(Xint). 

Proof. Define M: S x A x R + R by M(s, a, o) = U(s, a, 02) + 

p I‘ V”( g(s, a, G’), &‘)(f,(G’), f2(G2))(dci?, d&j’). 
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Using the results above it follows that M(s, a, w) = U(s, a, 0’) + 
p J I’“($, &?)(r(s, a, ~1, f,(&*))(&, d6*). Since U E Cp by assumption, 
r E Cp-’ by the preceding argument and V E Co by Theorem 1.1, we have 
M E Cp- ‘. Now since b E Cp by assumption, M E Cp- ’ and L(L, s, a, w) = 
M(s, a, w) + J’b(s, a, co) we have L E Cpp’. 

We can write the problem of finding an optimal plan for the infinite 
horizon problem as 

h&a; {A+, a, o): b(s, a, co’) = 0). 

Since U is concave on S x A, V” is concave and nondecreasing on S and g 
is concave on S x A, M is concave on S x A. For any x E Xint the constraint 
set, T(x), is convex and D,b(s, a(x), cc*) is of maximal rank so a necessary 
and sufficient condition for an interior maximum at (a’, A’) is that 
D (o,l) L(l’, s, a’, w) = 0. By Theorem 1.1 there exists an optimal action a’. 
hence the equation above has solutions a(x) = a’ and J(x) = 1’. By the 
argument of Theorem 2.2 we also know that the optimal action CI and 
multiplier 1 are C”-* on Xi,t. if Dfa,n, L(I1, s, a. w) is surjective along a(x), 
A(x), for all x E Xint . 

NOW by definition V=(s, co) = L(,i(s, w), s, a(~, co), w) since 
b(s, a(s, o), w’) = 0. Since L is CpP’ and a and L are CpP2 on Xint we have 
V” E cp-*(xi,,). Q.E.D. 

We have shown that optimal plans as well as comparative static results 
can be obtained by a direct application of the Implicit Function Theorem to 
the equation system 

D,M(s, a’, w) - A’D,b(s, a’, co’) 

b(s, a’, co*) I . 

= o 

Further, optimal actions and the value function are Cp--‘(Xi,,). The 
usefulness of this approach depends crucially on how “large” Xint is in any 
particular problem. The example in the next section shows that at least in a 
one sector optimal growth problem with uncertainty, Xint is very large 
indeed. A further example can be found in O’Hara [ 101, where this 
technique is applied to analyze decision making in the financial firm. 

4. AN EXAMPLE 

Consider a one sector growth model with stochastic production 
possibilities. The specific model that we use is adopted from Majumdar and 
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Zilcha (81 which builds on the standard optimal growth literature. In the 
optimal growth problem the objective of the decision maker is to select 
consumption and investment policies to maximize expected discounted utility 
of consumption subject to stochastic production possibilities. 

The state space for the system is represented as S = [0, co 1, where s, E S 
is the total output available to either consume or invest in period n (we 
assume s, > ). The random events space is the closed interval of real 
numbers ~2 = [a, ~1 for 0 < a < y < co. We assume that 3 is distributed 
according to a density h E P([a, y]). If in period n an investment of 
i E [0, co ] is made the output in period n + 1 is stochastic and is given by 
the (net of depreciation) production function g(i, w) mapping S X R to S 
such that: 

ASSUMPTION I. (i) For each 6, g(., 6) is Cp((O, co)) for p > 2, 
co > gi(*, 6) > 0 and 

gii(*y 6) < 0. 

(ii) g(i, 6) > 0 for all &, if i > 0, and g(0, (3) = 0 for all 6. 

(iii) g(i, a) is strictly increasing for all i. 

(iv) g,(i, 3) + 00 as i + 0, for all (3. 

g,(i, (3) + 0 as i + co, for all 05 

There exists an i > 0 such that g(i, 6) < i for all i > i, for all 6. 

Formally, the decision makers objective is to select a sequence of actions 
(a,) = {(c,, i,)} to maximize E C,“=, ,&- ’ U(c,), where 0 < /I < 1 and 

ASSUMPTION II. (i> UE CP(R +) for p > 2, U’(c) > 0, and U"(C) ( 0 
for all c. 

(ii) U’(c) -+ co as c -+ 0, 
U’(c) < 03 for all c > 0, 
U is bounded above. 

The constraint that the planner faces in any period n is s, - c, - i, > 0. In 
this framework the stochastic production function g(i, o) is the transition 
equation and the constraint equation is b(s, c, i) = s - c - i = 0. (Since 
V’(c) > 0 the constraint s - c - i > 0 can be treated as s - c - i = 0.) 

It can be shown (see (81) that under these assumptions there exist optimal 
actions c(s, o) and i(s, o) and further there exist 0 < i < co and 0 < E < co 
such that O<c(s, w) <E and 0 < i(s, w) < i. Using this result we can 
represent the action space as the compact set A = [0, C+ E] x [0, i+ E], for 
some E, co > E > 0. It is also easy to show, using Assumptions I and II, that 
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if s>o then c(s, w) > 0 and i(s, w) > 0 for all w. Hence, 
Xint c (0, i*) X (a, y), for i* = max g(i, w) over 0 < i < i, a < 0 < y. 

Now, if p > 2 and s1 ~(0, i*), the result of Theorem 3.1 clearly applies to 
this problem when A10 is met for a compact Xc [0, i*] x [a, y]. Hence, the 
value function V” is Cp-* X ( i,t) and optimal plans are characterized by the 
first order conditions. 

,y - cl - i’ = 0, 

U’(c’)-l’=O, 

/L!5[ Yy( g(i’, G), 6) e g,(i’, G)] - A’ = 0. 

Further the Jacobian of the first order conditions can easily be shown to be 
strictly positive, so c(s, w) = c’ and i(s, o) = i’ are Cp-* on Xi,t. 

The first order conditions that characterize optimal policies are well 
known for this optimal growth problem. However, the result that policies and 
the value function are Cp-*, for any p > 2, is new and may be of 
independent interest. As this example illustrates, differentiable first order 
conditions and differentiability of policies and value functions are immediate 
results of our technique. Our technique, however, has applications far beyond 
the simple one sector optimal growth problem. It can be readily applied to a 
variety of intertemporal decision problems, including, for example, 
consumption and portfolio chocie problems and multisector optimal growth 
problems. To use this technique for such problems it is necessary to insure 
that optimal actions are interior. In the multisector growth problem interior 
actions will result if we make the obvious changes in Assumptions I and II 
and add an indecomposability assumption, see Majumdar and Radner [ 7 1. 

APPENDIX 

The proof of Theorem 2.1 involves the following lemma; see Benveniste 
and Scheinkman [ 11. 

LEMMA 2.1. Let U 5 R” be an open convex set. Let h: U+ R be a 
concave function. Suppose there exists k: U + R such that: 

(i) k is concave and continuously differentiable. 
(ii) k(q) = h(u,)for some u0 E U. 

(iii) k(u) < h(u)for all u E U. 

Then there exists a neighborhood N of u0 such that h is continuously 
differentiable on N and D, h(u,) = D, k(u,). 

Proof of Theorem 2.1. We simply construct a function k satisfying 
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(i)-(iii) of Lemma 2.1 with respect to TV, for fixed o’ E 0. Choose 
(s’, co’) = X’&Xint, and let a’ = a(~‘). Consider the system of equations 

b(s, a, 0’) 
h(s, a) - h(s’, a’) 1 

= 0. 

By assumption the inverse function theorem is satisfied, so in an open 
neighborhood N containing s’ we can define a^(., w’) E C’(N;A) such that 

(i) 2(x’) = a’ 

(ii) b(s, qs, co’), co’) 1 = 0. h(s, qs, cd)) - h(s’, a’) 
Now we define k: N + R by 

k(s) = U(s, a^(~, co’), o’) + /I 1 V(g(s, a^(~, co’), c3), (3) d#(w, (3). 

Observe that a  ̂is feasible for all s E N. Hence k(s) < 7’V(s, w’). Next, 
observe that 5(x’) = a’ so that k(s’) = TV(x’). Finally observe that 
g(s, a(s, w’), (3) = g(h(s, a^(~, o’)), 6) = g(h(s’, a’), (3), so that for each 
(3 E 0, V( g(s,a^(s, w’), (3), (3) is constant on N. Hence, since U and a  ̂are C’ 
functions on N, k E C’(N). The function k satisfies the assumptions of 
Lemma 2.1 with respect to TV(., w’), and so the theorem follows. 
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