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Let J be a unital Jordan algebra over a commutative ring R containing +. 
J is called separable if its unital universal multiplication envelope U,(J) is a 
separable associative R-algebra. In this paper, we continue the study of such 
algebras from [2]. 

In Section 1 we prove that a commutative associative R-algebra is 
separable in the associative sense if and only if it is separable considered as 
a Jordan R-algebra. We prove in Section 2 that J is separable over R if and 
only if J is separable over its center Z(J) and Z(J) is separable over R. 
Section 3 contains corollaries of this theorem, including the following result: 
J is a special separable Jordan R-algebra if and only if J2: H(A, j) @ K, 
where A is a separable associative R-algebra with involution j, K is the 
Jordan S-algebra of a nondegenerate symmetric bilinear form on a finitely 
spanned projective S-module, and S is a commutative separable associative 
R-algebra. Moreover, an associative R-algebra A is separable in the 
associative sense if and only if A ’ is a separable R-algebra. 

In Section 4 we extend results of Harris [4] on centralizers of separable 
Jordan algebras over fields to algebras over commutative rings. In particular, 
if Jc B are separable Jordan R-algebras, the centralizer of J in B is a 
separable Jordan R-algebra. In Section 5 we generalize results of Harris [5 J 
and McCrimmon [ 111 on derivations of separable Jordan algebras over 
fields to algebras over commutative rings. If J is separable over R, we obtain 
necessary and sufficient conditions for all derivations of J into its bimodules 
to be inner; if f E R, we prove that every derivation of J into its bimodules is 
a generalized inner derivation. 

The results of Sections 1-3 are proved in [2] under the additional 
hypotheses that the algebras involved are finitely spanned. The results of the 
first three sections are used in Sections 4 and 5 to avoid finite spanning 
hypotheses in the theorems on centralizers and derivations. 
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PRELIMINARIES 

All commutative rings are assumed to contain $. All algebras, 
subalgebras, modules, bimodules, and homomorphisms are assumed to be 
unital. 

Throughout this paper, let R be a commutative ring, and let J be a Jordan 
R-algebra. Let U,(J) be the unital universal multiplication envelope of J over 
R and let p be the canonical map from J to U,(J) [6, p. 951. Let S,(J) be the 
unital special universal envelope of J over R and let u be the canonical map 
from J to S,(J) [6, p. 651. 

If a, b, c EJ, let [a, b, c] = (a . b) . c-a . (b . c). If the Sj are R- 
submodules of J, let [S, , S,, S,] be the R-submodule of J spanned by all 
[a,, a,, a,], a, E Si. If M is a J-bimodule, the split null extension J@ M is a 
Jordan algebra such that J is a subalgebra, M* = 0, and J. M c M via the 
bimodule action of J on M 16, p. SO]. Let 

MJ = (x E M ( [a, b, x] = 0 for all a, b E J}, 

where [a, b, x] is defined using the split null extension. 

(1) 

If B is a Jordan or associative R-algebra, let Z(B) be the center of B. If S 
is a subset of B, let (S) be the subalgebra of B generated by S. We call B 
finitely spanned if it is finitely spanned as a R-module. 

If A is an associative R-algebra and a, b E A, let a . b = +(ab + ba) and 
[a, b] = ab - ba. Let A + be the Jordan R-algebra formed from the R-module 
A with multiplication a . b. If A has an involution j, let H(A, j) be the Jordan 
subalgebra of A ’ composed of elements fixed by j. If a, b, c E A, 

[a, bl = -lb, a] and [ab, c] = [a, c]b + a[b, c]. (2) 

If A is a subalgebra of an associative algebra B, a derivation D: A + B is an 
R-module homomorphism such that D(ab) = (Da)b + a(Db) for a, b E A. If 
c E B, (2) shows that the map from A to B taking a E A to [a, c] is a 
derivation. A derivation of this form is called inner. If S and Tare subsets of 
A, let [S, T] be the subset of A composed of all [s, t], s E S, t E T. We say 
that S centralizes T if ]S, T) = 0. The centralizer of S in A is the subalgebra 
of A composed of all a E A such that [S, a] = 0. 

Let A be an associative algebra. If t is an automorphism of A, let A’ be 
the subalgebra of A composed of elements fixed by t. If G is a group of 
automorphisms of A, let A” = n A’ for r E G. Let n be the automorphism of 
A@,Atakinga@btob@a,a,bEA.Ifx=Cai@b,E(A@,A)”,then 

x=~(x+x”)=~\‘(ai@bj+bi@ai) 

= +x [ (ai + bi) @ (ai + bi) - a, @ ai - bi @ bi], 
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SO 

(A@,A)“= -&ai@aiIaiER,aiEA 1 1 
If F is an algebraically closed field, define Jordan F-algebras F[ p, q] as 

follows: F[ 1, 1 ] = F; F[2, q] = F @ V, the Jordan algebra of a nondegenerate 
symmetric bilinear form on a vector space V of dimension q > 2; and 
F[ p, q] = H(M,(C)), the Jordan algebra of symmetric p-by-p matrices over a 
q-dimensional composition algebra C (unique up to isomorphism), where 
either (p, q)= (3,8) or p> 3 and q E (1,2,4). The F[p,q] represent the 
distinct isomorphism classes of finite-dimensional simple Jordan F-algebras 
[6, p. 2041. 

Certain properties of universal envelopes of Jordan algebras, modules over 
commutative rings, and separable associative algebras over commutative 
rings are summarized in [2, pp. 113-l 151. References of the form [Ji], [Mi], 
and [Ai], i an integer, refer to these. For ease of reference, we collect below 
some of the basic results on separable Jordan algebras over commutative 
rings proved in [2]. Let N x N be the set of all ordered pairs of positive 
integers. 

Sl. .Z is called separable over R if U,(Z) is a separable associative R- 
algebra. If R is a field, a separable R-algebra J is finite-dimensional, and this 
definition of separability agrees with the classical one of remaining 
semisimple under arbitrary field extensions [2, p. 1171. J is called central 
over R if the map a --t al from R to Z(J) is bijective. 

S2. If J is finitely spanned over R, then J is separable over R if and 
only if J/mJ is either zero or separable over R/m for every maximal ideal m 
of R [2, p. 1181. 

S3. If J is separable over R, then J is separable, finitely spanned, and 
projective over Z(J) [2, pp. 118, 1221. 

S4. If J is separable over R, there is an idempotent e E U,(J) called a 
separability idempotent such that e&Z= iW’ for every J-bimodule M [2, 
p. 1161. In particular, eJ= Z(J). 

S5. Let S be a commutative associative R-algebra and let J be an S- 
algebra. If J is a separable R-algebra via R 1 c S, then J is a separable S- 
algebra [ 2, p. 1181. 

S6. Let J be separable over R. If S is a commutative associative R- 
algebra, then J OR S is either zero or separable over S and Z(J@, S) 2: 
Z(J) OR S. If Z is an ideal of R, J/ZJ is either zero or separable over R/Z and 
Z(J/ZJ) N Z(J)/ZZ(Jl. If $ is a homomorphism of J onto an R-algebra J’, 
then J’ is separable over R and Z(J’) = #Z(J) [2, pp. 117, 1181. 
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S7. If J is separable over R, then J is a direct sum of ideals J(p, 4) for 
(p, q) E N x N such that, if S is any commutative ring over which J is a 
separable algebra, if M is any maximal ideal of S, and if F is the algebraic 
closure of S/m, then 

J(IA q)lmJ(n 4) @s/m F 

is either zero or a finite direct sum of algebras isomorphic to F(p, q]. The 
ideals J(p, q) are uniquely determined, and only finitely many are nonzero 
[2, p. 1371. 

S8. Let J be separable over R. If S is a commutative associative R- 
algebra, then (J @,r S)(p, q) 2 J(p, q) OR S. If 4 is a homomorphism from J 
to another R-algebra, then (@)(p, q) = @[J(p, q)] [2, p. 1371. 

1. CENTERS OF SEPARABLE JORDAN ALGEBRAS 

We prove that a commutative associative R-algebra is separable as an 
associative R-algebra if and only if it is separable as a Jordan R-algebra. If J 
is separable over R, we show that Z(J) is separable over R and that (Z(J)‘) 
is in the center of U,(J). The rest of the paper is based on these results. 

PROPOSITION 1.1. If J is separable over R, then Z(J) is separable as an 
associative R-algebra. 

Proof: We write U,(J) as U. U is a separable associative R-algebra, so U 
is finitely spanned over Z(U) [A7]. Then J is finitely spanned over Z(U), 
since J = U,(J)1 for 1 E J. Z(J) = eJ, where e E U is a separability idem- 
potent for J [S4j. Since the action of e on J commutes with the action of 
Z(U), Z(J) is a direct summand of J over Z(U). Hence Z(J) is finitely 
spanned over Z(U). 

J is naturally a Z(U)-algebra, since the action of Z(U) on J commutes 
with the action of Jp c U. Thus J is separable over Z(U) [S5]. Let m be a 
maximal ideal of Z(U). J/r& is either zero or finite-dimensional and 
separable in the classical sense over Z(U)/m [Sl, S2]. Hence Z(J/ml) is 
either zero or separable associative over Z(u)/m [6, p. 2391. Since J is 
separable over Z(U), Z(J/mJ) is isomorphic to Z(J)/mZ(J) [S6]. Hence 
Z(J)/mZ(J) is either zero or separable associative over Z(U)/m. Since this 
holds for every maximal ideal m of Z(U) and the preceding paragraph shows 
that Z(J) is finitely spanned over Z(U), it follows that Z(J) is separable 
associative over Z(U) [A4]. Since U is separable associative over R, so is 
Z(U) [Al]. H ence Z(J) is separable associative over R, since Z(J) is 
separable over Z(U) and Z(U) is separable over R [3, p. 461. 1 
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The main theorem of this section states that a commutative separable 
associative R-algebra S is separable as a Jordan R-algebra. The key fact 
required, that U,(S) is commutative, is proved in Lemmas 1.2-1.7. 

If J is any Jordan R-algebra and a, b, c E J, then [6, pp. 95, 961 shows 
that 

U,(J> = (JP >, 
[a, b, cl0 = [[CO, up], bp] = [bP, [up, co]], 

aPbPcP + cPbPaP + ((a . c) . b)P 

(4) 

(9 

= aP(b . c)O + b”(a . c)O + c”(a . b)O 

= (b - c)~& t (a - c)PbP t (a - b)Oc”. (6) 

Set u(a) = 2(P)* - (u*)~, ~(a, b) = u(a t b) - u(a) - u(b), and v(a) = 2aP. 
Any identity satisfied by the U- and V-operators in every Jordan algebra also 
holds for the elements u(a), ~(a, b), and u(a) [6, p. 961. 

LEMMA 1.2. If S is a commutative associative R-algebra, then 

[SPY SP] = Z[ U,(S)]. (7) 

If a, b E S and N is the ideal of U,(S) generated by [(u’)~, (bj)“] for 
i,jE {I, 2}, then 

u(a) u(b) = u(ab) (mod N). (8) 

Proof: Equation (5) implies that [ [Sp, Sp], Sp] = 0, so (7) follows from 
(4). QJ3 [7, p. 1.101 shows that u(a) u(b) u(a) = u(aba) = u(a*b). Hence 

u(a)’ u(b) = u(a*b) t ~(a)[@), u(b)]. (9) 

Let S[n] be the polynomial ring in an indeterminate ), over S. Since S[n] is 
commutative and associative, (9) holds with S replaced by S[n], R replaced 
by R [A], and a replaced by 11 + a. We can collect the terms of degree two in 
1 and obtain an identity of U,(S), since 

4&W) 1: U.&s OR RPI) ‘v U,(S) OR RPl 
[Jl ]. This yields 

2u(a) u(b) t v(a)’ u(b) = 4u(ab) + u(b, a*b) (mod N), (10) 

by (2). QJ19 [7, p. 1.191 shows that 

v(a) . u(b) = u(b, a . b) = u(b, ab). (11) 
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Hence 

u(a) * [v(u) . u(b)] = v(u) . u(b, ab) (by (11)) 
= 2u(ab) + u(b, a2b) (by (11) linearized). 

It follows that v(u)’ u(b) = 2u(ub) + u(b, u2b) (mod N). Together with (lo), 
this yields (8). I 

LEMMA 1.3. (i). If G is a finite group of uutomorphisms of a 
commutative separable associative R-algebra S, then SC is a separable 
associative R-algebra. 

(ii). If S is a commutative separable associative R-algebra, then so is 
(S oi? SY. 

Proof: (i). S is finitely spanned and projective over SF [ 2, p. 1281. 
Hence S OR S is projective over SC OR SC. S is projective over S OR S, 
since S is a separable associative R-algebra [Al 1. Then S is projective over 
SC OR SC, by the transitivity of projectivity [3, p. 51. Since S is finitely 
spanned and projective over SC and SC c S, it follows that SC is a direct 
summand of S over SC [ 12, p. 21. Then SC is also a direct summand of S 
over SC OR SC. Since S is projective over SC OR S”, so is S”. Thus S” is 
separable associative over R [Al 1. 

(ii). Since S is separable associative over R, so is S OR S [ 3, p. 43 1. 
Then (ii) follows (i). I 

If A is an associative algebra, let I = I(A) be the ideal of A generated by 
[A, A]. Let a’ denote the image in A/I of a EA. Let b” denote the image in 
I/Z2 of b E I. Z/I2 is a two-sided associative A/I-module such that 

a’b” = (ab)” and b”u’ = (ba)” (12) 

for a E A. b E I. 

LEMMA 1.4. If S is a commutative separable associative R-algebra and 
I = I(U,(S)), then U,(S)/I is a separable associative R-algebra. There is an 
R-algebra isomorphism of (S OR S)= onto U,(S)/Z taking a @ a to u(u)‘, 
a E S. 

Proof: We write U,(S) as U. There is an R-module homomorphism from 
S OR S to U/Z taking a @ b to $(a, b)‘, a, b E S. This restricts to an R- 
module homomorphism 4 from (S OR S)” to U/Z such that #(a 0 a) = u(a)‘. 
Equations (3) and (8) imply that 4 is an R-algebra homomorphism. Since the 
identity map is an associative specialization of S in itself, there is an R- 
algebra homomorphism r from U to (S @ R S)” taking ap to 
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;(a 0 1 + 10 a) [6, p. 991. Since (S OR S)X is commutative, t induces an 
R-algebra homomorphism w from U/I to (S OR S)* taking c?’ to 
{(a @ 1 + 1 @ a). Then 

ly[u(a)‘] = lf/[2(uP’)2 - (uy] 

= gu @ 1 + 10 a)2 - f(u2 @ 1 + 1 @ a’) 

=u@u, 

so 

ly#(a @ a) = a @ u and $w[4a)‘l = u(a)‘. (13) 

Equation (4) and the equation a o=+u(u, l)=f[u(u+ l)-u(a)-u(l)] 
imply that 

u= ({u(u) 1 a E S}). (14) 

Since Q and w are algebra homomorphisms, Eqs. (3) (13), and (14) imply 
that 4 and w are inverse isomorphisms. Then U/I is a separable associative 
R-algebra, since (S OR S)n is [Lemma 1.3(ii)]. 1 

LEMMA 1.5. If S is a commutative separable associative R-algebra and 
I = I(U,(S)), then I = I’ for every positive integer t. 

Proof: We write U,(S) as U. If a, b E S and x, y E U, (7) implies that 

[x, [a’, bP] y] = (a“, b”][x, y] E I’. 

Equations (2), (4), and (7) imply that I is spanned by elements of the form 
[a“, bP I y, so 

[U, I] czz. (15) 

Fix z E U. Equation (15) implies that there is a well-defined map 4 from 
U/I to I/I2 such that 4(x’) = [z, xl” for x E U. If x, y E U, then 

#WY’) = 9((XY)‘) = [z, XYI” 

= [z, x] “,’ + x’ [z, y] ” (by (2) and WN 

= #(X’)Y’ + X’#(Y’), 

so 4 is a derivation of U/I into I/Z2. U/I is a separable associative R-algebra 
[Lemma 1.41, so every derivation from U/I to a two-sided associative 
module is inner [ 12, p. 431. The image of any inner derivation of U/I into 
1/1’ is contained in [U’, I”] = [U, I] ” = 0, by (12) and (15). Hence 4 = 0, so 
[U, U] c I*. Then I c I*, whence the lemma follows. I 
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LEMMA 1.6. If S is a commutative associative R-algebra, a, 6, c, d E S, 
and p: S + U,(S), then 

[aP, b”][a”, ?‘][a”, d”] =O. 

Proof. Identities QJ3 and QJ 10 [ 7, pp. 1.10, 1.18 ] imply that 

u(b)[ u(a)12 u(b) = u(b) u(a’) u(b) = u(a2b2). 

Then 

u(b) u(a)’ u(b) = u(a) u(b)2 u(a), 

since u(a2b2) is symmetric in a and b. Hence 

I@> u(b), 14a), u(b)] I= u(a) u(b) u(a) 0) - u(a) uPI2 u(a) 
- u(a) u(b) u(a) u(b) + u(b) u(a)’ u(b) 

= 0. (16) 

Replace a by Al + a and b by ql + b for indeterminates A and q, and collect 
the terms in (16) of degree one in ,I and two in q. This yields 

0 = I@), I@>, u(b)1 1 + l4a>, [G>, u(b)1 1 
+ Iv@> v(b), [u(a), v(b)11 + [u(a) u(b), IO>, u(b)] 1. (17) 

Since u(a) and v(a) commute (6, p. 961, one checks that 

[u(a), [@I, u(b)1 1= lu(a), [G>, u(b)1 1. (18) 

Since (7) shows that [v(a), u(b)\ E Z[ U,(S)], 

[u(a) v(b), Iv(a), v(b)1 I= 0. (19) 

Substituting (18) and (19) in (17) shows that 

0 = 2lu@), IW>, u(b)1 I + Ida) u(b), lu(ah @)I I 

= 2[u(a), [2aP, 2(bP)’ - (b’)“]] + [4aPbP, [2(ap)* - (a2Y, 26’1 I 

= 8[u(a), lap, W2 I] - 4[u(a>, [a’, (b21pl I 
+ 16[aPb“, [(aP)*, b”]] - 8[aPbP, l(a2)P, b”]l 
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= 8(u(a), [up, (bp)‘]] + 16[aPbP, [(up)‘, b”]] (by (7)) 

= 8 [u(a), bP [up, b”] + [up, bP]bP] 
+ 16[uPbP, @‘[up, bP] + [up, bP]uP] (by (2)) 

= 16[uP, bP] [u(u), bP ] -t 32[a”, bP] [uPbP, up] (by (7)) 

= 16[uP, bp] [2(up)* - (u’)~, bP] + 32[uP, bp][dbp, up] 

= 64[uP, bp]‘up - 16[uP, b”][(u’)“, b”] 

+ 32[u”, bP] [bp, up]up (by (2) and (7)) 

= 32[uP, bp]‘up - 16[uP, b”][(u’)“, bP]. 

If d E S, applying the map x -+ [x, dP] from U,(S) to itself shows that 

0 = 32[uP, bp12[up, dP], 

by (7). Linearizing b -+ b, c establishes the lemma, by (7) and the fact that 
;ER. I 

If A is an R-algebra, the R-algebra A-opposite A0 = {a0 ] a E A} has 
operations r(u’) = (ru)“, u” + b” = (a + b)“, and u”bo = (ba)“, for r E R, 
a, b EA. If B is an R-algebra and f: A --t B, definef”: A0 --) B” by f”(u”) = 
(fa>“, uEA. 

LEMMA 1.7. If S is u commutative separable associative R-algebra, then 
U,(S) is commutative. 

Proox First assume that R is a field. If T is the algebraic closure of R, 
S OR T is a direct sum of ideals isomorphic to T as T-algebras [A3]. Then 
U,(S OR 7) is a direct sum of ideals isomorphic to T [6, p. 1051. Since 
U,(S OR 2’) is isomorphic to U,(S) OR T [Jl], U,(S) is commutative when 
R is a field. 

Now let R be arbitrary. (S OR S)” is a separable associative R-algebra 
[Lemma 1.3(ii)]. Let 

e E (S OR S)” OR (S OR S>=’ 

be a separability idempotent for (S OR S)” [A2]. By (3), we can write 

e = 1 ai(si @ si) @ (ti @ ti)o, si, ti E S, cq E R. 

Since e is a separability idempotent for (S OR S)x, 

1 @ 1 = C OTi(Si @ Sj)(ti @ ti) = C ajSi fj @ si ti (20) 
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in (S OR S)x, and, for all a E S, 

= “ CXi(USi @ Us,) @ (ti @ ti)” - ai(Si @ Si) 3 (tiU 0 tiU) (21) 

in (S @ S)z @ (S @ S)no [AZ]. 
Let V= {si, ti, s:, tf}. Let K be the ideal of U,(S) generated by all 

[up, b”], a E I’, b E S. We write U,(S)/K as A. If a, b E S, let zi(u) and 
ti(u, b) denote the images of u(u) and ~(a, b) in A. The R-module 
homomorphism from S OR S to A taking a @ b to $(u, b) restricts to a 
homomorphism 4 from (S OR S)” to A taking a @ a to zi(u). 

Set f = JJ aib(si) @ rZ(tJ’ E A OR A’. We claim that f is a separability 
idempotent for A as an associative R-algebra. Let V: A @A”-A be the R- 
module homomorphism taking x @ y” to xy, x, y E A. Then 

vf = c ai zqs,) u(ti) 

= x ai U(si ti) (by (8)) 

zz 4 xaisiti@siti 
c 

=#(I 0 1) (by(20)) 

= 1. 

If a E S, the following equations hold in A OR A’: 

[E(u) @ lo - 1 @ zi(a)“]f 

= z] ai[li(U) U(Si)] @ ii( - aiti(Si) @I (Ii IT(U)]” 

(22) 

= s aiu(aSi) @ Zl(ti)o - aiti(S,) @ ti(tiU) (by (8)) 

= ((a @ p) 
[ 

s ai(USi @ USi) @ (ti 0 ti) 

- ai(si @ Si) 0 (ti” 0 f$Z) 
1 

= (4 0 P)(O) (by (21)) 

= 0. 

If we write C(uj) as cj for uj E S, it follows by induction on it that 

[Cc, *a* C”)O l”]f= [l@ (c, a*. C”>“]fi 

(23) 
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since 

ICC, .a- c,)@ l”]f= [(c, *** c,-I)@ l”][c,@ lO]j- 

= [(c, *a. q-1)0 1”1[1 OC,“lf (by (23)) 

= [(Cl ‘.. c,-,> 0 c,“lf 
= [l Oc,“][(c, “‘C,~,)@ l”]f 

= [ 1 @ cno][ 1 @ (c, ... c,-,)o]f (by induction) 

= [I @(c, ... cJ]$ 

Hence (x @ 1”)f = (1 @ x”)f for all x E A, by (14). Together with (22), this 
proves that f is a separability idempotent for A, so A is a separable 
associative R-algebra [A2]. 

We write Z(A) as Z. Let m be a maximal ideal of Z. S OR Z/m is a 
commutative separable associative Z/m-algebra [A5]. Then 
U,,,(S OR Z/m) is commutative, by the first paragraph of the proof. [Jl] 
shows that 

U,(S) OR Z/m has A mz Z/m as a homomorphic image, since A is naturally 
a Z-algebra. Because A oz Z/m =A/&, it follows that A/m4 is 
commutative. Since the preceding paragraph shows that A is separable over 
R, the center of A/m.4 is the image of Z [A5]. Hence A = Z + mA for every 
maximal ideal m of Z. A is finitely spanned over Z, since A is separable over 
R [Al, A7]. Then A = Z, by Nakayama’s Lemma [M6]. Hence A is com- 
mutative. 

Define Z = Z( U,(S)) as before Lemma 1.4. Since A is commutative, it 
follows that Z = K. If V has n elements, (7) implies that K’“” is contained 
in the ideal generated by 

{ [aP, b,“] [UP, b~][aP, by] 1 U E V, bi E S}. 

Then K2”+’ - -0, by Lemma 1.6. By Lemma 1.5, Z=Z”‘+’ = K*“+’ = 0, so 
U,(S) is commutative. I 

THEOREM 1.8. Let S be a commutative associative R-algebra. Then S is 
separable as a Jordan R-algebra if and only if S is separable as an 
associative R-algebra. Zf so, U,(S) is commutative and there is an R-algebra 
isomorphism of (S OR S)” onto U,(S) taking a @ a to u(a), a E S. 

ProoJ: If S is separable as a Jordan R-algebra, Proposition 1.1 shows 
that S is separable as an associative R-algebra. If S is separable as an 
associative R-algebra, then U,(S) is commutative [Lemma 1.71. It follows 
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that U,(S) is a separable associative R-algebra isomorphic to (S OR S)Z 
[Lemma 1.41, so S is separable as a Jordan R-algebra. 1 

The next theorem is stated in several forms to facilitate later use. If S is a 
Jordan subalgebra of J, we define Js as in (l), considering J as an S- 
bimodule. 

THEOREM 1.9. (i). Let S be a commutative separable associative R- 
algebra. Considering S as a Jordan algebra, assume that S is an R- 
subalgebra of J. If p: J-1 U,(J), then (S’) is a separable associative R- 
algebra centralizing (J’)O. 

(ii). If Z(J) is a separable associative R-algebra, then (Z(J)p) is a 
separable associative R-subalgebra of the center of U,(J). 

(iii). If J is a separable R-algebra, then (Z(J)p) is a separable 
associative R-subalgebra of the center of U,(J). 

Proof. (i). By Theorem 1.8, U,(S) is a commutative separable 
associative R-algebra. The inclusion S c J induces an R-algebra 
homomorphism from U,(S) to U,(J) having image (S”) 1531. Thus (S”) is a 
commutative separable associative R-algebra [A5]. We must show that 
,KS”), (JsY’l = 0. 

Let E be the centralizer of Sp in U,(J). Equations (1) and (5) imply that 

0 = [S, S, Jslp = [SO, [P, (J”)“]] 

so [P, (J’)O] c E. (P) is a subalgebra of E, since (Sp) is commutative. It 
follows that [(S’), (Js)p] c E, by (2). Thus, if a E Js, the map z + [z, a’] is 
a derivation of (S”) into E. Since (SO) is a separable associative R- 
subalgebra of E, every derivation of (S’) into E is inner [ 12, p. 431. Then 
every derivation of (SO) into E is zero, since (S“) is in the center of E. 
Hence [(SO), (Js)p] = 0. Part (ii) follows from (i) and (4). Part (iii) follows 
from (ii) and Proposition 1.1. 1 

2. SEPARABILITY AND CENTRAL SEPARABILITY 

We prove that J is separable over R if and only if J is separable over Z(J) 
and Z(J) is separable over R. In proving the “if’ implication, we use 
Theorem 1.9(ii) to consider U,(J) as an algebra over (Z(J)O). This lets us 
reduce to the case where R is a field, once we prove in Proposition 2.2 that 
U,(J) is finitely spanned over (Z(J)O). 

LEMMA 2.1. If Z(J) is a separable associative R-algebra, x E J, and 
p: J-r U,(J), then (Z(J)O)(Z(J)x)’ is finitely spanned as a module over 

(Z(JY 1. 
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Proof: We write Z(J) as Z and (Z, x) as T. T is a commutative 
associative R-algebra, since Jordan algebras are power-associative [6, p. 361. 
If a, b, c E Z, linearizing b -+ b, cx in (8) yields 

u(u) u(b, cx) = u(ab, acx) (24) 

in U,(T), since Theorem 1.9(i) shows that [Z”, TO] = 0 in U,(7). Then (24) 
holds in U,(J), since the inclusion T c J induces a homomorphism from 
U&‘-l to U,(J) [J31. 

By Theorem 1.8, there is an R-algebra isomorphism 4 of (Z OR Z)” onto 
U,(Z) such that #(a @ a) = u(a), u E Z. Let p be the canonical R-algebra 
homomorphism from U,(Z) to U,(J) [J3]. There is an R-module 
homomorphism w from ZaR Z to U,(J) such that ~(b @ c) = u(b, cx), 
b,c E Z. Then (24) shows that 

p#(u 0 a) v(b 0 c) = v(ab 0 ac), a, 6, c E Z. 

Together with (3), this shows that 

(P@)(Vy) = V(WY)Y WE (Z@RZ)r, yEZ@,Z. (25) 

w(ZORZ) is contained in (Z”)(ZX)~, since [Z”, P] = 0 
[Theorem l.S(ii)]. Since p$ maps (Z OR Z)” onto (Z”) and w maps 1 @ Z 
onto (Zx)“, (25) implies that 

ly(Z OR Z) = (Z”)(Zx)P. (26) 

Since Z is a commutative separable associative R-algebra, so is Z OR Z [3, 
p. 431. It follows that Z @ R Z is finitely spanned over (Z OR Z)” [2, p. 1281. 
Then (25) and (26) imply that (Z”)(Zx)” is finitely spanned over (Z”). I 

PROPOSITION 2.2. If J is separable over Z(J) and Z(J) is a separable 
associative R-algebra, then U,(J) is finitely spanned over (Z(J)p). 

Proof: We write Z(J) as Z. Since Z is a separable associative R-algebra, 

[(Z”), U,(J)1 = 0 (27) 

[Theorem l.S(ii)]. Since J is separable over Z, there are finitely many xi E J 
such that J= C Zx, [S3]. Each (Z”)(Zx,)” is finitely spanned over (Z”) 
[Lemma 2.11. Hence (Zp)Jp is finitely spanned over (Z”). Consequently, 
there are finitely many yi E J such that 

(Zp)Jp = C (Z”) y;. (28) 
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We refer to an element of U,(J) of the form 

v = wyf, yy2 * *. yFd, w E (2”) (29) 

as a monomial of degree d. If 1 < j < d - 2, let vj be the monomial obtained 
from v by interchanging yij and yijt2. Taking u = yi,, b = yi,+ ,, and c = yji+2 
in (6) and using (27) and (28) shows that 

v = -vi + (monomials of degree < d). (30) 

If ij > ijt2, (30) shows that v equals a sum of monomials of lower degree 
plus a monomial of the same degree with ij < ij+* and the other i, 
unchanged. If ij = ij+ 2, then u = vj, so (30) implies that v equals a sum of 
monomials of lower degree. Hence induction on the degree shows that every 
monomial equals a sum of monomials of form (29) satisfying 

i, < i, < ... and i, < i, < ... . (31) 

Equations (4), (27), and (28) imply that U,(J) is spanned over R by 
monomials. Hence U,(J) is spanned over R by monomials of form (29) 
satisfying (31). Thus U,(J) is finitely spanned over (2”). I 

Lemmas 2.3 and 2.4 show that, if J is separable over Z(J), Z(J) is 
separable over R, and R is a field, then J is separable over R. 

LEMMA 2.3. Let S and T be commutative associative R-algebras. Let J 
be a separable S-algebra such that J is an R-algebra via R 1 c S. Then 
JoR T is either zero or separable over S OR T. 

ProoJ: Assume that J& T # 0. One checks that 

u sari AJ OR T) = ho, AJ 0s (S OR T)> 
= U,(J) 0s (S OR T> (by IJll) 
‘v Us(J) OR T. (32) 

Since J is separable over S, U,(J) is separable associative over S. Hence 
Us(J) OR T is separable associative over S OR T [3, p. 431. Then (32) shows 
that uso, AJ OR T) is separable associative over S OR T, so JOR T is 
separable over S OR T. 1 

LEMMA 2.4. Let S be a commutative separable associative algebra over 
a j?eld R. Let J be a separable S-algebra such that J is an R-algebra via 
R 1 c S. Then J is separable over R. 

Proof: Let F be the algebraic closure of R. Since S is separable 
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associative over R, S OR F is the direct sum of a finite number of ideals Fi 
isomorphic to F as F-algebras (A3]. Since J is separable over S, JO, F is 
separable over S OR F [Lemma 2.3). For any integer j, let Ij c S OR F be 
the sum of the Fi for i # j. Since JOR F is separable over S OR F, 
(J OR F)/ljfJ OR F) is separable over (S OR F)/Ij [.%I. Equivalently, 
Fj(J@, F) is separable over Fj 2: F. Then F,(J@, F) is finite-dimensional 
and semisimple over F [S I], and hence so is J OR F = @ Fj(J OR F). Thus J 
is separable over R [Sl 1. 1 

THEOREM 2.5. The following conditions are equivalent: 

(i). J is separable over R. 

(ii). J is separable over Z(J) and Z(J) is separable (as a Jordan or 
associative algebra) over R. 

Prooj The two senses in which Z(J) may be separable over R are 
equivalent, by Theorem 1.8. [S3] and Proposition 1.1 show that (i) + (ii). 
Conversely, let J satisfy (ii). Set T = (Z(J)“) for p: J+ U,(J). 
Theorem 1.9(ii) shows that T is commutative. Let m be a maximal ideal of 
T. JaR T/m is zero or separable over Z(J) OR T/m [Lemma 2.31, and 
Z(J) OR T/m is zero or separable over T/m [A5]. Then JaR T/m is zero or 
separable over T/m [Lemma 2.41, so U,,,(J@, T/m) is zero or separable 
associative over T/m. Since 

[J 11, the latter is zero or separable associative over T/m. Because T is in the 
center of U,(J) [Theorem l.S(ii)], U,(J) is naturally a T-algebra and there is 
a homomorphism of U,(J) OR T/m onto 

U,(J) Or Tim = WJWJ,(J>. 

Thus U,(J)/mU,(J) is zero or separable associative over T/m [A5]. Since 
this holds for every maximal ideal m of T and since U,(J) is finitely spanned 
over T [Proposition 2.21, LfK(.r)‘ is separable associative over T [A4]. 
Together with the fact that T is separable associative over R [Theorem 
l.S(ii)], this implies that U,(J) is separable associative over R [3, p. 461, so 
(ii) ~j (i). 1 

3. CHARACTERIZATIONS OF SEPARABILITY 

This section contains a number of consequences of Theorem 2.5, including 
the following results. A finite direct sum of separable Jordan R-algebras is 
separable over R. If J is separable over R, then S,(.r) = Szo,(J) is a 
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separable associative R-algebra. If A is an associative R-algebra, then A is 
separable as an associative R-algebra if and only if A ’ is a separable Jordan 
R-algebra. J is special and separable over R if and only if J ru H(A, j) @ K, 
where A is a separable associative R-algebra with involution j, K is the 
Jordan S-algebra of a nondegenerate symmetric bilinear form on a finitely 
spanned projective S-module, and S is a commutative separable associative 
R-algebra. 

THEOREM 3.1. Let S be a commutative separable associative R-aigebra, 
and let J be a separable S-algebra such that J is an R-algebra via R 1 c S. 
Then J is separable over R. 

Prooj Since J is separable over S, Z(J) is separable associative over S 
[Proposition 1. I]. Since S is separable over R, the transitivity of separability 
for associative algebras implies that Z(J) is separable over R [3, p. 461. 
Since J is separable over S, J is separable over Z(J) [S3]. Thus Theorem 2.5 
shows that J is separable over R. 4 

THEOREM 3.2. Let J = 0 Ji be a finite direct sum of Jordan R-algebras. 
Then J is separable over R if and only if each Ji is separable over R. 

Proof: Each Ji is a homomorphic image of J. Thus, if J is separable over 
R, so is each Ji [S6]. Conversely, assume that each Ji is separable over R. 
We write Z(Ji) as Zi and Z(J) as Z. Each Jj is separable over Zi [S3], so 
Uz,(Ji) is separable associative over Zi. Then @ Uzi(Ji) is separable 
associative over @ Zi [3, p. 471. Z = @ Zi, so U,(J) N @ Uz,(Ji) is 
separable associative over Z. Thus J is separable over Z. Each Zi is 
separable over R [Proposition 1.11, and hence so is Z = @ Zi [3, p. 771. 
Thus J is separable over R [Theorem 2.51. 1 

THEOREM 3.3. Zf J is separable over R, then S,(J) = S,(,,(J) is 
separable associative over R. 

ProojI J@ A is a separable Jordan R-algebra [Theorem 3.21. Since the 
center of J@ R is Z(J) @ R, Theorem l.g(iii) shows that 

((Z(J) 0 RIP) = Z[~,(JO RI1 (33) 

for p: J@ R + U,(J@ R). Ref. 16, p. 1051 shows that 

u,(JO RI = u,(J) 0 [S,(J) OR S,(R)1 0 U,(R), 
where the projection map from U,(J@ R) to S,(J) OR S,(R) takes (a @ O)O 
to fan @ 1 for 0: J -+ S,(J) and a E J. Since 

s,(J) OR S,(R) = S,(J) OR R ‘v S,(J), 
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there is an R-algebra homomorphism of U,(J@ R) onto S,(J) taking 
(a @ O)O to &P, a E J. Then (33) implies that 

(Z(J)“) c Z[SR(J>l. (34) 

By definition of S,(J), (a . b)” = f(aObu + b”aO) for a, b E J [6, p. 651. Then 
(34) implies that (a . b)” = a”bu = b”ab for a E Z(J) and b E J. Hence 
letting a E Z(J) act on S,(J) as multiplication by a0 makes S,(J) a Z(J)- 
algebra and u an associative specialization of J over Z(J). Thus there is an 
R-algebra homomorphism from S,(,, (J) to S,(J) which is the inverse of the 
canonical one form S,(J) to S,(,,(J) [6, pp. 65, 661. Hence S,(J) is 
isomorphic to SZo,(J). S ince we have constructed an algebra homomorphism 
of U,(J @ R) onto S,(J) and U,(J @ R) is separable associative over R, so 
is S,(J) [A5]. 1 

We recall definition [S7] of the components J(p, q) of a separable algebra 
J. 

COROLLARY 3.4. Let J be separable over R. Then J(3,8) is the kernel of 
a: J+ S,(J). In particular, J is special if and only if J= @ J(p, q) for 
(P, q) f (398). 

Proof: Theorem 3.3 implies that the kernel of o, : J+ S,(J) equals the 
kernel of u2 : J-+ S,(,, (J). Since J is finitely spanned and separable over Z(J) 
[S3], then kernel of o2 is J(3,8) [2, p. 1381. The corollary follows, since the 
components J(p, q) are the same whether J is considered over R or Z(J). fl 

COROLLARY 3.5. Let A be an associative R-algebra. Then A is separable 
associative over R if and only if A ’ is separable over R. In this case, Z(A) = 
Z(A ’ ). 

Proof: First assume that A is separable associative over R. A is separable 
associative over Z(A), and Z(A) is separable associative over R [Al 1. Since 
A is finitely spanned over Z(A) [A7], At is separable over Z(A) = Z(A+) 
[2, p. 1191. Thus A + is separable over R [Theorem 2.51. 

Next assume that A ’ is finitely spanned and separable over R. Let m be a 
maximal ideal of R, and let F be the algebraic closure of R/m. Suppose that 
A/mA is neither zero nor separable associative over R/m. Since A/mA is 
finite-dimensional over R/m, A/mA OR,,,, F contains a nonzero nilpotent 
ideal [A3]. The image of this ideal in 

(AId Op,,,,, F) + = (A + Id + 1 OR,,,, F 

is nilpotent, contradicting the assumption that A ’ is separable over R 
(S 1, S2 ]. Thus A/mA is either zero or separable associative over R/m for 
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every maximal ideal m of R. Then A is separable associative over R, since A 
is finitely spanned over R [A4]. 

Finally, let A+ be separable over R. Since the identity map is an 
associative specialization of A + in A, there is an R-algebra homomorphism 
of S,(A ‘) onto A taking IY’ to a, a E A [6, p. 65 1. [Z(A ‘)l” is in the center 
of S,(A’) [Theorem 3.31, so Z(A+) is in the center of A. Then Z(A) = 
Z(A +), and A is naturally a Z(A ’ )-algebra. Since A’ is finitely spanned and 
separable over Z(A+) [S3], the preceding paragraph shows that A is 
separable associative over Z(A ‘). Since Z(A ’ ) is separable over R 
[Proposition 1.11, it follows that A is separable associative over R [3, 
p. 461. I 

Example 1.10(2) of [2] should have contained the additional hypothesis 
“A is finitely spanned over R.” 

PROPOSITION 3.6. If A is a separable associative R-algebra with 
involution j, then H(A, j) is separable over R. Moreover, A is Jinitely 
spanned over Z(H(A, j)] = Z(A) n H(A, j). 

Proof: We write Z(A) n H(A, j) as Zj. j is an involution of A as a Zj- 
algebra. A is linitely spanned and separable associative over Z’, by [2, 
p. 128; 3, p. 461. It follows that H(A, j) is separable over Zj and that Zj = 
Z[H(A, j)] [2, p. 1191. Since Z(A) is commutative separable associative over 
R [Al], so is Z’ [Lemma 1.3(i)]. Hence Theorem 2.5 shows that H(A, j) is 
separable over R. 1 

If (A, j) is a separable associative R-algebra with involution, then 
(-4 .d = 0 (A(P, q), j), where the ideals A(p, q) correspond to the 
isomorphism classes of finite-dimensional simple associative algebras with 
involution over an algebraically closed field [2, p. 1291. The following result 
is proved in [2, p. 1381 under the additional hypothesis that the algebras 
involved are finitely spanned over R. Let II be the main involution of S,(J), 
so z fixes a0 for all a E J [6, p. 651. 

THEOREM 3.7. There is a category isomorphism between the category of 
separable Jordan R-algebras J such that J = @ J(p, q) (p > 3 and q < 4) 
and the category of separable associative R-algebras with involution (A, j) 
such that (A, j) = @ (A(p, q), j) (p > 3). This isomorphism takes J to 
(S,(J), rr) and (A, j) to H(A, j). rf J and (A, j) correspond, then J(p, q) and 
(A(p, q), j) also correspond for all (p, q). 

Proof. Let J be a separable R-algebra such that J = J(p, q), p > 3, q < 4. 
We write Z(J) as Z. Since J is finitely spanned and separable over Z [S3), 
[2, p, 1381 shows that S,(J) is separable associative over Z, 

P,(J), 4 = (~,(J)(P, q), n), 
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and u induces an isomorphism of J onto H(S,(J), 7~). S,(J) N S,(J) is 
separable associative over R [Theorem 3.31, so 

and cr induces an isomorphism of J onto H(S,(J), z). 
Conversely, let (A,j) be a separable associative R-algebra with involution 

such that (A, j) = (A(p, q), j), p > 3. If we write H(A, j) as J, then J is 
separable over R, Z(J) c Z(A), and A is finitely spanned over Z(J) 
[Proposition 3.61. A is separable associative over Z(J) with involution j [3, 
p. 461, so [2, p. 138) shows that J = J(p, q) and that the canonical map from 
&J,(J)7 71) to 64 j> is an isomorphism. Hence Theorem 3.3 implies that the 
canonical map from (S,(J), rc) to (A,j) is an isomorphism. 

The theorem follows by taking direct sums of the components J(p, q) and 
(A(p, q), j), applying Theorem 3.2, [J5], and [3, p. 771. I 

COROLLARY 3.8. If J is a separable R-algebra such that J= @ J(p, q) 
for p > 3 and q ,< 4, then J is special and reflexive. I 

Let M be a module over a commutative ring S, and let Q: M x M-r S be 
a symmetric bilinear form on M. Let J(Q, A& S) be the Jordan S-algebra 
determined by Q, i.e., J(Q, A4, S) is the S-module S @ M with multiplication 

(a, a) - CA b) = (UP + Q<a, b), ab + Pa), 

a, p E S, a, b E M [6, p. 131. If S is an R-algebra, we consider J(Q, M, S) as 
a R-algebra via R 1 c S. We recall definition (M5] of a nondegenerate 
symmetric bilinear form on a finitely spanned projective module over a 
commutative ring. 

THEOREM 3.9. The following conditions are equivalent: 

(i). J is special and separable over R. 

(ii). J 2 H(A, j) @ J(Q, M, S), where A is a separable associative R- 
algebra with involution j, S is a commutative separable associative R- 
algebra, M is a finitely spanned projective S-module, and Q is a 
nondegenerate symmetric bilinear form on M over S. 

ProoJ: (i) G- (ii). If J satisfies (i), then J= J, @ J, @ J3, where J, = 
J(Ll), J2= OJGq), and J,=OJ(p,q’), q>2, p>3, s’G4 [S7, 
Corollary 3.41. Each Ji is separable over its center Zi and Zi is separable 
associative over R [Theorem 2.5, Theorem 3.21. J2 = J(Q, M, Zz), where Q is 
a nondegenerate symmetric bilinear form on a finitely spanned projective Z,- 
module M [2, p, 1401. If m is any maximal ideal of Z,, J,/mJ, is 
commutative [S7], so J, = Z, + ml, [S6]. Since J, is finitely spanned over 
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Z, [S3], J, = Z, [M6]. Set A, = Z, 0 Z, and let j, be the R-algebra 
involution of A, taking a @ b to b @ a, a, b E Z, . Clearly, J, ‘v H(A i, j,). 
Since Z, is separable associative over R, so is A, [3, p. 771. Theorem 3.7 
implies that J, E Z5(Az, jz), where A, is a separable associative R-algebra 
with involution j,. A, @ A, is a separable associative R-algebra [3, p. 77) 
with involution j, 0 j,, and J, @ J3 is isomorphic to H(A , @ A,, j, @ j,). 
Hence J satisfies (ii). 

(ii) + (i). Let J satisfy (ii). Write J(Q, A4, S) as K. Proposition 3.6 
shows that H(A, j) is a separable Jordan R-algebra. K is a separable Jordan 
S-algebra [2, p. 1191, so Theorem 3.1 implies that K is separable over R. 
Thus J is separable over R [Theorem 3.21. If m is any maximal ideal of S, 
K/mK is the Jordan algebra of a quadratic form over S/m. Then K/mK is 
special [6, p. 2611, so (K/mK)(3,8) = 0. Thus K(3, 8)/mK(3,8) = 0 [SS]. 
Since K is finitely spanned over S, Nakayama’s Lemma yields K(3,8) = 0 
[M6]. Hence K is special over R [Corollary 3.41. Since H(A, j) is also 
special over R, so is J. 1 

In a subsequent article, we use generic minimum polynomials and the 
construction of Freudenthal-Springer-McCrimmon [9] to extend 
Theorem 3.9 to a determination of all separable Jordan algebras over 
commutative rings. 

4. CENTRALIZERS OF SEPARABLE ALGEBRAS 

If J c B are Jordan R-algebras, the centralizer of J in B is 

C,(J)=(cEB~[a,b,c]=OforallaEJ,bEB) 

= (c E B ( [up, cpiB = 0 for all a E J, p: B -+ U,(B)}. (35) 

Centralizers of separable Jordan algebras over fields were studied by Harris 
in [4]. In this section we extend his results to separable Jordan algebras over 
commutative rings. 

Let J c B be Jordan R-algebras and let J be separable over R. Define BJ 
as in (1). We prove that C,(J) = BJ, whence C,(J) is a functorial subalgebra 
of B. If B is also separable over R, then so is C,(J). If A4 is a J-bimodule, we 
prove that 

A4 = MZ’J’ @ [Z(J), Z(J), M] 

is a direct sum of J-bimodules, where A4z’J’ is a bimodule for J as a Z(J)- 
algebra. 

Let J c B be Jordan R-algebras and let J be separable over R. Lemma 4.1 
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states that C,(J) = BJ is a subalgebra of B if Jp centralizes (BJ)P in U,(B). 
Theorem 1.9(i) implies that Z(J)p centralizes (BJ)p, and Lemma 4.2 shows 
that [J, J, Jlp centralizes (BJ)p in U,(B). In Lemmas 4.3-4.5 we use the fact 
that U,(J) is finitely spanned over (Z(J)p) [Proposition 2.21 to prove that 
U,(J) is generated as an R-algebra by Z(J)p and [J, J, Jlp. Together these 
results imply that C,(J) = B-’ is a subalgebra of B. 

LEMMA 4.1. If J c B are Jordan R-algebras such that Jp centralizes 
(BJ)P for p: B + U,(B), then C,(J) = BJ is a subalgebra of B. 

ProoJ: Equations (1) and (35) show that C,(J) c BJ. Since 
[Jp, (BJ)p] = 0, (35) implies that BJ c C,(J), so C,(J) = BJ. If x, y, a, b are 
elements of any Jordan algebra, one verifies that 

[x,y,a,b]=-[x.y,a,b]+[x,y,a].b+[x,y.a,b]+x.[y,a,b]. (36) 

Since the equation C,(J) = BJ implies that [J, B, BJ] = 0, taking x, y E J and 
a, b E BJ in (36) yields [x, y, a . b] = 0. Then a + b E BJ for a, b E BJ, so BJ 
is a subalgebra of B. 1 

If a, b, c are elements of an associative algebra, one verifies the Jacobi 
identity 

Icy [a, bll = I [c, a], b] + [a, [c, b]]. (37) 

LEMMA 4.2. If Jc B are Jordan R-algebras, then [J, J, J]P centralizes 
(BJ)p for p: B -+ U,(B). 

Proof: If a, b, c E J and g E BJ, Eqs. (2) (5) and (37) imply that 

[g”, [a, b, cl’] = [g”, [[c’, aP], b’]] 

= [[g”, [c”, aP]l, bpl + [[c’, a’], (gp, bpJJ 

= [[[gp,cpl,apl,bp] + [[c’, [gp,aP]],bP] 

+ I Icp, [g’, bP 1 I, ap 1 + [cp, lap, [ gp, bP] ] ] 

= [[G a, glp, bPl + [[g, c, a]‘, bp] 

+ [lg, c, blP, apI + [c’, [g,a,blP] 

= 0, 

since [J, J, BJ] = 0. 1 

Let eij be the standard matrix units of M,(C), the nonassociative algebra 
of p-by-p matrices over a composition algebra C. If c E C, F is the conjugate 
of c, and i # j, let c[ij] = ceij + Ceji E H(M,(C)). 
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LEMMA 4.3. If J is separable over an algebraically closed field R, then J 
is spanned over R by Z(J), [J, J, J], and 

{(aI - a*) * aj ( ai E [J, J, J] and ai * aj E [J, J, J] for i # j}. (38) 

Pro05 J is a direct sum of finite-dimensional simple R-algebras [Sl 1. 
Considering each component separately, we can assume that J is finite- 
dimensional and simple. We apply the classification of such algebras, using 
the notation of the Preliminaries. If J N R or J= R [2, q], q > 2, it is clear 
that J = R 1 + [J, J, J] for 1 E J. Assume that J 2: H(M,,(C)), p > 3. If c E: C 
and if j, 

c[ij] = (4c[ij],eii, ejj] and e,, - ejj = [2[g], 1 [o], eii]. (39) 

If i, j, k are distinct, 

e,, + ejj = (2[ik] e 1 [kj]) . 1 [ij], (40) 

where (39) implies that a, = 2[ik], a2 = l[kj], and a3 = l[ij] satisfy 
condition (38). The lemma follows, since H(M,(C)) is spanned over R by 
elements of the forms (39) and (40). I 

LEMMA 4.4. Zf J is separable over afield R, then U,(J) is generated as 
an R-algebra by Z(J)p and [J, J, Jlp. 

ProoJ: By field extension, we can assume that R is algebraically closed. 
Equation (6) implies that [J, J, Jlp contains all elements xp such that x = 
(a, . at) . a3 has form (38). Then Lemma 4.3 implies that the subalgebra of 
U,(J) generated by Z(J)O and [J, J, Jlp contains Jp. We are done by (4). 1 

LEMMA 4.5. If J is separable over R, then U,(J) is generated as an R- 
algebra by Z(J)p and [J, J, J]“. 

Proof. We write (Z(J)O) as S. Since S is in the center of U,(J) 
[Theorem 1.9(iii)], U,(J) is naturally an S-algebra. Let m be a maximal 
ideal of S. JaR S/m is either zero or a separable S/m-algebra whose center 
is Z(J) OR S/m [S6]. By Lemma 4.4, U,,,(J@, S/m) is generated as an 
S/m-algebra by (Z(J) &)I( S/m)p and 

[JO, S/m, JO* S/m, JOR S/m]P. 
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U,,,(J@, S/m) is isomorphic to U,(J) OR S/m [Jl]. Since U,(J) is an S- 
algebra, there is a homomorphism of U,Q) OR S/m onto 

Composing these maps gives a homomorphism of U,,,(J@, S/m) onto 
U,(J)/mU,(J) as S/m-algebras. It follows that U,(J)/mU,(J) is generated as 
a unital S/m-algebra by the image of [J, J, J]O. Thus U,(J) = T + mu,(J), 
where T is the R-subalgebra of U,(J) generated by Z(J)“ and [J, J, Jlp. 
U,(J) is finitely spanned over S [Proposition 2.2, Theorem 2.51 and T is an 
S-submodule of U,(J), so U,(J) = T, by Nakayama’s Lemma [M6]. 1 

THEOREM 4.6. If Jc B are Jordan R-algebras and J is separable over 
R, then C,(J) = BJ is an R-subalgebra of B. Moreover, (C,(J))” centralizes 
Jp for p: B -+ U,(B). 

ProoJ If p: B + U,(B), Proposition 1.1 and Theorem 1.9(i) imply that 
(Z(J)“) centralizes (Bz(J))p 2 (BJ)O. Lemma 4.2 shows that [J, J, J]” 
centralizes (B’)“. The canonical homomorphism from U,(J) to U,(B) has 
image (JO) [J3], so Lemma 4.5 implies that (J”) is generated as an R- 
algebra by Z(J)” and [J, J, Jlp. Then (Jp) centralizes (B’)p, and we are done 
by Lemma 4.1. I 

COROLLARY 4.1. If J c B c D are Jordan R-algebras and J is separable 
over R, then C,(J) = C,(J) n B. 

Proof: Equation (1) implies that BJ = DJ n B. Then C,(J) = C,(J) n B, 
by Theorem 4.6. 1 

COROLLARY 4.8. Let Jc B be Jordan R-algebras such that J is 
separable over R. 

(i). If S is a commutative associative R-algebra and f: JO,, S -+ 
B @R S is the canonical map, then 

c &f(J 6% 91 = C,(J) OR S. 

(ii). If Z is an ideal of R, then 

C,,,,[JhJn WI = C,(J>/lC,(J). 

(iii). If $ is an algebra homomorphism from B to another R-algebra, 
then C,,(M = WXOI. 

ProoJ (i). Let all tensor products be taken over R. BJ = eB, where 
e E U,(J) is a separability idempotent for J [S4]. e @ 1 E U,(q @ S N_ 
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U,(J@ S) is a separability idempotent for J@ S as an S-algebra [2, p. 117 ]. 
Then (B @ S)f(J@S’ = (e @ l)(B @ S) is the image in B @S of eB@ S. 
Since eB is a direct summand of B as an R-module, the map from eB @ S to 
B @ S is injective. Hence (B @ S)f’J@S’ is isomorphic to eB @ S = BJ @ S. 
Theorem 4.6 implies that C,(J) = BJ and 

C,,,[f(J@ S)] = (B @ S)“J@S’, 

since J is separable over R andf(.T@ S) is either zero or separable over S 
1331. Hence CeOs [NO 91 is isomorphic to C,(J) @ S. Parts (ii) and (iii) 
are proved similarly. 1 

If Jc B are Jordan algebras over a field R such that J is separable and B 
is central simple over R, Harris proved that C,(J) is a separable R-algebra 
14, p. 7851. 

THEOREM 4.9. If J c B are separable Jordan R-algebras, then so is 

C,(J). 
ProojI First assume that B is central over R. By Theorem 4.6, C,(J) is 

an R-algebra. Let m be a maximal ideal of R. J/(Jn mB) is a 
homomorphic image of J/mJ, so J/(Jn mB) is either zero or separable over 
R/m [S6]. B/mB is central separable over R/m [S6]. Since B/mB is a direct 
sum of simple ideals [Sl ] and its center is a field, B/mB is central simple 
over R/m. Hence Harris’ theorem shows that C,,,,[J/(Jn mB)] is separable 
over R/m. This algebra is isomorphic to C,(J)/mC,(J) [Corollary 4.8(ii)], so 
C,(J)/mC,(J) is separable over R/m. C,(J) = BJ = eB, where e E U,(J) is a 
separability idempotent for J [Theorem 4.6, S4]. eB is a direct summand of 
B and B is finitely spanned over R [S3], so C,(J) is finitely spanned over R. 
Hence, since C,(J)/mC,(J) is separable over R/m for every maximal ideal m 
of R, C,(J) is separable over R [S2]. 

In the general case, we write Z(B) as Z. Let ZJ be the Z-submodule of B 
spanned by J. ZJ is a Z-subalgebra of B and a homomorphic image of 
JOR Z. It follows that ZJ is separable over Z [S6]. Then the preceding 
paragraph shows that C,(ZJ) is separable over Z. Since Z is separable 
associative over R [Proposition 1.11, C,(ZJ) is separable over R 
[Theorem 3.11. The theorem follows, since (35) implies that C,(J) = 
C,(ZJ). 1 

PROPOSITION 4.10. Let J be separable over R and write Z(J) as Z. Then 
U,(J) is the direct sum of ideals A and B such that, ifM is a J-bimodule, 
then AM = MZ and BM = [Z, Z, M]. Thus M = MZ @ [Z, Z, M] is a direct 
sum of J-bimodules. Moreover, MZ is a bimodule for J as a Z-algebra. 

ProoJ: Let p: J-1 U,(J). Let V: U,(J) + J take x E U,(J) to xl, 1 E J. 
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Since J is separable over R, Z is a separable Jordan R-algebra 
[Theorem 2.51. Let e E U,(Z) be a separability idempotent for Z as a Jordan 
R-algebra [S4]. Let fc U,(J) be the image of e under the canonical 
homomorphism from U,(Z) to U,(J) [J3]. Then fC (Zp), f is an idem- 
potent, vf = 1, and 

xf= (vx)Y x E (Z"). (41) 

Let A = j’U,(J) and B = (1 - f) U,(J). A and B are ideals of U,(J), since 
Theorem 1.9(iii) implies that 

f E Z~~JdJ>l. (42) 

U,(J) = A @ B, since f is an idempotent. If M is a J-bimodule, it suffices to 
prove that fM = M” is a bimodule for J as a Z-algebra and that (1 - j)M = 
[Z, z, Ml. 

Considering M as a Z-bimodule yields eM= MZ [S4], so fM= M”. 
Equation (42) implies that fM = Mz is a J-subbimodule of M. Since Z is a 
separable Jordan subalgebra of the split null extension J@ M, Theorem 4.6 
implies that C,,,(Z) = (J @ M)’ = J @ Mz. Then [Z, J, MZ] = 0 = 
[Z, M’, J], so MZ is a bimodule for J as a Z-algebra. 

Ifa,bEZandmEM, 

f [a, b, m] =f((ab)O - aPbP)m 

= ((ab)” - a”b”)fm (by (42)) 

=o (by (41)). 

Thus f [Z, Z, M] = 0, so [Z, Z, M] c (1 - f)M. To prove that (1 - f)M c 
[Z, Z, M], since vf = 1, it suffices to prove that 

((vx)~ - x)M c [Z, Z, M] (43) 

for all x E (Z”). We can assume that x = a; .a. a$, ai E Z. We induct on d. 
If d = 1, (43) is clear. If d > 1 and m E M, let z = a; .a. a: and y = vz. Then 

((vx)~ - x)m = (a, . y)“m - ayzm 

= [a,, y, m] + a: yPm - ayzm 

= [a,, Y, ml + (Y” - zblpm (by Theorem l.g(iii)) 

= [Z Z, Ml, 

since (y” - z)M c [Z, Z, M] by induction. Hence (1 -f )M = IZ, Z, M]. m 
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If J is a separable R-algebra and M is a J-bimodule, Proposition 4.10 
implies that 

[Z, Z, M] = BM = B2M = [Z, Z, BM] = [Z, Z, [Z, Z, Ml], 

5. DERIVATIONS OF SEPARABLE ALGEBRAS 

A derivation of J into a bimodule M is an R-linear map D: J-+ M such 
that D(u * b) = a(Db) + (Da)b for a, b E J. A map from J to h4 of the form 
x --t C [Ui, x, bi], a, E J, bi E M, is a derivation [6, p. 351. Such maps are 
called inner derivations. If J is separable over a field R, Harris proved that 
all derivations of J into its bimodules are inner if and only if the charac- 
teristic of R does not divide the degree of any special simple component of J 
over its center [5, p. 5021. If J is separable over a field, McCrimmon proved 
that all derivations of J into its bimodules are “generalized inner derivations” 
[ 11, p. 9551. In this section we extend these results to separable algebras 
over commutative rings. If J is separable over a commutative ring R, we 
prove that all derivations of J into its bimodules are inner if and only if, for 
every maximal ideal m of Z(J) such that J/mJ is special, the characteristic of 
Z(J)/m does not divide the degree of J/mJ as a central simple Z(J)/m- 
algebra. If J is separable over a commutative ring containing l/3, we prove 
that all derivations of J into its bimodules are “generalized inner 
derivations.” We first extend Harris’ theorem to the case where J is finitely 
spanned. 

THEOREM 5.1. If J is a jmitely spanned, separable R-algebra, the 
following conditions are equivalent: 

(i). All derivations of J into its bimodules are inner. 

(ii). For every maximal ideal m of R, all derivations of J/mJ us an 
R/m-algebra into its bimodules are inner. 

(iii). For every maximal ideal m of R, the characteristic of R/m does 
not divide the degree of any special simple component of J/mJ over its center. 

(iv). For every ordered pair (p, q) # (3,8) such that J(p, q) is 
nonzero, pl,, is a unit in R lP4, where I,, is the unit element of J(p,q). 

ProoJ: (i) =S (ii). Let D be a derivation of J/mJ as an R/m-algebra into a 
bimodule M. Let f be the canonical map of J onto J/mJ. M becomes a 
bimodule for J as an R-algebra if we define ub as (fu)b and rb as (f(rl))b 
for a, 1 E J, b E IV, and r E R. Then Df is a derivation of J as an R-algebra 
into its bimodule M, so (i) implies that there are ui E J and bi E M such that 
Df(x) = 2 [ai, x, bi] for x E J. Then Dx = C [fq, x, bi] for x E J/mJ, so D 
is inner. (ii) o (iii) is Harris’ theorem [S, p. 5021. 
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(iii) 3 (iv). Let (p, q) # (3,8) be an ordered pair such that J(p, q) is 
nonzero. Let Z= {a E R ] aJ(p, q) = 0). If pR #R, let m be a maximal ideal 
of R containing pR. J(p, q)/mJ(p, q) is a direct sum of special simple 
algebras of degree p over their centers [S7]. Since pR c m, the characteristic 
of R/m is nonzero and divides p. Then (iii) implies that J(p, q)/mJ(p, q) is 
zero. Thus there is a E m such that (1 - a) J(p, q) = 0, since J(p, q) is 
finitely spanned over R [ 12, p. 11. 1 - a E Z, so Z is not contained in m. 
Hence Z + pR is an idea1 of R contained in no maxima1 ideal, so 
R = Z + pR. Then R l,, = pR lP4, so pl,, is a unit in R l,,. 

(iv) + (iii). Let m be a maxima1 idea1 of R and let B be a special 
simple component of J/mJ. If B has degree p over its center, B is contained 
in J(P, q)/mJ(p, q) for SOme (P, q) f (3,8) [S71. Since J(P, q)/mJ(p, q) is 
nonzero, (iv) implies that the image of pl,, in J(p, q)/mJ(p, q) is nonzero. 
Hence the characteristic of R/m does not divide p. 

(iv) + (i). Let D be a derivation of J into a bimodule M. Since J is 
finitely spanned over R, so is U,(J) [J6]. Replacing M with U,(J) DJ, we 
can assume that M is finitely spanned over R. 

First assume that (R, m) is complete local Noetherian. D induces a 
derivation D’ of J/mJ as an R/m-algebra into M/mM. D’ is inner, by the 
implications (iv) 3 (iii) + (ii) already established. Taking preimages shows 
that there is an inner derivation I, of J into M such that (D - Z,)Jc mM. 
Hence it follows by induction that for every positive integer t there is an 
inner derivation Z, of J into m’-‘M such that 

(D - I, - . . . - ZJJ c m’M. 

Let a , ,..., a,, span J over R. For each t, there are b,, ,..., b,, E ml-‘M such 
that Z,x = 2 [q, x, bit] for x E J. A4 is complete in the m-topology, since it 
is finitely spanned over R [ 1, p. 1081. For 1 < i < n, let bi = C, b,, . Then 
Dx = 2 [ai, x, bi] for x E J, and D is inner. 

Next assume that R is Noetherian. Let m be a maximal ideal of R, and let 
R; be the completion of R in the m-topology. Rz is complete local 
Noetherian [ 1, pp. 109, 1131, and J@ R,* satisfies condition (iv) as an R,$- 
algebra [S8]. Let D(J, M) be the R-module composed of all derivations of J 
into M and let Z(J, M) be the R-submodule of D(J, M) composed of all inner 
derivations. R,* is a flat R-module [ 1, p. 1091, so we identify D(J, M) 0 Rz 
and Z(J, M) @ R,* with their images in Hom,(J, M) @ R,*. J is finitely 
presented as an R-module, since J is finitely spanned over R and R is 
Noetherian. Since R,* is flat and J is finitely presented over R, it follows that 

Hom,(J, M) @ Rz 2: Hom,;(J 0 R,*, M@ Rz) 

[8, p. 151. This isomorphism takes D(J, M) @ Rz to a submodule of 
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D(J@Rz,M@R,j) and I(J,M)@Rz onto Z(J@R$ M@Rz). The 
preceding paragraph shows that 

D(J@R,*,M@R,*)=I(J@R;,M@R;). 

Since D(J, M) contains Z(J, M), it follows that D(J, M) @ Rz equals 
Z(J, M) @ R;. Thus 

[ D(J, M)/I(J, M)] @ R; = 0. 

Then [D(J, M)/I(J, M)] @ R, = 0, where R, is the localization of R at m 
[ 1, pp. 110, 114-l 151. Since this holds for every maximal ideal m of R, 
D(J, M)/I(J, M) = 0 [ 1, p. 401, and D is inner. 

Finally let R be arbitrary. There is a Noetherian subring R’ of R and a 
finitely spanned R’-subalgebra J’ of J such that J’ is separable over R’ and 
J= RJ’ [2, p. 1341. For each nonzero J(p, q) with (p, q) # (3,8), take a 
preimage of (plP,)-’ in R and adjoin it to R’. Since only a finite number of 
J(p, q) are nonzero, R’ remains Noetherian [ 1, p. 811. [S8] implies that J’ 
satisfies condition (iv) as an R’-algebra. D induces a derivation D’ of J’ as 
an R/-algebra into its bimodule U,,(J’) D(J’), where this bimodule is finitely 
spanned over R’. The preceding paragraph shows that D’ is inner. Since 
J= RJ’, it follows that D is inner. 1 

We consider next which implications in Theorem 5.1 remain valid without 
the hypothesis that J is finitely spanned over R. The proof of the theorem 
shows that the implications 

(i) * (ii) 0 (iii) e (iv) (44) 

hold without this hypothesis. We use the following lemma to study the 
remaining implications. 

LEMMA 5.2. Let R be an integral domain and let F be its quotient field. 
If J is a separable F-algebra, then J is separable over R and U,(J) is 
isomorphic to U,(J). If M is a bimodule for J as an R-algebra, then M is 
naturally a bimodule for J as an F-algebra and any derivation of J as an R- 
algebra into M is naturally a derivation of J as an F-algebra. 

ProoJ Let p: J-+ U,(J), a,b E R, b # 0, 1, x E J. Since p is linear over R, 

(bl)P(bP’l)P = b(b-‘l)O = (bb-‘I)“ = l”, 

so [(bl)P]p’ = (b-*1)“. Similarly, 

(bl)P(abb’x)P = b(abb’x)” = (ax)O, 
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SO 

(ab-‘X)P = [(bl)P]-‘(ax)P = (b-‘l)P(ax)P = (&‘l)PXP. 

Likewise (ub-‘~)~ = xP(ub-’ 1)“. It follows that U,(J) becomes an F-algebra 
and p becomes F-linear if we let a E F act on U,(J) as multiplication by 
(czI)~. Then p is a multiplicative specialization of J over F, so there is a 
homomorphism from U,(J) to U,(J) which is the inverse of the canonical 
homomorphism from U,(J) to U,(J) [6, p. 881. Thus U,(J) and U,(J) are 
isomorphic. 

Since J is separable over F, U, (J) is separable associative over F. F is 
separable associative over R, since F is the quotient field of R 18, p. 741. 
Then U,(J) is separable associative over R, by the transitivity of separability 
[3, p. 46). Since U,(J) is isomorphic to U,(J), U,(J) is separable associative 
over R, so J is separable over R. The last statement of the lemma follows 
from the isomorphism of U,(J) and U,(J). I 

We now show that condition (i) of Theorem 5.1 does not imply (iv) if J is 
not finitely spanned over R. (By (44), this also shows that (ii) and (iii) do 
not imply (iv).) Let Q be the rational numbers, and let p be an odd prime. 
Let R be the subring of Q consisting of fractions whose denominators are not 
divisible by p. Let J = M,(Q)‘, where M,(Q) is the associative algebra of p- 
by-p matrices over Q. J is separable over R [Lemma 5.2, SI 1. J = J(p, 2) 
and pl is not a unit in R 1 c J, so (iv) is not satistied. If D is a derivation of 
J as an R-algebra into a bimodule M, D is naturally a derivation of J as a Q- 
algebra into A4 [Lemma 5.21. Then Harris’s theorem shows that D is inner, 
so (i) is satisfied. 

Parts (ii) and (iii) do not imply (i) if J is not finitely spanned over R. To 
see this, let p be an odd prime, and let R be the polynomial ring in one 
indeterminate over the integers modulo p. Let F be the quotient field of R, 
and let J= M,(F)+ @ M,(R)+. J is separable over R [Theorem 3.2, 
Lemma 5.2, Sl 1. For every maximal ideal m of R, F/mF = 0, so J/ml is 
isomorphic to M,(R/m)‘. Since R/m has characteristic p # 2, (ii) and (iii) 
are satisfied. By Harris’ theorem, there is a derivation D of M,(F)’ as an F- 
algebra into a bimodule M such that D is not inner. Extend A4 to a J- 
bimodule by defining [M,(R) + ]A4 = 0, and extend D to a derivation D’ of J 
into A4 by defining D’ [M,(R)‘] = 0. Since D is not inner, neither is D’, so 
(i) is not satisfied. 

Finally, the implication (iv) 3 (i) remains valid if J is not finitely spanned 
over R. This follows from the implication (v) => (i) of Theorem 5.4. 
Theorem 5.4 extends Harris’ theorem to separable algebras which are not 
necessarily finitely spanned. 

PROPOSITION 5.3. If D is a derivation of a separable R-algebra J into a 
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bimodule M, there is an inner derivation I of J into M such that D - I is a 
derivation of J as a Z(J)-algebra into its bimodule MzCJ’. 

Proof: We write Z(J) as Z. The restriction of D to Z extends to a 
derivation D, of the split null extension Z @ M into itself such that 
D, M = 0. D, induces a derivation D, of the associative algebra‘U,(Z @ M) 
into itself such that Dz(aP) = (D1 a)P, a E Z 0 M, p: Z @ M -+ U,(Z @ M) 
16, p. 971. D, restricts to a derivation D, of (Z”) into U,(Z @ M). (Z”) is a 
separable associative R-algebra [Proposition 1.1, Theorem 1.9(i)]. Then D, 
is inner [ 12, p. 431, and there is d E U,(Z @ M) such that D,x = [d, x] for 
xE(ZP).IfaEZand lEZ@M, 

Da=D,a=(D,a)‘l = [D,(aP)]l =jD3(ap)]l = [d,aPJl. 

BY(~), UR(Z@M)=(ZP)+N+P,whereN=(ZP)MP(ZP)andP=CN’ 
for i>2. Let d=f+g+h, fE(ZP), gEN, hEP. Since J*cJ and 
M* = 0 in J@ M, the relation DJc M implies that Da = [g, aP] 1 for a E Z. 

Since g E N, g = C simp ti for si, ti E (Z”) and m, E M. If a E Z and we 
write si, mi, and ti as s, m, and t, then 

[smPt, ap ] 1 = smPtaP 1 - aPsmPtl 

= s(m . (ta)) - aps(m . (tl)) 

= s(ta)Pm - aPs(tl)Om 

= (ta)Psm - (tl)PaPsm 

(by Proposition 1.1 and Theorem 1.9(i)) 

= (tl . a). sm - tl . (a . sm) 

(since a E Z) 

= ]tl, a, sm]. 

Hence the map a -+ [g, ap ] 1 is an inner derivation. 
Together the two paragraphs above show that the restriction of D to Z is 

an inner derivation. This extends to an inner derivation I of J into M. 
(D - 1)Z = 0, so (D - Z)(z . a) = z . (D - Z)a for z E Z and a E J. Then 
D - I is linear over Z, and 

O=(D-I)[Z,Z,J]=(Z,Z,(D-I)J]. 

Thus D -Z maps J into M”, where M” is a bimodule for J as a Z-algebra 
[Proposition 4.101. 1 
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THEOREM 5.4. If J is separable over R, the following conditions are 
equivalent. 

(i). All derivations of J as an R-algebra into its bimodules are inner. 

(ii). All derivations of J as a Z(J)-algebra into its bimodules are 
inner. 

(iii). For every maximal ideal m of Z(J), all derivations of J/mJ as a 
central simple Z(J)/m-algebra into its bimodules are inner. 

(iv). For every maximal ideal m of Z(J) such that J/mJ is special over 
Z(J)/m, the characteristic of Z(J)/m does not divide the degree of J/mJ as a 
central simple Z(J)/m-algebra. 

(v). For every ordered pair (p, q) # (3,8) such that J(p, q) is 
nonzero, the image of p in Z[J(p, q)] is a unit. 

Proof: (i) 3 (ii) is obvious, and (ii) =E- (i) follows from Proposition 5.3. If 
m is a maximal ideal of Z(J), J/mJ is separable over Z(J)/m, and Z(J/mJ) N 
Z(J)/m is a field [S6], so J/mJ is central simple over Z(J)/m [Sl 1. Since J is 
finitely spanned and separable over Z(J) [S3], Theorem 4.1 shows the 
equivalence of (ii) through (v). I 

COROLLARY 5.5. Let J be separable over R, and assume that either J is 
special or l/3 E R. Then all derivations of J into its bimodules are inner if 
and only if J = Z(J) + [J, J, J]. 

ProoJ: We first note that, if J is finite-dimensional central simple over a 
field R, then J= Rl + [J, J, J], 1 E J, if and only if the characteristic of R 
does not divide the degree of J over R. This follows by extending R to its 
algebraic closure and applying the classification of finite-dimensional simple 
Jordan algebras over an algebraically closed field [6, p. 2041. 

Theorem 5.4, Corollary 3.4, and the hypotheses on J imply that all 
derivations of J into its bimodules are inner if and only if the characteristic 
of Z(J)/m does not divide the degree of J/mJ over Z(J)/m for every maximal 
ideal m of Z(J). The preceding paragraph, [Sl], and [S6] imply that this 
holds if and only if 

J/mJ = (Z(J)/m) 1 + [JlmJ, J/m& J/mJ], 

1 E J/mJ. This is equivalent to the condition that J = Z(J) + [J, J, J] + mJ 
for every maximal ideal m of J. Since J is finitely spanned over Z(J) [S3], 
this holds if and only if J= Z(J) + [J, J, J] [M6]. 1 

Finally, we extend McCrimmon’s results on generalized inner derivations 
to separable algebras over commutative rings containing l/3. An R-algebra J 
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is called semi-4-interconnected if 1 E J can be written as a sum of orthogonal 
idempotents ei, where for each ei there are at least three other ej such that 

ei E uJ,(Jjj), Jjj = UC,(J), Jij = ue,. e,(J). 
J is called latently 4-interconnected if there is a faithfully flat, commutative 
associative R-algebra S such that J@, S is semi-4-interconnected. J is called 
weakly 4-interconnected if J@, R, is latently 4-interconnected over R, for 
every maximal ideal m of R, where R, is the localization of R at m. 

A weakly 4-interconnected algebra is special and reflexive [2, p. 1391. 
Thus, if J is weakly 4-interconnected and xi E J, let (x, ,..., xn) be the unique 
preimage in J of x7 .. e x; + x; . .. x7, (T: J + S,(J). If J is latently 4- 
interconnected and one of the xi belongs to an ideal N of J, then 
(X , ,..., xn) E N [ 10, p. 9271. It follows by localization that this also holds if J 
is weakly 4interconnected [ 1, p. 401. 

Let J be the direct sum of ideals J, and J, such that J, is weakly 4- 
interconnected over Z(J,). Let M be a bimodule for J over R, and let M, be 
subbimodule of M such that M, is a unital bimodule for J, over Z(J,). Let 
a, b, x E J, and c E M,. The split null extension J, @M, is weakly 4- 
interconnected over Z(J,), so we can use it to define (a, b, c, x) and 
(c, b, a, x). These are elements of M,, since M, is an ideal of J, @M, . 
Define Da,b,c E Hom,(J, M) by D,,*,,(J,) = 0 and 

Da,dx) = (~9 6, c, x) - (c, b, a, x) 

for x E J,. Da,h,c is a derivation, since J,M, = 0 and 

(Da,b,e(~))O = [a”b”c” - c”bOuO, x”], 

x E J,, u: J, @ M, + SztJ,)(JI @ M,). Define a generalized inner derivation 
of J into M to be a sum of inner derivations plus derivations of the form 
D a,b,c. (This type of derivation is called a strong generalized inner derivation 
in [ll].) 

THEOREM 5.6. All derivations of a separable R-algebra J into its 
bimodules are generalized inner derivations if 113 E R. 

ProojI Let D be a derivation of J into a bimodule M. By Proposition 5.3, 
we can assume that R = Z(J). If l,, is the identity element of J(p, q), then 
D[J(P, 411 = W,,J) = l,,M, where l,,M is a unital J(p, q)-bimodule. It 
sufftces to prove that the restriction of D to each J(p, q) is a generalized 
inner derivation, so we can assume that J = J(p, q). If p < 3, then D is inner, 
by Theorem 5.4 and the hypothesis that l/3 E R. Let p > 4. J is finitely 
spanned over R = Z(J) [S3]. Then J is weakly 4interconnected over R, since 
J = J(p, q) for p > 4 [2, p. 1391. McCrimmon proved that all derivations of 
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a separable Jordan algebra over a field of characteristic #2,3 into its 
bimodules are generalized inner derivations [ 11, p. 9551. This implies that all 
derivations of J into its bimodules are generalized inner derivations, by the 
proof of the implication (iv) * (i) of Theorem 5.1 (replacing inner 
derivations with generalized inner derivations in that proof). 1 

COROLLARY 5.7. Let Jc B be Jordan R-algebras, l/3 E R. If J is 
separable and finitely spanned over R, then any derivation of J into B 
extends to a derivation of B into itself: 

ProoJ: Clearly any inner derivation of J into B extends to all of B. By 
the proof of Theorem 5.6, it suffices to prove that any derivation of the form 
D a+b,r extends to all of B, where a, b E J(p, q), p 2 4, and c belongs to a J- 
subbimodule B’ of B such that B’ is a unital bimodule for J(p, q) over 
Z[J(p, q)]. Let e be the identity element of J(p, q) and let Bi(e) be the i- 
eigenspace of B under multiplication by e. By hypothesis, J(p, q) is finitely 
spanned over R, so it is weakly 4-interconnected over R (2, p. 1391. J(p, q) 
is a unital subalgebra of B,(e), so B,(e) is weakly 4-interconnected over R. 
Considering B,(e) as a bimodule for itself, let B,(e) @ B,(e) be the split null 
extension. If x E B,(e), identify a, b, c, and x, with a @ 0, b @ 0, 0 @ c, and 
x @ 0, respectively, in B,(e) @ B,(e), and define (a, 6, c, x) and (c, b, a, x) 
using S,(B,(e) @ B,(e)). Define an R-module endomorphism D of B by 

W,,(e)) = 0, 

Dx = (a, b, c, x) - (c, b, a, x), x E B,(e), 

Dx= V,V,V,x- VcVbV,x, x E B,,,(e). 

For any maximal ideal m of R, B,(e) OR,,, is latently 4interconnected, and 
McCrimmon has proved that D @ 1 is a derivation of B 0 R, into itself [ 11, 
p. 9481. It follows that D is a derivation [ 1, p. 401. If J(p, q) @ B’ is the split 
null extension and x E J(p, q), (a, b, c, x) and (c, b, a, x) are the same 
whether they are defined using 

or 

&np,qdJ(~, 4) OB’h S.dJ(p, 4) 0 B’), 

because of the canonical homomorphisms from the second of these algebras 
to the first and third [6, pp. 65, 661. Hence D extends Da,b,c. I 
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