Regional Science and Urban Economics 12 (1982) 485-493. North-Holland

COMPETITIVE LOCATION STRATEGIES FOR TWO FACILITIES

Zvi DREZNER
University of Michigan, Dearborn, MI 48128, USA

Received November 1981, final version received March 1982

In this paper we present the problem of locating a facility when competition from another
facility is taken into consideration. Two problems are addressed here. One is the location of a
new facility that will attract the most buying power from an existing facility. The other is the
location of a facility that will secure the most buying power against the best location of
competing facility to be set up in the [uture.

1. Introduction

This paper deals with some competitive location theory on the plane.
Main contributions to Nash equilibrium location problems include Hotelling
(1929), Lerner and Singer (1941), Eaton and Lipsey (1975), and Wendell and
McKelvey (1981). Another point of view: the Stackelberg equilibrium, was
recently suggested by Hakimi (1981) for location problems on a network. In
this paper we solve the Stackelberg equilibrium on the plane.

Let n demand points be given on the plane, a weight, or buying power,
p,>0 is associated with each point; customers will buy in the new facility Y if
the Euclidean distance between the customer and Y is less than the distance
between the customer and X. We define the following two problems:

Problem 1. Given a location of an existing facility X serving the demand
points, find a location for a new facility Y that will attract the most buying
power of demand points.

Problem 2 (the Stackelberg equilibrium problem). Find a location for X
such that it will retain the most buying power against : best possible
location for an additional facility Y. The objective function, to be minimized,
for X is the buying power for a best possible location of Y.

We can view both problems as two aspects of the same question. Let say
that two facilities X and Y are to be located on the plane. racility X has an
advantage over facility Y because it attracts customers in case of a tie
between the distances to facility X and to facility Y from a demand point.
Facilities X and Y split the available buying power in the market. Problem 1
is to find a best location for Y for a given location for X, and Problem 2 is
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Fig. 1. An example.

to find a best location for X that will maximize its share of the market
against the best locational strategy for Y.

As an example consider the problem given in fig. 1. Six demand points are
located at the vertices of a simple hexagon with a side of length one. Equal
buying power for cach demand point is assumed.

When X is located at the center of the hexagon, then Y can attract three
points at most. This can be shown by the triangle inequality: The sum of
distances from any point or: the plane to 4 and D is at least the distance AD
which is equal to two. Therefore, at least one of the points 4 or D is distant
at least one unit from Y, and thus at least one of the points 4 or D can not
be attracted by Y since all distances between X and the demand points are
equal to one unit. The same is true for the pairs B, E and C, F. Therefore, at
least three points are not covered by Y. It can be easily verified that three
points can be attracted by Y when Y is located at G. Therefore, an optimal
solution to Problem | when X is located at the center of the polygon, has a
buying power of three.

Now let us show that when X is not located at the center of the hexagon,
then we can always find a location for Y that will attract at least four points.
(Note that this location for Y is not necessarily at the center of the hexagon.)
To find an optimal location for Y when X is inside the polygon, take for
example location of X at G. The location must be off at least one of the
diagonals connecting pairs of opposite points: AD, BE, or CF. G is not on
CF. Draw a perpendicular line from G to CF, whose intersection point with
CF 1s H. If we locate Y at H, then it must be closer than X to C and F, and
it must be also closer to the other two vertices on the other side of CF~E
and D. All together Y is closer to at least four points. In conclusion, the
unique solution point to Problem 2 is at the center of the hexagon.

In the following sections we construct procedures for the solution of
problems one and two in the general case.

2. Selation to Problem 1

When both locations of X and Y are given, then the split of the buying
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power can be found as follows. Construct the perpendicular bisector to the
segment connecting X and Y. This perpendicular hisector divides the plane
into two half-planes. All points in the closed ha'f-plane which includes X
(including points on the perpendicular bisector itself) will buy at X. Let us
call it the X-half-plane. All the points in the other open half-plane which
includes Y, the Y-half-plane, will buy at Y This leads to the following
theorem:

Theorem 1. One of the optimal locations for Y when X is given is
infinitesimally close to X but not on X.

Proof. When Y is located with X the total buying power at Y is zero
because the distance between a customer and Y is equal to the distance
between the customer and X, and therefore all customers will buy at X.
Therefore, no optimal solution to Y is at X. Let Y* different from X's
location be an optimal location for Y. A site Y** on the open segment
connecting Y* and X is at least as good as Y* because the Y-haif-plane
for Y** is larger than the Y-half-plane for Y*. Therefore, the theorem
follows. Q.E.D.

It follows from Theorem 1 that a solution to Problem 1, Y* is ‘adjacent’
(close) to X. The variable yet to be determined is the direction in which Y is
‘touching’ X. If Y is touching X in a direction A then the line dividing
between the customers of X and Y is perpendicular to direction A through
X. In conclusion, finding an optimal location for Y is equivalent to finding
the best line through X such that Y-half-plane defined by it contains the
most buying power for Y.

To solve this equivalent problem we have a simpie procedure: find the
direction of each demand point from X and sort these directions in an
increasing order between 0 and 2z. Calculate in turn the buying power of all
possible Y-half-planes which are all the points between the directions A and
A+7n when A or A+= is a direction to a demand point. One can easily
devise the details of the algorithm. Its complexity is O(nlogn) due to the
sorting part, where n is the number of demand points. (See also section 4 for
a discussion of a more general algorithm.)

In some cases the solution for Y being adjacent to X is not very practical.
In section 4 we extend the problem by imposing a minimal distance re-
quirement between Y and X.

3. Solution to Problem 2

While Problem ! is quite simple, the second problem is much more
intsresting. i.et us first establish some properties that will help us 1n
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designing an algorithm for the solution of the problem. Let f{X) be tae
maximum buying power for a new facility Y when tne location of X is givea.
f(X) should be minimized in Problem 2.

Consider a line with no demand points on it. This line divides the plane
into two half-planes. Let I, be the set of all demand points in one half-plane
and I, be the set of all demand points in the other half-plane. Let P, be the
buving power of the demand points in I, and P, be t::ic buying power of all
demand points in [,. When we choose a location for X in, say, the first half-
plane (which includes /,) then f(X), the buying power of Y, is at least P,.
Now, assume that there are some points on the iine. If X 1s in the open first
half-plane, then f(X)Z P,. Therefore, a necessary condition for f(X)}<P, is
that X belongs to the closed half-plane (including the line) which includes I,.

Consider now a subset of demand points / whose buying power is at least
P, If X is located outside the convex hull of I then Y can attract all
members of I. But if X belongs to the convex hull (including its boundary)
then Y cannot attract all the buying power of I. Consequently, if X is inside
the intersection of all convex hulls of sets with buying power greater than or
equal to P,. then f(X)< P,. This is becausc Y cannot attract any set whose
buying power is greater than or equal to P

Finally consider the set of all lines passing through pairs of demand
points. There arc at most n{n—1)/2 such lines. Each line defines two half-
planes and cach half-plane defines a set of demand points (including the
points on the line itself) which consequently defines the buying power of
these points. Now consider the intersection of all half-planes for which
P,z P, for a given P,. In the next theorem we show that this intersection is
the same as the intersection of all convex hulls of all sets whose buying
power is at least P,

Theorem 2. The intersection of all convex hulls for the sets with buying
power of at least P is identical with the intersection of all half-planes whose
buying power is at least P,.

Proof. Let Z be a point not in the intersection of the convex hulls.
Therefore. there must exist a polygon that Z does not belong to it and a side
of the polvgon such that Z is not in the half-plane defined by this side. Since
the buyving power of this half-plane is at least as the buying power of the set
defining the polvgon. the buying power of this half-plane is at least P, and
therefore Z 1s not i the intersection of the half-planes. Conversely, if Z does
not belong to the intersection of all half-planes with buying power of at least
P,. then there exists a half-plane that Z is outside it. This half-plane is
defiming a set of buying power of at least P, which Z is outside its convex
hull. The theorem s proved. QED
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Thus, f{X)< Py, if and only ir the location of X beloags to the intersection
of the corresponding half-planes.

Now we can present an algorithm for the solution of Probiem 2. This
algorithm is basically a bisecticn on the buying power f(X). By the above
discussion it is possible to determine if there is a solution with f(X)< P, for
some P, by finding if there is a feasible solution in the intersection cf all
half-planes whose associated buying power is at least P,.

Algorithm for Problem 2

Step 1. Calculate all lines through pairs of points and calculate all P, for
each half-plane defined by the lines.

Step 2. Sort P; in decreasing order. Set P, and P,,, to thc lowest and
highest P; yespectively.

Step 3. Set P, to the median value in the P; vector for all P, <P,<P,_,,. If
there is no P; fulfilling P, <P, <P, go to Step 7.

Step 4. Find if there is a feasible point to all half-planes for which P,> P,
This can be done by linear programming,.

Step 5. If there is a feasible solution point to the problem in Step 4 then
miny{ f(X)} <P,. Set P, to Py, and go to Step 3.

Step 6. Otherwise miny{ f(X)} 2 P,. Set P, to Py, and go to Step 3.

Step 7. A feasible point for the last P, is an optimal solution. The value of
the objective function is P

min*

The algorithm just described is polynomial since the linear programming
part of it is polynomial by Khachian (1979). Even without the proof by
Khachian we know that the procedure of finding the feasible point is
polynomial because the number of variables is constant and equal to two.
The number of constraints is bounded by O(n®) and therefore the complexity
of finding a feasible point, by solving the dual problem, is bounded by O(n*).
The complexity of the other calculations is lower, so since we perform the
calculation of a feasible point O(log n) times, the complexity of the algorithm
is bounded by O(n*logn).

One may devise a different algorithm. Since the solution must be in the
intersection of half-planes, there raust be a feasible point which is a vertex of
that intersection. Such a vertex is the intersection point of two lines. There
are O(n*) such intersection points. For each intersection point we need 1o
solve a Problem 1 whose complexity is O(nlogn). Therefore, the complexity of
this algorithm is O(n®logn). We brought this algorithm up to show that the
polynomiality of the the solution to Problem 2 is independent of the
polynomiality of Linear Programming.
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4. Extensions

4.1, One may wish, in order to be more practical, to ask for a minimal
distance requirement between Y and X when X is set up. In other words, we
are not allowed to locate Y within a circle of a given radius R =0 centered at
X's location. It is clear by the proof of Theorem 1 that there exists an
optimal solution to Problem | on the circumference of that circle of radius R.
The perpendicular bisector to a segment connecting X and a point on the
circle is tangent to a circle centered at X with a radius of R/2. Therefore,
instead of looking for a line passing through X in the solution to Problem 1,
we need to look for the best Y-half-plane defined by a line which is tangent
to a circle centered at X with a radius of R/2. Doing this is almost as simple
as the solution proposed earlier for Problem 1. If a demand point is inside
the closed circle with a radius of R/2, it will never be attracted by Y. For all
points which are outside the circle of radius R/2 we calculate two directions
of tangents to this circle. If we move the tangent line around the circle, then
at onc direction the demand point will enter the half-plane defined by the
tangent, and in another direction (not 180" apart as in the previous case) the
demand point will go out of the Y-half-plane. We go over all possible Y-half-
plancs and find the set with the highest buying power, which is the solution
to the modified Problem 1.

Calculation of the ‘enter” and ‘exit’ directions is done as follows. Let d be
the distance between a demand point and X. and A4 be the direction that the
demand point is seen from X. The enter direction is 4 —arccos(R/2d) and
the exit direction is A+ arccos(R/2d). By adding or subtracting 2n we can
get these directions to be between 0 and 27 Let us now formulate the
procedure in an algorithmic way.

Algorithm for the modified Problem |

Step 1. Calculate enter and exit directions for all demand points which are
outside the circle with a radius of R/2.

Step 2. Sort all cnter and exit directions. In case of a tie between two
dircctions put the exit direction first. This is because a point gets
mte the Y-half-planc infinitesimally after the direction, but gets out of
the Y-half-plane on the direction.

Step 3. Find all the points in the Y-half-plane for direction zero, and find the
total buying power of this set,

Step 4. Check in turn all points in the sorted direction vector. If the next
direction is an ‘enter’ add the buying power of the entering demand
point to the total buying power. But if the next direction is an ‘exit’
subtract the buying power of the cxiting demand point from the
total buying power.

Step 5. The highest total buying power found in Step 4 is the optimum.
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Fig. 2. The convex hull for the modified Problem 2.

Now let us turn to the modified Problem 2. Here again we do not allow
the facility Y to be within a distance R of facility X. Parallel the discussion
about the regular Problem 2 we see that if we have a set / with buying
power P, then we can exclude the possibility of Y attracting all the demand
points in the set I, if we locate X within a distance of R/2 of the convex hull
of the set /. Unfortunately, this set in which we must locate X in order o
avoid the attraction of I by a possible Y is not a polygon, although it is
convex. (See fig. 2))

This convex set is bounded by segments of lines distant R/2 from the sid:s
of the convex hull of the set I, and by arcs of circles centered at the vertices
of the convex hull and with a radius of R/2. It seems difficuit to generalize
the procedure for the reguiar Problem 2. However, a second approach yiclds
a polynomial algorithm for this version too. The optimal solution is the
intersection of the shapes of the type shown in fig. 2 for all sets for which the
buying power is greater than or equal to the smallest possible P,. If the
intersection is not empty i: must contain a vertex. Such a vertex is cither an
intersection point between two lines or between a line and a circle, or
between two circles. There are O(n?) such lines (every pair of demand points
defines two lines which arc parallel to the line connecting the two points and
is distant R/2 from that line) and there are n such circles (circles with radius
R/2 centered at each demand point). We have at most O(n*) possible
intersection points between these lines or circles, as described above. For
each intersection point, which is a candidate for the optimal solution, we
need to solve a modified Problem 1 which is done in O(nlogn). Therefore,
the complexity of this algorithm is bounded by O(n* log n).

4.2. Hakimi (1981) has presented the problems in more gencral terms.
Problems 1 and 2 can be formulated with p facilities of type X and ¢
facilities of type Y. We discussed above the casc p=¢g=.. When p=1 and
g>1 the problem is quite simple. The solution to Problem 1 is found as
follows. When X i< not located on a demand point, then there exists a linc
passing through X with no demand points on it. Locate two Y’s adjacent to
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X perpendicular to that line on both sides of ii. {hese two Y's will attract all
the buying power, and no one can do better than that. When X is lccated on
a demand point then all demand points, except the one that X is located on,
can be attracted by Y’s as described above. Therefore, the solution to
Problem 2 is to locate X on the demand point with the most buying power.
When p>1 and g=1 we can solve Problem 1 with a slight modification of
the problem. Let us assume that a customer will buy at Y if the distance
between the customer and Y is less than the distance between the customer
and X by at least an amount of a given &. The constant ¢ can be positive,
zero, or negative. Practically, the difference between the two formulations
seems negligible since one can choose a very small ¢, but the analysis is much
different. For example, if p=g=1 and £¢=0 then the best location for Y is on
X attracting all demand points, compared with our formulation that yield a
solution for 1 adjacent to X and attracting only some demand points. An
optimal solution procedure of complexity O(n’logn) is now presented. For
that, we need some additional notation. I is the set of demand points. J is
the set of facilities of type Y. K is the set of facilities of type X. d;; for icl,
jeJ u K is the Euclidean distance between demand point i and facility j. p; is

the buying power of demand point i. ¢ is a given constant (can be negative,
Zero, or positive).

Let
R,‘ =mln :dik} —&.
ke K
Definc

jelJ
Problem 1 is to maximize f(Y), where

f=13 p
ieL{N)
by the vest choice of Y.

When g=1 the problem is the modified one-center problem discussed in
Drezner (1981). The modified one-center problem is to find a location for a
point that wiil cover the most buying power within given distances R,. If R;=
R and p;=1 then the problem is to cover the maximal nember of demand
points with a circle of radius R. The general problem (when R; and p; are not
necessarily equal) for one cneter is solved there by an aigorithm of
complexity of O(n*logn) where n is the number of demand points.

When g>1 then Problem 1 is a generalization of the modified one-center
problem. We need to find a location for g facilities of type Y that will cover
the most buying power within given distances R, to the closest facility (and if
R, =R and p,=1 the problem is to cover the maximal number of demand
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points with g circles of radius R). This problem can be solved by the
methods described in Drezner (1980). We should apply only one iteration of
the optimal algorithm described there. We need to find all maximal sets and

solve the resuiting set covering problem, finding the maximal F(Y) for all
possible covers.

In conclusion, the problem yet to be solved is Problem 2 when p>1 and
gz1.
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