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In this paper we present the problem of locating a facility when competition f’rom another 
facility is taken into consideration. Two problems are addressed here. One is the location of ;i 
new facility that will attract the most buying power from an existing facility. The other is the 
location of a kility that will secure the most buying power against the best location of 
competing facility to be set up in the future. 

1. Introduction 

‘Fhis paper deals with some competitive location theory on the plane. 
Main contributions to Nash equilibrium location problems include Hotelling 
(1929), Lerner and Singer (1941), Eaton and Lipsey (1973, and Wendell and 
McKelvey (1981). Another point of view: the Stackelberg equilibrium, was 
recently suggested by Hakimi (1981) for location problems on a network. in 
this paper we solve the Stackelberg equilibrium on the plane. 

Let n demand points be given on the plane, a weight, or buying power, 
p, ~0 is associated with each point; customers will buy in the new facility Y if 
the Euclidean distance between the cu.stomer and Y is less than the distance 
between the customer and X. We define the following two problems: 

Problem 1. Given a location of an existing facility X serving the demand 
points, find a location for a new facility Y that will attract the most buying 
power of demand points. 

Problem 2 (the Stackelberg equilibrium problem). Find a location for X 
such that it will retain the most buying power against :I best possible 
location for an additional facility Y The objective function, to be minimized, 
for X is the buying power for a best possible location of Y 

We can view both problems as t’wo aspects of the same question. Let say 
that two facilities X and Y are to be located on the plane. r’acility X has an 
advantage over facility Y because it attracts customers in case of a tie 
between the distances to facility X and to facility Y from a demand point. 
Facilities X and Y split the available buying power in the market. Problem 1 
is to find a best location for Y for a given location for X, and Problem 2 is 
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Fig. I. An example. 

to find a best location for X that will maximize its share of the market 
against the best locational strategy for Y. . 

As an example consider the problem given in fig. 1. Six demand points are 
located at the vertices of a simple hexagon with a side of length one. Equal 
buying power for each demand point is assumed. 

When X is iocated at the center of the hexagon, then Y can attrad three 
points at most. This can be shown by the triangle inequality: The sum of 
distances from any point on the plane to A and D is at least the distance AD 
which is equal to two. Therefore, at least one of the points A or D is distant 
at least one unit from Y, and thus at least one of the points A or D can not 
be attracted by Y since all distances between X and the demand points are 
equal to one unit. The same is true for the pairs B, E and C, F. Therefore, at 
least three points are not covered by Y It can be easily verified that three 
points can be attracted by Y when Y is located at G. Therefore, an optimal 
solution to Problem 1 when X is located at the center of the polygon, has a 
buying power of three. 

Now let us show that when X is not located at the center of the hexagon, 
then we can always find a location for Y that will attract at least four points. 
[Note that this location for Y is not necessarily at the center of the hexagon.) 
To find an optimal location for Y ,when X is inside the polygon, take for 
example location of X at G. The location must be off at least one of the 
diagonals connecting pairs of opposite points: AD, BE, or CF. G is not on 
CF. Draw a perpendicular line from G to CF. whose intersection point with 
CF is H. If we locate Y at H, t1len it must be closer than X to C and F, and 
it must be also closer to the other two vertices on the other side of CF -E 
and D. Ah together Y is closer to at least four points. In conclusion, the 
unique solution point to Problem Z is at :he center of the hexagon. 

In the following sections we construct procedures for the solution of 
problems one and two in the general case. 

Z Solution ta Problem 1 

‘#hen both locations of X and Y are given, then the split of the buying 
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power can be found as follows. Construct the perpendicular bisector to the 
segment connecting X and Y This perpendicular bisector divides the plane 
into two half-planes. All points in the closed hJf-plane which includes X 
(including points on the perpendicular bisector itself) will buy at X. Let us 
call it the X-half-plane. All the points in the other open half-plane which 
includes x the Y-half-plane, will buy at Y; This leads to the following 
theorem: 

7’heorem 1. One of the optimal locations for Y when X is given is 
infinitesimally close to X but not on X. 

Proof When Y is located with X the total buying power at Y is zero 
because the distance between a customer and Y is equal to the distance 
between the customer and X, and therefore all customers will buy at X. 
Therefore, no optima! solution to Y is at X. Let Y* different from X’s 
location be an optimal location for I! A site Y** on the open segment 
connecting Y* and X is at least as good as Y* because the Y-half-plane 
for Y** is larger than the Y-half-plane for Y*. Therefore, the theorem 
follows. QED. 

It follows from Theorem 1 that a solution to Problem 1, Y*, is ‘adjacent’ 
(close) to X. The variable yet to be determined is the direction in which Y is 
‘touching’ X. If Y is touching X in a direction A then the line dividing 
between the customers of X and Y is perpendicular to direction A through 
X. In conclusion, finding an optimal location for Y is equivalent to finding 
the best line through X such that Y-half-plane defined by it contains the 
most buying power for Y 

To solve this equivalent problem we have a simple procedure: find the 
direction of each demand point from X and sort these directions in an 
increasing order between 0 and 27~. Calculate in turn the buying power of a!! 
possible Y-half-planes which are all the points between the directions A and 
A + rc when A or A +7c is a direction to a demand point. One can easily 
devise the details of the algorithm. Its complexity is O(x!ogn) due to the 
sorting part, where n is the number of demand points. (See also section 4 for 
a discussion of a more genera! algorithm.) 

In some casts the solution for Y being adjacent to X is not very practical. 
In section 4 we extend the problem by imposing a minima! distance IT- 
quirement between Y and X. 

3. Solution to Problem 2 

While Problem 1 is quite simple, the second problem is much more 
interesting, i.,et us !irst establish some properties that will help us in 



&signing an algorithm for the solution of the pr,>blem. Let ,f’!X) be lime 
maximum buying power for a new fatility Y when %e location of X is @vex 
j-(X) should be minimized in Problem 2. 

Consider a line with no demand points on it. This line divides the plane 
into two haif-planes. Let I, be the set of all demand pGnts in one half-plane 
and I, be the set of all demand points in the other half-plane. Let P, be the 
buying power of the ctemand points in I,. and P, be t.k:c buying power of all 
demand points in I,. When we choose a location for X in, say, the first half- 
plane (which includes I,) then f(X). the buying power of K is at least P,. 
Now, assume that there are some points on the iine. If X is in the open first 
half-plane, then ./(X)2 P,. Therefore, a necessary condition for J(X)< P2 is 
that X belongs to the closed half-plane (including the line) which includes 1,. 

Consider now a subset of demand points I whose buying power is at least 
P,, If X is located outside the convex hull of I then Y can attract all 
members of I. But if X belongs to the convex hull (including its boundary) 
then Y cannot attract all the buying power of I. Consequently, if X is inside 
the intersection of all convex hulls of sets with buying power greater than or 
equal to P,. then .[(X)< P,. This is because Y cannot attract any set whose 
huying power is greater than or equal to P,. 

Finally consider the set of all lines passing through pairs of demand 
points. There are at most n(~t - I),‘2 such lines. Each line defines two half- 
planes and each half-plane defines a set of demand points (including the 
points on the line itself) which consequently defines the buying power of 
these points. Now consider the intersection of all hnlf-planes for which 

Y, 2 Y, for a given P,. In the next theorem we show that this intersection is 
the same as the intersection of all convc:, hulls of all sets whose buying 
power is at least Y,. 

Thecrrt7n 2. The intersection qf ull corms hulls .for the sets \$ith huyittg 
prwer l!f ut least P, is identictrl with the intersection of all half-plunes d~o.se 
buying power is at least P,. 

I’rllot. L.et % be a point not in the in:ersecrion of the convex hulls. 
Therefore. there must exist a polygon that Z does not belong to it and a side 
elf the polygon such that % is not in the half-plane defined by this side. Since 
the buying power of this half-plane is at least as the buying power of the Pet 
defining the polygon. the buying power of this helf-plane is at least P,, and 
thcrefctrr: % ib not III the intersection of the half-planes. Conversely, if Z does 
no! belong to the intersection of all half-planes with buying power of at least 
P . then there exists a half-plane that Z is outside it. This half-plane is 
&king a wt of buying power of at least P,, . which % is outside its convex 
hull. ‘T’hc thcclrem I\ prct\ed. qt-4). 



Thus, S(X)< P, if and only it the location of X be!c.rgs to the intersection 
4 the corresponding half-planes. 

Now we can present an algorithm for the saiution ol Problem 2. This 
algorithm is basically a bisecticn or, the buying power j(X). By the above 
discussion it is possible to determine if there is a solution with f(X)< P, for 
some P, by finding if there is a feasible solution in the intersection cf all 
half-planes whose associated buying power is at least P,. 

Algorithm for Problem 2 

Step 1. Calculate all lines through pairs of points and calculate all Pi for 
each half-plane defined by the lines. 

Step 2. Sort Pi in decreasing order. Set Pmirl and P,,, to the lowest and 
highest Pi I espectively. 

Step 3. Set Fe to the median value in the Pi vector for all rn,in < Pi < P,,,. If 
there is IIO Pi fulfilling Pmin <Pi < I’,,,,, go to Step ‘1. 

Step 4. Find if there is a feasible point to all half-planes for which Vim P,. 
This can be done by linear programming. 

Step 5. if there is a feasible solution point to the problem in Step 4 then 
minxiS( <P,. Set P,,, to P,, and go to Step 3. 

Step 6. Otherwise minx(f(X)) 2 PO. Set Pmin to P,, and go to Step 3. 
Step 7. A feasible point for the last P,,, is an optimal solution. The value of 

the objective function is Ptnin. 

The algorithm just described is polynomial since the linear programming 
part of it is polynomial by Khachian (1979). Even without the proof by 
Khachian we know that the procedure of finding the feasible point is 
polynomial because the number of variables is constant and equal to two. 
The number of constraints is bounded by O(n”) and therefore the complexity 
of finding a feasible point, by solving the dual problem, is bounded by O(n”). 
The complexity of the other calculations is lower, so since we perform the 
calculation of a feasible point O(logn) times, the complexity of the algorithm 
is bounded by 0(n4 log n). 

One may devise a differznt algorithm. Since the solution must be in the 
intersection of half-planes, there must be a feasible point which is a vertex of 
that intersection. Such a vertex is the intersection point of two lines. Them 
are 0(n4) such intersection points. For each intersection point we need to 
solve a Problem 1 whose complexity is O(n log n). Therefore, the compkxity of 
this algorithm is O(n510gn). We brought this algorithm up to show that the 
polynomiality of the the solution to Problem 2 is independent of the 
polynomiality of Linear Programming. 



490 Z. Drezner. Compediw locuiion sfrategies jtir two ,fac.ili~ies 

4. Ex ten&m 

4.1. One may wish, in order to be more practical, to ask for a minimal 

distance requirement between 1’ and X when X is set up. In other words, we 

are not allowed to locate Y within a circle of a given radius RhO centered at 

X’s location. It is clear by the proof of Theorem 1 that there exists an 

optimal solution to Problem I on the circumference of that cu-cte of radius R. 
The parpcndicutar bisector to a segment connecting X and a point on the 

circle is tangent to a circle centered at X with a radius of R/2. Therefore, 

instead of looking for a tine passing through X in Ihe solution to Problem 1, 

we need to took for the best Y-half-plane delined by a tine which is tangent 

lo a circle centered at X with a radius of R/2. Doing this is almost as simple 

as the solution proposed earlier for Problem I. If a demand point is inside 
the closed circle with a radius of R/ 2, it wilt never be attracted by I: For att 

points which are outside the circle of radius R/2 we calculate two directions 

of tangents to this circle. If WC move the tangent line around the circle, then 

;lt one direction the demand point wilt enter the half-plane detined by the 
tangent, and in another direction (not 180” apart as in the previous case) the 

demand point will go out of the Y-half-plane. We go over all possible Y-half- 

ptancs and lind the set with the highest buying power, which is the solution 
to the moditied Problem 1. 

Calculation of the ‘enter’ and ‘exit’ directions is done as follows. Let d be 

the distance between a demand point and X. and A be the direction that the 

demand point is seen from X. The enter direction is A -arccos(R/2d) and 

the cxil direction is A i arccos(K/2d). By adding or subtracting 2rr we can 
pet these directions to be between 0 and 2~. L,et us now formulate the 
procedure in an algorithmic way. 

Step I. Calculate enter and exit directions for all demand points which are 

outside the circle with a radius of R/2. 
Step 2. Sort all cntcr and exit directions. in case of a tie between two 

directions put the exit direction first. This is because a point gets 
intc the \‘-half-plant infinitesimally after the direction, but gels out of 
lhc Ytxltf-ptilne on the direction. 

Step 3. E’ind nII the points in the )‘_half-plane for direction zero, and find the 

lotilt buying power of IhiS Scl. 
Stc’p 4. C‘hcck in turn all point J in the sorted direction vector. If the next 

direction is an ‘enter‘ add Ihe buying power of the entering demand 

point lo the total buying power. But if the next direction is an ‘exit’ 
suhlract the buying power of Ihe exiting demand point from the 

total buying power. 

Step S. The highest total buying power found m Step 4 is the optimum. 
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Fig. 2. The convex hull Tar the modifid Problem 2. 

Now let us turn to the modified Problem 2. Here again we do not allow 
the facility Y to be within a distance R of facility X. Parallel the discussion 
about the regular Problem 2 we see that if we have a set I with buying 
power P, then we can exclude the possibility of Y attracting all the demand 
points in the set I, if we locate X within a distance of R/2 of the convex hull 
of the set 1. Unfortunately, this set in which we must locate X in order :o 
avoid the attraction of I by a possible Y is not a polygon, although it is 
convex. (See fig, 2.) 

This convex set is bounded by segments of lines distant R/2 from the sides 
of the convex hull of the set I, and by arcs of circles centered at the vcrticzs 
of the convex hull and with a radius of R/2. It seems difficult to gcnerali<e 
the procedure for the regular Problem 2. However, a second approach yields 
a polynomial algorithm far this version too. The optimal solution is the 
intersection of the shapes of the type shown in fig. 2 for all sets for which the 
buying power is greater than or equal to the smallest possible P,. If the 
intersection is not empty ii must contain a vertex. Such a vertex is either an 
intersection point between two lines or between a line and a circle, or 
between two circles. There are 0(n2) such lines (every pair of demand points 
defines two lines which are parallel to the line connecting the two points and 
is distant R/2 from that line) and there are n such circles (circles with radius 
R/2 centered at each demand point). We have at most 0(n4) yossiblc 
intersection points between these lines or circles, as described above. For 
each intersection point, which is a candidate for the optimal solution, WC 
need to solve a modified Problem 1 which is done in O(n logrt). Therefore. 
the complexity of this algorithm is bounded by O(n” logn). 

4..?. Hakinvi (1981) has presented the problems in more gcncral terms. 
Problems I and 2 can be formulated with p facilities of lype X and y 
facilities of type Y. We discussed above the cast p=q = ,. When p := I and 
y> I the problem is quite simple. The solution to Problem I is found ;IS 
follows. When X iq not located on a demand point, then there exists a lint 
passing through X with no demand points on it. Locate two Y’s adjaccni to 
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x perpendicular to that line on both sides of i;. i’hese two Y’s wtll attract all 
the buying power, and no one can do better than that. When X is located on 
a demand point then all demand points, except the one that X is located on, 
can be attracted by Y’s as described above. Therefore, the solution to 
Problem 2 is to locate X on the demand point with the most buying power. 

When p> 1 and q= 1 we can solve Problem 1 with a slight modification of 
the problem. Let us assume that a customer will buy at Y if the distance 
between the customer and Y is less than the distance between the customer 
and X by at least an amount of a given E. The constant E can be positive, 
zero, or negative. Practically, the difference between the two formulations 
seems negligible since one can choose a very small E, but the analysis is much 
different. For example, if p = q = 1 and E=O then the best location for Y is on 
X attracting a11 demand points, compared with our formulation that yield a 
solution for 1’ adjacent to X and attracting only some demand points. An 
optimal solution procedure of complexity O(n’ log n) is now presented. For 
that, we need some additional notation. I is the set of demand points. J is 
the set of facilities of type Y. K is the set of facilities of type X. di, for ill, 
j E J u K is the Euclidean distance between demand point i and facility j. pr is 
the buying power of demand point i. E is a given constant (can be negative, 
zero, or posihve). 

Let 
R, = mire [&I --:. 

kr-I 

Detinc 

L(Y)=tiEf Imin[dijJsR,i. 
je3 

Problem 1 is to maximize f(Y), where 

f’tY)= C Pi 
istAY) 

by the ‘best choice of Y. 
When q = t the problem is the modified one-center problem discussed in 

Drezner (I 98 I). The modified one-center problem is to find a location for a 
point that will cover the most buying power within given distances Ria If Ri= 
R and pr = I then the problem is to cover the maximal number of demand 
points with a circle of radius R. The general problem (when Rj and pi are not 
necessarily equal) for one cneter is solved there bv an algorithm of 
complexity of O(n’logn) where n is the number of demand points. 

When q > 1 then Problem 1 is a generalization of the modified one-center 
problem. We need to find a location for q facilities of type Y that will cover 
the most buying power within given distances Ri to the closest facility (and if 
R, :- R and p, == 1 the problem is to cover the maximal number ;)f demand 
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points .Nith q circles of radius R). This problem can be solved by the 
methods described in Dremer (1980). We should apply only one iteration of 
the optimal algorithm described there. We need to find all maximal sets and 
solve the resulting set covering problem, finding the maximal F(Y) for all 
possible covers. 

In conclusion, the problem yet to be solved is Problem 2 when p> 1 and 
qll. 
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