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UNIQUE SAT is the problem of deciding whether a given Boolean formula has 
exactly one satisfying truth assignment. This problem is a typical (moreover 
complete) representative of a natural class of problems about unique solutions. All 
these problems belong to the class DIFe= {L1--L2:L1,Lz~NP} studied by 
Papadimitriou and Yannakakis. We consider the relationship between these two 
classes, particularly whether UNIQUE SAT is DIFe-complete: It is if 
NP = c o -  NP. We construct an oracle relative to which UNIQUE SAT is not 
complete for DIF ~, and another oracle relative to which UNIQUE SAT is complete 
for DIF e, whereas NP v ~ co - NP. 

1. INTRODUCTION 

UNIQUE SAT is the following well-known problem. Given a Boolean 
formula, is it true that it has exactly one satisfying truth assignment? We are 
interested in the complexity of UNIQUE SAT relative to many-one 
polynomial time reductions. (As it often happens, the reductions constructed 
are in fact log-space computable.) 

UNIQUE SAT is easily seen to be co-NP-hard. Indeed, the set of 
unsatisfiable Boolean formulas, which is well known to be co-NP-complete, 
is reducible to UNIQUE SAT by assigning to each Boolean formula 
~p(x 1 ..... x . )  the formula 

(To A x , / x  ... A x . )  V (~Xo n ~o(x, ..... x . )) .  

It is also easy to see that UNIQUE SAT belongs to the class A~ of problems 
solvable in polynomial time by an algorithm with an NP oracle. The oracle 
is used to learn whether the given formula has at least one satisfying truth 
assignment and whether it has at least two. 
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Papadimitriou and Yannakakis (1982) introduced and studied the class 

DIF ~ = {L 1 - L2: L 1 , L 2 ~ NP} 

= {L 1 ~ L2: L 1 E NP and L 2 C co - NP}. 

They observed that UNIQUE SAT, considered as a set of formulas, is 
obviously in DIF ~. It is SAT minus {(p: ~0 has two distinct satisfying 
assignments}. They write: 

We note here that the precise complexity of UNIQUE SAT is a persistent open 
question. Our observation casts doubt on the recurring conjecture that it is 
complete for A2 e. 

We address the question whether UNIQUE SAT is complete for DIF P. It 
will be useful to consider this question in a somewhat more general context. 
Let UNIQUE SOLUTION, or simply US, be the class of sets L c y~* that 
can be represented in the form 

L =  I x C X ~ ' * I 3 ! y C ~ *  R (x , y )  I 

where R is a polynomially bounded polynomial-time computable relation. 
Here ~ and Z1 are finite alphabets and "polynomially bounded" means that 
there is a polynomial p such that length(y)~<p(length(x)) whenever R(x ,y) .  
It is clear that UNIQUE SAT belongs to the class US, since we can take 
R(x , y )  to be "x is a Boolean formula and y is a truth assignment satisfying 
it." Furthermore, the same technique, of coding computations as truth 
assignments, that is used to prove the NP-completeness of SAT, can also be 
used to prove that UNIQUE SAT is complete for the class US. 

The preceding remarks, along with the observation that US is closed under 
polynomial-time many-one  reducibility, easily imply that US c DIF e and 
that the following three questions are equivalent. 

(1) Is UNIQUE SAT complete for DIFP? 

(2) Is DIF p included in US? 

(3) Is DIF p equal to US? 

They also imply that the following two questions are equivalent to each other 

(4) Is UNIQUE SAT NP-hard? 

(5) Is NP included in US? 

In fact, all five of these questions are equivalent. Comparing (2) and (5), we 
see that it suffices to show that, if NP c US, then DIFPc_ US. Using the 
second formulation of the definition of DIF p and the fact that co - NP c US 
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(because UNIQUE SAT is co-NP-hard), we see that if suffices to show that 
US is closed under intersection. But this is easy: 

{x 13! yR~(x,y)} ~ {x[~! zR2(x, z)} =- {x I~! (y, z)(R~(x,y) A Rz(X, z))}. 

We shall work mainly with formulation (5) of the original question (1). 
This is partly because NP is easier to work with than DIF e and partly 
because the class US is easier to relativize to an oracle than the specific 
problem UNIQUE SAT. The appropriate relativization of UNIQUE SAT, 
like that of SAT, involves asking about truth assignments subject to certain 
constraints relating the truth values to the oracle. This is more awkward than 
the relativization of the class US, which involves merely allowing the use of 
the oracle in the computation of R in the definition of US. It is, of course, 
possible to work instead with other US complete problems that are easier to 
relativize; one such is the unique halting problem, defined as follows. An 
instance consists of a (standard code for a) nondeterministic Turing machine 
M and a natural number k in unary notation. The question about the 
instance (M, k) is whether M, with empty input, has exactly one halting 
computation of length at most k. This problem is easily seen to be US 
complete, and it can be relativized by simply taking M to be equipped with 
an oracle. 

It is conceivable that our question has an affirmative answer for trivial 
reasons. Specifically, it is conceivable that NP = c o - N P ,  and, in this 
situation, the fact that UNIQUE SAT is co-NP-hard immediately answers 
(4). Therefore, to avoid such trivialities, we are interested only in what 
happens under the assumption that NP 4= co - NP. 

We shall show that, in a sense, anything can happen. In Section 2 we 
construct an oracle relative to which NP ~ US and in Section 3 we construct 
an oracle relative to which NP ~_ US but NP 4= co -- NP. In view of the 
equivalence of (1)--(5), our results imply that UNIQUE SAT and the unique 
halting problem, relativized to oracles as indicated above, can be complete or 
incomplete for DIF p, depending on the oracle. Of course, if they are incom- 
plete for DIF e, then they are afortiori incomplete for the larger class A p 2 ,  SO 

the recurring conjecture quoted by Papadimitriou and Yannakakis is false 
relative to some oracles. 

2. AN ORACLE MAKING NP 92 US 

THEOREM 1. There is an oracle A ~_ {0, 1 }* such that NP A 92 US A. 

Proof We construct A in stages; initially it is empty, and at each stage a 
finite number (possibly zero) of words will be added to it. Also, at each 
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stage, we will "freeze" A up to some length l; this means that we decide not 
to add words of length l or less at any later stage. 

We work with a fixed enumeration M1, M2 .... of all nondeterministic 
query machines (Turing machines equipped to interact with an as yet 
unspecified oracle) with polynomial clock bounds Pz,P2 ..... The nth stage of 
the construction of A will be devoted to ensuring that the NP A set 

{x I 3y (y ~ A and length(x) --- length(y)) / (1) 

is different from the set 

{ x l M  A has exactly one halting computation on input x}. (2) 

This will suffice to prove the theorem, because every set in US ~, say 

{xl?!yR(x,y)} 

(with R polynomially bounded and polynomial-time computable in A), is of 
the form (2) for the machine M, which, with input x, guesses y and checks 
R(x,y). 

We now describe stage n of the construction. To simplify notation, we 
write M and p for M~ and p~. We write A for the set of words put into A at 
previous stages (the current A) and l for the length up to which A has been 
frozen in previous stages. We begin by fixing a natural number d, which will 
be the length of all the words (if any) to be added to A at the present stage. 
This d is to be chosen larger than l (so that the present stage will not violate 
the previous freeze), larger than the lengths of the present members of A, and 
so large that p(d) < 2 d- ' .  We consider three cases. 

Case 1. M A, o n  input 0 a, has exactly one halting computation. Then add 
nothing to A, but increase l to be larger than d and p(d). This increase in l 
guarantees that the case hypothesis will remain true despite any future 
additions to A because all the queries are about words shorter than p(d); 
thus 0 d belongs to the set in (2). But 0 a does not belong to the set in (1) 
since we have not added, and will not add, any words of length d to A. Thus 
we have achieved our goal in this case. 

Case 2. M A, o n  inpu t  0 a, has two or more halting computations. 
Choose two such computations and find an x C {0, 1 }d such that neither of 
these two computations involves a query about x; this is possible because, by 
the clock bound, each computation uses at most p(d) queries and 2p(d) < 2 d. 
Add x to A and increase I to be larger than d and larger than p(d). The 
choice of x and this increase in l guarantee that, even after all future 
additions to A, the same two halting computations still exist and show that 
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0 a will not belong to the set in (2). But, it will belong to the set in (1) 
because we have added x to A. So we have achieved our goal in this case. 

Case 3. Neither of the previous cases applies and there is a nonempty 
subset B of {0, 1} a such that M Av~ does not have exactly one halting 
computation on input 0 a. Then choose such a B and add all its members to 
A. Also increase I to be larger than d and larger than p(d). This increase in l 
again guarantees that the case hypothesis will remain true despite all future 
additions to A. Therefore, for the final A, 0 a does not belong to the set in (2), 
but it does belong to the set in (1) because B is nonempty. So we have 
achieved our goal in this case as well. 

To complete the proof, we derive a contradiction from the assumption that 
none of the three cases occurs. This assumption means that M A has no 
halting computation on 0 a but, for every nonempty B c {0, 1 }a, M A •B has 
exactly one halting computation on 0 a. We define an equivalence relation on 
the collection of all these nonempty sets B by calling B and B '  equivalent if 
and only if the unique halting computations of M A ~B and M A uB, on 0 a are 
identical. Thus, if we define the relevant part of B to be 

Rel(B) = {y @/0, 1 }a i The unique halting computation o f M  A ue 

o n  0 d involves a query about y}, 

then the equivalence class of B consists of those B '  such that B '  ~ ReI(B) = 
B ARel(B) .  This equivalence class has 2 m elements, where m - - 2  d -  
IRel(B)]. Since IRel(B)I <~p(d)< 2 d, every equivalence class has an even 
number of members. But these equivalence classes partition the collection of 
all nonempty subsets of {0, 1 }d, and the number of such subsets is 2 v ~ -  1, 
which is odd. This contradiction proves that one of the three cases must 
occur, so the construction of A and the proof of Theorem 1 are complete. 

3. AN ORACLE MAKING NP c_ US BUT NP ~ co -- NP 

Throughout this section, we use "M" to denote a nondeterministic Turing 
machine with a polynomial clock bound. Because of the clock bound, every 
computation will terminate; we use "halt" to mean " terminate- in  an 
accepting state." We let Halt(M) be the set of halting computations of M on 
empty input. We code computations by binary words in such a way that the 
machine itself is easily reconstructible from any of its computations. 

By a tagged computation of M, we mean a binary word of even length 
whose first half is in Halt(M); the second half, called the tag, is arbitrary. 

LEMMA. Suppose that L is a polynomial-time computable set that 
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contains exactly one tagged computation of  M whenever Halt(M) /s not 
empty. Then NP c_ US. 

Proof For any M and any input x, let Mx be the machine which, on 
empty input, prints x on the input tape and then behaves like M. Then the set 
of words accepted by M is 

{x I 3! y ( y  ~ L, and length(y) is even, 

and the first half o fy  is in Halt(Mx) ) }. (3) 

The predicate after the unique existential quantifier in (3) is clearly 
computable in polynomial time and it is polynomially bounded because of 
the clock bound on 3//. Thus, the NP set accepted by M is in US. 

THEOREM 2. There is an oracle C c {0, 1}* such that Npc  c_ US c and 
NP c 4= co - NP c. 

Proof We shall construct C so that its "even part" 

A = {x ~ C) length(x) is even} 

contains exactly one tagged computation for each M c such that Halt(M c) is 
nonempty; it will follow, by the lemma relativized to C, that NP c ~_ US c. 
The "odd part" of C, 

B = {x ~ C I length(x) is odd } 

will be constructed so that the NP c set 

Lengths(C) = {0ll C contains a word of length l} 

is not in co -- NpC; this part of the construction is essentially as in Baker et 
al. (1975). The subtlety here is to ensure that the two parts of the oracle do 
not obstruct each other's intended purpose. 

The construction of A and B proceeds by stages. In addition we construct 
also auxiliary sets A '  and B '  of words explicitly forbidden to be put into A 
and B, respectively. We describe below a stage n of the construction 
distinguishing between the cases when n is even or odd. The current finite 
approximations to A, A' ,  B, B '  are called simply A, A ' ,  B, B' .  (On the other 
hand, C always refers to the final value.) From time to time we update these 
sets by putting in additional words. At each stage, A will be reasonable in 
the sense that, for each machine M and any possible future C, at most one 
tagged computation of M c belongs to A. After stage n, A U A'  U B U B '  will 
contain all words of length at most n, as well as possibly some longer words. 
The construction will have the property that words of an odd length n are 
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added to B only at stage n; words of an even length n may be added to A at 
stage n and possibly at one earlier odd stage. 

Stage n, f o r  n even. Inspect, in lexicographic order, all binary words of 
length n. Whenever you find one that (i) is not in A'  and (ii) is a tagged 
computation for some M c that has no tagged computation already in A, put 
that word into A. All words of length n not in A or A '  when this procedure is 
finished are to be put into A' .  Observe that, in deciding whether a word x of 
length n is a tagged computation for some M c, we can (easily) determine the 
relevant M from x, and we can check the correctness of all the answers of 
the oracle in the alleged computation because the queries are shorter than x 
and A U A '  U B U B '  already contains all words of length less than n. Thus 
the construction at even stages is well defined. It clearly preserves the 
reasonableness of A, since we add a tagged computation for M c only if none 
was previously present. If  we can verify that, for every M c with Hal t(M c) 
nonempty, some tagged computation is eventually put into A, then the 
lemma will imply, since A is clearly polynomial-time computable from C, 
that N p c ~  US c. This verification, however, must be postponed, since it 
depends on what happends at odd stages. 

Stage n, f o r  n odd. At odd stages, we seek to "defeat" each machine M by 
ensuring that the set accepted by M c is not the complement of Lengths(C); if 
we do this for every M, we shall have N P  c 4= co - N P  c as desired. At stage 
n, consider the first (in a standard enumeration) machine M not defeated at 
any earlier odd stage, and let p be its polynomial clock bound. We assume, 
without loss of generality, that p(n)  ) n for all n. Unless both 

p(n)  < 2 "/2 (4) 

and 

all words in A ~AA' U B U B '  have length less than n, (5) 

we simply add to B '  all words of length n and go to stage n + 1, leaving M 
undefeated and thus to be considered again at stage n + 2. Recall that the 
construction is to have the property that words of an odd length n are added 
to B only at stage n; this ensures that no word of length n is already in B, so 
it is permissible to add them all to B ' .  If  both (4) and (5) hold, we shall 
defeat M. Before proceeding, however, we observe that every M will even- 
tually be defeated. For, suppose not, and let M be the first machine (in the 
enumeration) that is not defeated. Then, at all sufficiently late odd stages, the 
machine under consideration is M and (4) holds. Furthermore, at these 
stages and the intervening even stages, no word longer than the stage number 
is added to A U A'  kA B U B' .  It follows that (5) will eventually hold, and M 
will be defeated contrary to our assumption. 
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The procedure for defeating M, when (4) and (5) hold, is as follows. 
Consider all sets X that 

(i) consist of words of even lengths <.%p(n), 

(ii) include A and are disjoint from A' ,  and 

(iii) are reasonable (in the sense indicated above for A). 

If  there is no such X for which M xu8 accepts 0 n, then we add to B '  all 
words of odd lengths between n and p(n)  inclusive. (None of these are in B, 
so this is permissible.) Thus, when the construction is complete, 0 n will be in 
the complement of Lengths(C). We assert that, when the construction is 
complete, M c will not accept 0 n, so M is defeated. To prove this assertion, 
suppose M c had an accepting computation with input 0 n. It involves queries 
only of lengths <.Gp(n), so it is also an accepting computation relative to any 
oracle that agrees with C on words of lengths <-Gp(n), in particular relative to 
the oracle X U B, where 

X =  {x C C I length(x) is even and <.%p(n)} 

and where B is, as before, the present value of B; it is important here that we 
added to B '  words of length up to p(n),  so that the present B agrees with the 
eventual C for these lengths. Since X satisfies (i)-(iii), M xu8 has no 
accepting computation on input 0 n, so we have a contradiction. Thus, M is 
defeated. 

There remains the case that there is an X satisfying (i)-(iii) such that 
M xu~ has an accepting computation on input 0 n. In this case, choose such 
an X and choose such a computation. Add to A all elements of X that occur 
as queries in this computation, add to A '  all words of even length that occur 
as queries but are not in X, and add to B '  all words of odd length that occur 
as queries but are not in B. These additions guarantee that, when the 
construction is finished, M c will accept 0 n by virtue of exactly the same 
computation. Then add to B all words of length n that were not added to B' .  
Notice that at most p(n)  words were added to B ' ,  so, by (4), some words 
were added to B. Therefore 0 n will be in Lengths(C), and M is defeated. 

This completes the construction, but we must still see that the even stages 
achieve the desired effect, that every M with Halt(M c) nonempty has a 
tagged computation in A. So suppose u, of length l, is the lexicographically 
first among the shortest words in Halt(MC). Suppose that no tagged 
computation for M c was put into A before stage n = 2/. Then at this rage we 
encounter the 2 t tagged computations uv, where v ranges over all binary 
words of length I. If  any of these are not in A'  when stage n begins, then the 
lexicographically first will be added to A as desired. We complete the 
proof by establishing that, when stage n begins, A '  has fewer than 2 ~ 
elements of length n. 
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At even stages k prior to stage n, A '  acquires only words of length k, so 
any word of length n that is in d '  when stage n begins must have been added 
to A'  at an earlier o d d  stage k at which (4) and (5) hold (for otherwise only 
B '  acquires members at stage k). Furthermore, all such words must have 
been added at the same stage k, for if one is added at stage k, then (5) fails 
for all k '  with k < k '  < n. So we need only show that, for any odd k < n, 
fewer than 2 t words are added to d '  at stage k. But the words added to A '  at 
stage k are those that occur as queries in a certain computation of length 
p ( k ) ,  where p is the polynomial clock bound used at stage k. Since (4) holds 
at stage k, the number of such queries is at most 

p ( k )  < 2 k/2 ( 2 n/2 ~ 2 t, 

as desired. This completes the proof of Theorem 2. 

R e m a r k .  By slightly altering the definition of "reasonable" we can 
arrange that, whenever a tagged computation for M c occurs in C, its first 
half is the lexicographically first among the shortest members of Halt(MC). 
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