
INFORMATION AND CONTROL 55, 80"-88 (1982)

On the Unique Satisfiability Problem

ANDREAS BLASS

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

AND

YURI GUREVICH

Department of Computer and Communication Sciences,
University of Michigan, Ann Arbor, Michigan 48109

UNIQUE SAT is the problem of deciding whether a given Boolean formula has
exactly one satisfying truth assignment. This problem is a typical (moreover
complete) representative of a natural class of problems about unique solutions. All
these problems belong to the class DIFe= {L1--L2:L1,Lz~NP} studied by
Papadimitriou and Yannakakis. We consider the relationship between these two
classes, particularly whether UNIQUE SAT is DIFe-complete: It is if
NP = c o - NP. We construct an oracle relative to which UNIQUE SAT is not
complete for DIF ~, and another oracle relative to which UNIQUE SAT is complete
for DIF e, whereas NP v ~ co - NP.

1. INTRODUCTION

UNIQUE SAT is the following well-known problem. Given a Boolean
formula, is it true that it has exactly one satisfying truth assignment? We are
interested in the complexity of UNIQUE SAT relative to many-one
polynomial time reductions. (As it often happens, the reductions constructed
are in fact log-space computable.)

UNIQUE SAT is easily seen to be co-NP-hard. Indeed, the set of
unsatisfiable Boolean formulas, which is well known to be co-NP-complete,
is reducible to UNIQUE SAT by assigning to each Boolean formula
~p(x 1 x .) the formula

(To A x , / x ... A x .) V (~Xo n ~o(x, x .)) .

It is also easy to see that UNIQUE SAT belongs to the class A~ of problems
solvable in polynomial time by an algorithm with an NP oracle. The oracle
is used to learn whether the given formula has at least one satisfying truth
assignment and whether it has at least two.

80
0019-9958/82 $2.00
Copyright © 1982 by Academic Press, lnc.
All rights of reproduction in any form reserved.

UNIQUE SATISFIABILITY PROGRAM 81

Papadimitriou and Yannakakis (1982) introduced and studied the class

DIF ~ = {L 1 - L2: L 1 , L 2 ~ NP}

= {L 1 ~ L2: L 1 E NP and L 2 C co - NP}.

They observed that UNIQUE SAT, considered as a set of formulas, is
obviously in DIF ~. It is SAT minus {(p: ~0 has two distinct satisfying
assignments}. They write:

We note here that the precise complexity of UNIQUE SAT is a persistent open
question. Our observation casts doubt on the recurring conjecture that it is
complete for A2 e.

We address the question whether UNIQUE SAT is complete for DIF P. It
will be useful to consider this question in a somewhat more general context.
Let UNIQUE SOLUTION, or simply US, be the class of sets L c y~* that
can be represented in the form

L = I x C X ~ ' * I 3 ! y C ~ * R (x , y) I

where R is a polynomially bounded polynomial-time computable relation.
Here ~ and Z1 are finite alphabets and "polynomially bounded" means that
there is a polynomial p such that length(y)~<p(length(x)) whenever R(x ,y) .
It is clear that UNIQUE SAT belongs to the class US, since we can take
R(x , y) to be "x is a Boolean formula and y is a truth assignment satisfying
it." Furthermore, the same technique, of coding computations as truth
assignments, that is used to prove the NP-completeness of SAT, can also be
used to prove that UNIQUE SAT is complete for the class US.

The preceding remarks, along with the observation that US is closed under
polynomial-time many-one reducibility, easily imply that US c DIF e and
that the following three questions are equivalent.

(1) Is UNIQUE SAT complete for DIFP?

(2) Is DIF p included in US?

(3) Is DIF p equal to US?

They also imply that the following two questions are equivalent to each other

(4) Is UNIQUE SAT NP-hard?

(5) Is NP included in US?

In fact, all five of these questions are equivalent. Comparing (2) and (5), we
see that it suffices to show that, if NP c US, then DIFPc_ US. Using the
second formulation of the definition of DIF p and the fact that co - NP c US

82 BLASS AND G U R E V I C H

(because UNIQUE SAT is co-NP-hard), we see that if suffices to show that
US is closed under intersection. But this is easy:

{x 13! yR~(x,y)} ~ {x[~! zR2(x, z)} =- {x I~! (y, z)(R~(x,y) A Rz(X, z))}.

We shall work mainly with formulation (5) of the original question (1).
This is partly because NP is easier to work with than DIF e and partly
because the class US is easier to relativize to an oracle than the specific
problem UNIQUE SAT. The appropriate relativization of UNIQUE SAT,
like that of SAT, involves asking about truth assignments subject to certain
constraints relating the truth values to the oracle. This is more awkward than
the relativization of the class US, which involves merely allowing the use of
the oracle in the computation of R in the definition of US. It is, of course,
possible to work instead with other US complete problems that are easier to
relativize; one such is the unique halting problem, defined as follows. An
instance consists of a (standard code for a) nondeterministic Turing machine
M and a natural number k in unary notation. The question about the
instance (M, k) is whether M, with empty input, has exactly one halting
computation of length at most k. This problem is easily seen to be US
complete, and it can be relativized by simply taking M to be equipped with
an oracle.

It is conceivable that our question has an affirmative answer for trivial
reasons. Specifically, it is conceivable that NP = c o - N P , and, in this
situation, the fact that UNIQUE SAT is co-NP-hard immediately answers
(4). Therefore, to avoid such trivialities, we are interested only in what
happens under the assumption that NP 4= co - NP.

We shall show that, in a sense, anything can happen. In Section 2 we
construct an oracle relative to which NP ~ US and in Section 3 we construct
an oracle relative to which NP ~_ US but NP 4= co -- NP. In view of the
equivalence of (1)--(5), our results imply that UNIQUE SAT and the unique
halting problem, relativized to oracles as indicated above, can be complete or
incomplete for DIF p, depending on the oracle. Of course, if they are incom-
plete for DIF e, then they are afortiori incomplete for the larger class A p 2 , SO

the recurring conjecture quoted by Papadimitriou and Yannakakis is false
relative to some oracles.

2. AN ORACLE MAKING NP 92 US

THEOREM 1. There is an oracle A ~_ {0, 1 }* such that NP A 92 US A.

Proof We construct A in stages; initially it is empty, and at each stage a
finite number (possibly zero) of words will be added to it. Also, at each

UNIQUE SATISFIABILITY PROGRAM 83

stage, we will "freeze" A up to some length l; this means that we decide not
to add words of length l or less at any later stage.

We work with a fixed enumeration M1, M2 of all nondeterministic
query machines (Turing machines equipped to interact with an as yet
unspecified oracle) with polynomial clock bounds Pz,P2 The nth stage of
the construction of A will be devoted to ensuring that the NP A set

{x I 3y (y ~ A and length(x) --- length(y)) / (1)

is different from the set

{ x l M A has exactly one halting computation on input x}. (2)

This will suffice to prove the theorem, because every set in US ~, say

{xl?!yR(x,y)}

(with R polynomially bounded and polynomial-time computable in A), is of
the form (2) for the machine M, which, with input x, guesses y and checks
R(x,y).

We now describe stage n of the construction. To simplify notation, we
write M and p for M~ and p~. We write A for the set of words put into A at
previous stages (the current A) and l for the length up to which A has been
frozen in previous stages. We begin by fixing a natural number d, which will
be the length of all the words (if any) to be added to A at the present stage.
This d is to be chosen larger than l (so that the present stage will not violate
the previous freeze), larger than the lengths of the present members of A, and
so large that p(d) < 2 d- ' . We consider three cases.

Case 1. M A, o n input 0 a, has exactly one halting computation. Then add
nothing to A, but increase l to be larger than d and p(d). This increase in l
guarantees that the case hypothesis will remain true despite any future
additions to A because all the queries are about words shorter than p(d);
thus 0 d belongs to the set in (2). But 0 a does not belong to the set in (1)
since we have not added, and will not add, any words of length d to A. Thus
we have achieved our goal in this case.

Case 2. M A, o n inpu t 0 a, has two or more halting computations.
Choose two such computations and find an x C {0, 1 }d such that neither of
these two computations involves a query about x; this is possible because, by
the clock bound, each computation uses at most p(d) queries and 2p(d) < 2 d.
Add x to A and increase I to be larger than d and larger than p(d). The
choice of x and this increase in l guarantee that, even after all future
additions to A, the same two halting computations still exist and show that

84 BLASS AND GUREVICH

0 a will not belong to the set in (2). But, it will belong to the set in (1)
because we have added x to A. So we have achieved our goal in this case.

Case 3. Neither of the previous cases applies and there is a nonempty
subset B of {0, 1} a such that M Av~ does not have exactly one halting
computation on input 0 a. Then choose such a B and add all its members to
A. Also increase I to be larger than d and larger than p(d). This increase in l
again guarantees that the case hypothesis will remain true despite all future
additions to A. Therefore, for the final A, 0 a does not belong to the set in (2),
but it does belong to the set in (1) because B is nonempty. So we have
achieved our goal in this case as well.

To complete the proof, we derive a contradiction from the assumption that
none of the three cases occurs. This assumption means that M A has no
halting computation on 0 a but, for every nonempty B c {0, 1 }a, M A •B has
exactly one halting computation on 0 a. We define an equivalence relation on
the collection of all these nonempty sets B by calling B and B ' equivalent if
and only if the unique halting computations of M A ~B and M A uB, on 0 a are
identical. Thus, if we define the relevant part of B to be

Rel(B) = {y @/0, 1 }a i The unique halting computation o f M A ue

o n 0 d involves a query about y},

then the equivalence class of B consists of those B ' such that B ' ~ ReI(B) =
B ARel(B) . This equivalence class has 2 m elements, where m - - 2 d -
IRel(B)]. Since IRel(B)I <~p(d)< 2 d, every equivalence class has an even
number of members. But these equivalence classes partition the collection of
all nonempty subsets of {0, 1 }d, and the number of such subsets is 2 v ~ - 1,
which is odd. This contradiction proves that one of the three cases must
occur, so the construction of A and the proof of Theorem 1 are complete.

3. AN ORACLE MAKING NP c_ US BUT NP ~ co -- NP

Throughout this section, we use "M" to denote a nondeterministic Turing
machine with a polynomial clock bound. Because of the clock bound, every
computation will terminate; we use "halt" to mean " terminate- in an
accepting state." We let Halt(M) be the set of halting computations of M on
empty input. We code computations by binary words in such a way that the
machine itself is easily reconstructible from any of its computations.

By a tagged computation of M, we mean a binary word of even length
whose first half is in Halt(M); the second half, called the tag, is arbitrary.

LEMMA. Suppose that L is a polynomial-time computable set that

UNIQUE SATISFIABILITY PROGRAM 85

contains exactly one tagged computation of M whenever Halt(M) /s not
empty. Then NP c_ US.

Proof For any M and any input x, let Mx be the machine which, on
empty input, prints x on the input tape and then behaves like M. Then the set
of words accepted by M is

{x I 3! y (y ~ L, and length(y) is even,

and the first half o fy is in Halt(Mx)) }. (3)

The predicate after the unique existential quantifier in (3) is clearly
computable in polynomial time and it is polynomially bounded because of
the clock bound on 3//. Thus, the NP set accepted by M is in US.

THEOREM 2. There is an oracle C c {0, 1}* such that Npc c_ US c and
NP c 4= co - NP c.

Proof We shall construct C so that its "even part"

A = {x ~ C) length(x) is even}

contains exactly one tagged computation for each M c such that Halt(M c) is
nonempty; it will follow, by the lemma relativized to C, that NP c ~_ US c.
The "odd part" of C,

B = {x ~ C I length(x) is odd }

will be constructed so that the NP c set

Lengths(C) = {0ll C contains a word of length l}

is not in co -- NpC; this part of the construction is essentially as in Baker et
al. (1975). The subtlety here is to ensure that the two parts of the oracle do
not obstruct each other's intended purpose.

The construction of A and B proceeds by stages. In addition we construct
also auxiliary sets A ' and B ' of words explicitly forbidden to be put into A
and B, respectively. We describe below a stage n of the construction
distinguishing between the cases when n is even or odd. The current finite
approximations to A, A' , B, B ' are called simply A, A ' , B, B' . (On the other
hand, C always refers to the final value.) From time to time we update these
sets by putting in additional words. At each stage, A will be reasonable in
the sense that, for each machine M and any possible future C, at most one
tagged computation of M c belongs to A. After stage n, A U A' U B U B ' will
contain all words of length at most n, as well as possibly some longer words.
The construction will have the property that words of an odd length n are

86 BLASS AND GUREVICH

added to B only at stage n; words of an even length n may be added to A at
stage n and possibly at one earlier odd stage.

Stage n, f o r n even. Inspect, in lexicographic order, all binary words of
length n. Whenever you find one that (i) is not in A' and (ii) is a tagged
computation for some M c that has no tagged computation already in A, put
that word into A. All words of length n not in A or A ' when this procedure is
finished are to be put into A' . Observe that, in deciding whether a word x of
length n is a tagged computation for some M c, we can (easily) determine the
relevant M from x, and we can check the correctness of all the answers of
the oracle in the alleged computation because the queries are shorter than x
and A U A ' U B U B ' already contains all words of length less than n. Thus
the construction at even stages is well defined. It clearly preserves the
reasonableness of A, since we add a tagged computation for M c only if none
was previously present. If we can verify that, for every M c with Hal t(M c)
nonempty, some tagged computation is eventually put into A, then the
lemma will imply, since A is clearly polynomial-time computable from C,
that N p c ~ US c. This verification, however, must be postponed, since it
depends on what happends at odd stages.

Stage n, f o r n odd. At odd stages, we seek to "defeat" each machine M by
ensuring that the set accepted by M c is not the complement of Lengths(C); if
we do this for every M, we shall have N P c 4= co - N P c as desired. At stage
n, consider the first (in a standard enumeration) machine M not defeated at
any earlier odd stage, and let p be its polynomial clock bound. We assume,
without loss of generality, that p(n)) n for all n. Unless both

p(n) < 2 "/2 (4)

and

all words in A ~AA' U B U B ' have length less than n, (5)

we simply add to B ' all words of length n and go to stage n + 1, leaving M
undefeated and thus to be considered again at stage n + 2. Recall that the
construction is to have the property that words of an odd length n are added
to B only at stage n; this ensures that no word of length n is already in B, so
it is permissible to add them all to B ' . If both (4) and (5) hold, we shall
defeat M. Before proceeding, however, we observe that every M will even-
tually be defeated. For, suppose not, and let M be the first machine (in the
enumeration) that is not defeated. Then, at all sufficiently late odd stages, the
machine under consideration is M and (4) holds. Furthermore, at these
stages and the intervening even stages, no word longer than the stage number
is added to A U A' kA B U B' . It follows that (5) will eventually hold, and M
will be defeated contrary to our assumption.

UNIQUE SATISFIABILITY PROGRAM g7

The procedure for defeating M, when (4) and (5) hold, is as follows.
Consider all sets X that

(i) consist of words of even lengths <.%p(n),

(ii) include A and are disjoint from A' , and

(iii) are reasonable (in the sense indicated above for A).

If there is no such X for which M xu8 accepts 0 n, then we add to B ' all
words of odd lengths between n and p(n) inclusive. (None of these are in B,
so this is permissible.) Thus, when the construction is complete, 0 n will be in
the complement of Lengths(C). We assert that, when the construction is
complete, M c will not accept 0 n, so M is defeated. To prove this assertion,
suppose M c had an accepting computation with input 0 n. It involves queries
only of lengths <.Gp(n), so it is also an accepting computation relative to any
oracle that agrees with C on words of lengths <-Gp(n), in particular relative to
the oracle X U B, where

X = {x C C I length(x) is even and <.%p(n)}

and where B is, as before, the present value of B; it is important here that we
added to B ' words of length up to p(n), so that the present B agrees with the
eventual C for these lengths. Since X satisfies (i)-(iii), M xu8 has no
accepting computation on input 0 n, so we have a contradiction. Thus, M is
defeated.

There remains the case that there is an X satisfying (i)-(iii) such that
M xu~ has an accepting computation on input 0 n. In this case, choose such
an X and choose such a computation. Add to A all elements of X that occur
as queries in this computation, add to A ' all words of even length that occur
as queries but are not in X, and add to B ' all words of odd length that occur
as queries but are not in B. These additions guarantee that, when the
construction is finished, M c will accept 0 n by virtue of exactly the same
computation. Then add to B all words of length n that were not added to B' .
Notice that at most p(n) words were added to B ' , so, by (4), some words
were added to B. Therefore 0 n will be in Lengths(C), and M is defeated.

This completes the construction, but we must still see that the even stages
achieve the desired effect, that every M with Halt(M c) nonempty has a
tagged computation in A. So suppose u, of length l, is the lexicographically
first among the shortest words in Halt(MC). Suppose that no tagged
computation for M c was put into A before stage n = 2/. Then at this rage we
encounter the 2 t tagged computations uv, where v ranges over all binary
words of length I. If any of these are not in A' when stage n begins, then the
lexicographically first will be added to A as desired. We complete the
proof by establishing that, when stage n begins, A ' has fewer than 2 ~
elements of length n.

88 BLASS AND GUREVICH

At even stages k prior to stage n, A ' acquires only words of length k, so
any word of length n that is in d ' when stage n begins must have been added
to A' at an earlier o d d stage k at which (4) and (5) hold (for otherwise only
B ' acquires members at stage k). Furthermore, all such words must have
been added at the same stage k, for if one is added at stage k, then (5) fails
for all k ' with k < k ' < n. So we need only show that, for any odd k < n,
fewer than 2 t words are added to d ' at stage k. But the words added to A ' at
stage k are those that occur as queries in a certain computation of length
p (k) , where p is the polynomial clock bound used at stage k. Since (4) holds
at stage k, the number of such queries is at most

p (k) < 2 k/2 (2 n/2 ~ 2 t,

as desired. This completes the proof of Theorem 2.

R e m a r k . By slightly altering the definition of "reasonable" we can
arrange that, whenever a tagged computation for M c occurs in C, its first
half is the lexicographically first among the shortest members of Halt(MC).

REFERENCES

BAKER, T., GILL, J. AND SOLOVAY, R. (1975), Relativizations of P = ?NP question, S l A M d.
Comput. 4, 431-442.

PAPADIMITR1OU, C. H. AND YANNAKAKIS, M. (1982), The complexity of facets (and some
facets of complexity), in "Proceedings of the 14th Annual ACM Symposium on Theory of
Computing," San Francisco, May.

