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The properties of several distance measures for discrete stationary channels with 
memory are studied. All are based on Ornstein's d-random process distance. The 
strongest of  these distances has been employed in a theory concerned with the 
approximation of d-continuous conditionally almost block independent (CABI) 
channels by primitive and other simple models. Here the approximation with 
respect to the weaker distances and the equivalence of the weaker distances to the 
strongest is investigated. In addition, an exact representation of a d-continuous 
CABI channel as an infinite sliding-block coding of the input joined with an I.I.D. 
noise source is developed. 

I. INTRODUCTION 

In earlier work on the approximation of discrete stationary channels with 
memory by channels with finite structures (Neuhoff and Shields 1979, 
1982a, and 1982b) we employed a measure of distance between channels to 
quantify the degree to which one channel approximates another. Specifically, 
we introduced a channel distance measure which is a generalization of 
Ornstein's d-distance for random processes (Ornstein 1973) and which we 
denote here by /). We showed that the class of channels that can be 
arbitrarily well approximated in / )  by either finite memory, primitive, or 
indecomposable finite state channels is characterized by the properties of d- 
continuity, an input memory decay condition due to Gray and Ornstein 
(1973), and conditional almost block independence (CABI), an output 
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memory decay condition (Neuhoff and Shields 1979). Clearly the 
significance of this work rests on the suitability of the/)-distance.  In this 
paper we explore its suitability by comparing it with several other candidates 
for distance measures. In addition as part of one aspect of the comparisons 
we develop an exact representation of a d~continuous, CABI channel as an 
infinite sliding-block coding of the input joined with an I.I.D. noise source. 
This result is of interest in its own right and hence is discussed in a separate 
section. 

Ideally, the distance measure one chooses should be a metric or 
pseudometric and should be the weakest distance having the property that if 
channels are close in this distance, then channel capacities are close and the 
performances obtained using a fixed channel code are also close. The /5- 
distance is a pseudometric and it has the required capacity and performance 
continuity. Furthermore if two channels have /5-distance 0, then they are 
e q u i v a l e n t  in the sense that for any block-stationary input process the input- 
output pair processes are identical. From the communications point of view 
equivalent channels are indistinguishable. On the other hand, the/5-distance 
is so strong that it assigns nonzero distance to some pairs of equivalent 
channels. In this paper we consider several weaker distances. Among them 
are two that have the properties that channels are equivalent if and only if 
they are zero distance apart and that close channels have similar capacities 
and code performances. In addition we show that for the important class of 
d-continuous channels our original measure /5  is uniformly equivalent to the 
weakest distance we consider. 

An outline of the paper follows. Section II contains notation and 
definitions. Section III contains definitions of various channel distances and 
statements of their properties. In Section IV we discuss channel approxi- 
mations and in Section V the completeness and exact representation of the d- 
continuous, CABI channels. Section VI has proofs of the results of 
Section III. Finally, the Appendix lists a number of useful properties we will 
draw upon. 

II. PRELIMINARIES 

I f A  1 is a set and A 1 a e-algebra of subsets of A1, then A~, denotes the set 
of all sequences X~, = (x ... . . .  x~) with x i CA1 and A2, denotes the usual 
product a-algebra for A~,. IfA~ is a finite set, we take A~ to be the set of all 
subsets of A m . We shall usually write x n, A", and A n instead of x t ,  At ,  and 
A t,  and x, A, and A instead of x _ ~ ,  A ~ ,  and A _~o~. If  m ~< k ~< l ~< n, then 
(a~) denotes the cylinder set in A~, determined by a~, that is, the set of all x~ 
such that x i = ai, k ~< i ~< I. The coordinate function shall be denoted by X i, 
that is, X i ( x ~ )  = x i, m <~ i <<, n. 
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I f  a is a probabil i ty measure on A~,  that is, on the measurable space 
(A~, A~n), and m <~ k<~ l ~ n ,  then a~ denotes the measure induced by a on 
A~. We will often write a '  instead of all and write a(a~)in place of a({a~}) 
or  a((a~)). The coordinate functions (X . . . . . .  X , )  on A"m are random variables 
with distribution governed by a. We usually write X n in place of  X~. When 
m = - o o  and n = +oo,  the sequence of  random variables X ~ c  is called a 
random process, or simply a process, and is ordinarily denoted by X or a. 

Let N be a positive integer. A process a is called N-stationary if 
a(TNE) = a(E), all E C A, where T denotes the shift operation: (Tx)i = xi+ i. 
A process is stationary if it is l -s tat ionary and block stationary if it is N- 
stat ionary for some N. A stat ionary process is ergodie if for any invariant set 
E, a(E) is 0 or 1. 

The ergodic decomposition [rio, w] of a stat ionary process a is described 
as follows (Gray  and Davisson 1974, Rohlin 1962) there is a probabil i ty 
space (O, F, w) such that  for each 0 C O there is an ergodic source a o such 
that for each E C A, 0 ~ ao(E ) is F measurable  and 

a(E) = f do(E) dw(O). 

Given two measures a and fl on A~ ,  a Vfl denotes the set of all measures 
co on A ~, × A n m with a and fl as marginals.  Any such co is called a joining of 
a and ft. 

Given two sequences x",y n CA", the normalized Hamming  distance 
d,(x", y") between them is defined to be the number of  places in which they 
disagree divided by n. For infinite sequences x, y C A we define d,(x, y )=  
dn(x ~, y") and d(x, y)  = lim sups.Go d~(x, y). 

The d,  distance (Ornstein 1973) between two measures a and fl on A", 
n < oo, is defined by 

d. (a ,  fl) = inf E~.[d.(X", Y")], 
weaV~ 

where X" and Y" are the coordinate random variables associated with a and 
fl, respectively, and E~o[ ] denotes expectation with respect to the measure co. 

The d distance between processes a and fl is defined by 

d(a, fl) = lim sup d , (a ,  fl). 

If  a and fl are stat ionary or block-stat ionary,  then the lim sup above is in 
fact a limit. Several other important  properties of  d ,  and d are listed in the 
Appendix. 

A channel [A,B, v,X, Y] is characterized by an input alphabet A~, an 
output alphabet B~ and a family of  measures /vx : x C A } on the output space 
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B such that for any F E  B, vx(F) is an A-measurable function of x. The 
channel input and output at time n are labelled X n and Yn, respectively, and 
the sequences of  inputs and outputs are labelled X and Y. When X = x, then 
Y is a random process characterized by the measure v x. Such a channel will 
ordinarily be denoted v. We will restrict attention to channels that have finite 
input and output alphabets and that are stationary; i.e. 

Vrx(TF ) = Vx(F), x E A, F C B. 

In general v x is a non-stationary process, however, if v is stationary and x is 
periodic with period N, then v x is N-stationary. 

A source is a random process a with alphabet the same as the channel's 
input alphabet A 1- By av we mean the pair process X, Y that results when the 
source a = X is the input to the channel v. The measure av is specified by 

av(E X F) = ~E Vx(F) da(x), E C A, F ~ B. 

If  a and v are each stationary (N-stationary), then av is also stationary (N- 
stationary). 

We now describe several categories of  channels. A channel v is 
memoryless if for each a E A 1 there exists a measure/~a on B 1 such that for 
any cylinder set (b"m), 

i = m  

A channel v is deterministic if there exists a mapping f :  A ~ B such that 

vx(tf(x)}) = 1 all x. 

Such a channel is stationary if and only i f f (Tx )  = Tf(x), for all x. 
A channel v is primitive (Neuhoff and Shields 1979) if there exists an 

I.I.D. process Z, called the noise source, and a function f,  called the sliding- 
block encoder, such that the output at time n is given by the formula 

Y, = f (TnZ,  T'X), 

and for some finite, positive integer L, called the coding half-width, 

f ( z , x ) = f ( f ,  fc) whenever Z~L=~I2C, XILL=£L,. 

Such a channel can be thought of as the cascade of  the memoryless channel 
that outputs (Z ,X)  followed by the deterministic channel defined by Y,, = 
f(Z]+L g,+L~ - L  ~ ~ n  - - L  J" 
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A stationary channel v is d-continuous (Gray  and Ornstein 1979) if for 
any e > 0 there is an N o such that 

d,(v x,vx)<e whenever n ~ > N  O and x ~=J?~. 

Such channels have a decaying input memory.  A stat ionary channel is CABI  
(Neuhoff  and Shields 1979) if for any e > 0 there is an N O and for any 
n ) N O there is an M o such that for any x and m ) M o 

dm(Vx, [Fx]n) ~ ~, 

where [Vx]" denotes the product  of  the measures .... (v~)°_~+l, (vx)]', 
(vx)]" + ~, .... The measure [vxl n is called the independent n-blocking of v~.. 

I I I .  C H A N N E L  D I S T A N C E S  

In this section we define several channel distance measures and state our 
result concerning their properties and relationships. The deepest of  these 
results (stated as (8b), (8c)) shows that for d-continuous channels the 
strongest and weakest distances are uniformly equivalent but not identical. 
All these results are established in Section VI, except for the final result, 
Property (11), which is a consequence of a representation theorem proved in 
Section V. Let v = [A, B, v, X, Y] and ¢ = [A, B, ¢, )(, I~] be stat ionary 
channels with identical alphabets. We define the following concepts of  
channel distance: 

( C D I )  /5(v, ¢) = lira sup sup d,(v x, Vx), 

(CD2)  _D(v, ¢) = sup lim sup dn(v ~, Cx), 
x n~oo 

(CD3)  Ds(v, ¢) = sup lira [ d,(Vx, ~) da(x), 
oLstationary n ~  a 

(CD4)  De(v, ~) = sup lim dn(av, a¢), 
o~ block stationary n ~  

(CD5)  O(v, ~) = sup lim d,(av, a¢). 
o~stationary n~co 

The first d i s t a n c e / )  was used in (Neuhoff  and Shields 1979, 1982a, and 
1982b), where it was denoted by d. The second distance _D is obtained by 
switching the supremum and limit superior. In the third, D s, and fifth, D, the 
supremum is over the class of  stationary sources, while in the fourth, D B, the 
supremum is over the class of  block-stat ionary sources. 

We now state a number  of  properties. With the exception of the last, they 
are proved in Section V1. 
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(1) In the definition of D s the limit exists and can be interchanged 
with the supremum over the class of stationary sources. With either ordering, 
the limit can be replaced by a supremum over n, and the supremum over the 
class of stationary sources can be replaced by a supremum over the class of 
stationary ergodic sources or over the class of block-stationary sources. 

(2) In the definition of D B, the limit exists. 

(3) In the definition of D the limit exists and can be interchanged with 
the supremum over the class of stationary sources. With either ordering, the 
limit can be replaced by a supremum over n, and the supremum over the 
class of stationary sources can be replaced by a supremum over the class of 
stationary ergodic sources. 

(4) Each distance is a pseudometric on the class of all stationary 
channels, but not a metric. 

(5) D>/D>/Ds>~D,>/D.  

(6) With the exception of D s and DB, any pair of the above distances 
are nonequivalent. (Two pseudometrics are equivalent if convergence in one 
implies convergence in the other.) We do not know whether D s and D u are 
identical or equivalent. 

(7) On the class of memoryless channels: 

(a) all the distances equal/5. 
(b) /5 is a metric. 

(8) On the class of d-continuous channels: 

(a) /5 = p = Ds = DB. 
(b) / )  is uniformly equivalent to D; that is, there is a constant c 

such t h a t / )  ~< cD. 
(c) There exist v and ~ such tha t /5  > D. 
(d) None of the distances are metrics. 

(9) Let (C, DB) denote the pseudometric space of all stationary 
channels with pseudometric Ds,  let (P, d) denote the metric space of all pair 
processes on A × B and for any source a let ~ denote the mapping v-~ av 
from (C, DB) into (P, d). Then 

(a) The family of mappings t~'~} is equicontinuous on the class 
of block-stationary sources. 

(b) The result (a) also holds if D B is replaced by any of the 
stronger distances but not if replaced by D. 

(c) The family of mapping {~'~/ from (C,D) into (P,d) is 
equicontinuous on the class of stationary sources. 

(10) If v and Y are stationary channels, then the following are 
equivalent statements: 



244 NEUHOFF AND SHIELDS 

(a) v and ~7 are equivalent; that is, d(av, a~)= O, for any block- 
stationary source a. 

(b) D ,  = O. 
(c) n = O. 
(d) Ds  = o. 
(e) For any stationary source a, d(av, a~)= O. 

(11) The class of d-continuous, CABI channels is complete with respect 
to / )  and, consequently, with respect to _D, Ds, DB, and D as they are all 
either equal or uniformly equivalent t o / )  on this class. 

IV. APPROXIMATION 

As mentioned earlier, the various channel distances are intended to 
measure the degree to which one channel approximates another. An ideal 
distance concept would be strong enough that close channels have similar 
behavior but weak enough that channels without significant differences are 
lumpted together. From Section III Property (9) we see that all the distances 
except the D-distance have the property that the family of mappings /qG}, 
~ = av, is equicontinuous on the class of block-stationary sources a. This 
guarantees that close channels will have similar capacities and similar 
performances when any block, convolutional, or sliding-block code is 
applied. While the D-distance has the property that {~'~/ is equicontinuous 
on the class of stationary sources, this is not sufficient to guarantee that 
close channels have similar performances for block or convolutional codes. 
On the other hand Property (10) shows that only D, D B, and D s are weak 
enough that equivalent channels are assigned zero distance. 

The above discussion suggests that D B is the most suitable distance for 
measuring the degree to which one channel approximates another. Let us 
note, however, that for the important class of D-continuous channels it does 
not matter which distance is chosen, for, as asserted in Property (8), they are 
all identical or at least uniformly equivalent. Finally, we note that the 
strongest distance/5 is the easiest to work with, for it is defined in terms of 
input sequences rather than sources. 

We now turn to the question of what channels can be arbitrarily well 
approximated by primitive channels relative to the various distances. For the 
/5-distance it is the class of d-continuous, CABI channels (Neuhoff and 
Shields 1979). For any of the weaker distance it is simply the closure of the 
d-continuous, CABI channels. Since Property (11) shows that the d- 
continuous, CABI channels are complete relative to any of the distances, 
their closure is obtained simply by adding all the channels at distance zero. 
Hence we have 
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THEOREM 4.1. For the D-, Ds-, D~-, or D-distance, the class of channels 
that can be arbitrarily well approximated by primitive channels relative to 
the given distance equals the class of d-continuous channels plus all other 
channels at distance zero from some d-continuous, CABI channel. 

The examples used to prove Property (6) of Section III also show that for 
the _D-distance the closure class is larger than the class of d-continuous, 
CABI channels, and for the Ds-distance the closure class is larger still. 
Property (10) of Section III shows that the closure class is that same for D s, 
D B, and D and equals the d-continuous, CABI channels plus all equivalent 
channels. 

V. COMPLETENESS AND EXACT REPRESENTATION 

In this section we show that the class of a~-continuous, CABI channels is 
/)-complete. Our proof also shows that the ouput of such a channel can be 
represented as an infinite length sliding-block coding of the input and an 
independent noise source. The key to these results is 

LEMMA 5.1. Let /1 be a d-continuous, CABI channel and let v be a 
primitive channel with noise source Z and sliding-block encoder f such that 
D~u,v) < e. Given 5 > 0 and a nontrivial binary I.I.D. process R, 
independent of Z, there is a primitive channel 6 with noise source (Z, R) and 
sliding-block encoder f such that 

(i) 502,6) < 5, 

(ii) Prob(f(Z,  x) 4= d~(Z, R, x)) < ~ + 5, all x C A. 

Proof We first show that given a > 0 there is an N1 = N~(a) such that if 
n ) N  1 and a]' CA]' there is a function Y~ = q~(z]', at)  with distribution fia, I 

-" " then such that if x~ = a~, 

( a )  -- - d.@a,~, ~ )  < a, 
1 (b) /n Fi=,  Prob(Y, :~ f (r~Z,  T'2)) < e + a. 

The integer N 1 is chosen so large that 

(1) 2UN , < a, 

where l is the coding half-width for the sliding-block encode r f  and so that if 
n/> N1, then the following two conditions hold: 

(2) d,(vx, ax) < e for all x, 

(3) d .~x ,  v~) < a if x~ --- ~' .  
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Condition (2) uses the assumption that/)(v,/~) < e, while condition (3) uses 
the assumption that ~t is d-continuous. 

To construct the function q). we fix a~, choose x such that x~" -- a] " and let 
U~ denote the unit interval [0, 1]. For each integer i in the range l + 1 ~< i ~< 
n - l we define the partition Q(i) = {Q~i): b E B~} of the n-dimensional cube 
U~' by 

(4) Q~i)= {z,~: f (Ti£ ,  T i x ) = b ,  whenever Z~---z~} 

For those integers i in the range l~<i~<l and n - I < i ~ < n  the partitions 
Q(i)= {QJ): b C BI} are defined arbitrarily. Let ~ be the measure on B7 
defined by 

i = l  ~Lbi J~ 

where 2 denotes Lebesgue measure on U]'. Condition (1) guarantees that 

(5) do(~, vx) < a. 

Next we use the partition definition of d,, (Property (A.1)) together with 
conditions (2) and (5) to choose partitions p(i) = {p~i): b C B1} of U]' such 
that the following two conditions hold: 

2 " P")) (6) (0~=~ --b, =Zx(b~), 
(7) ( l /n)  Y~7=, I P(i) - Q(i)l~ < e + ct, 

where the notation used in (7) is defined in (A.1). We then define 

n _ _  t l  ~n(Z~ a l )  - -  b 1 if z~ @ IJ pU) 
b i • 

i = I  

Condition (6) guarantees that the distribution fiat of ~9 n is the same as fix and 
hence condition (3) guarantees that the distribution property (a) holds. The 
definition (4) of Q(i) together with condition (7) guarantees that property (b) 
holds. 

The function ~0~ defines a block code of length n from U~ ×A~ into B~'. 
This block code can be used to define a sliding-block code which in turn 
defines the desired approximating channel 17 as shown in our earlier paper 
(Neuhoff and Shields 1979, Appendix C). We sketch the idea here, referring 
the reader to our earlier paper for details. 

Let us fix N/> N 1 and choose a cylinder set E in the R process of such 
low probability that the waiting time r between occurrences of E is, with 
high probability, very large relative to N. We then fix the sequence x and 
apply the block code (a N to successive blocks of length N from x following 
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the occurrence of E in Z. That is if n I and n 2 are successive occurrences of E 
we define 

bnl+N-I  l ~ n l + N -  1 n l + N - l ~  
nl = ~2¢'(Z//I  ' Xn  I ) '  

bnl+2N-1 t7n l+2N-I  n l + 2 N - l x  
nl+N ~ @Nt,~nl+N , Xn~+N )~ 

bnz+kN-1 tTnl+kN--I ~ Xnl+kN-1 
nl+(k_l) N -~- ~)Nk~nl+(k_l)N) , nl+(k-1)N], 

where k is the largest integer less than some fixed integer K (to be specified 
later) such that 

nl + k N -  1 ~ n2, 

and we define 

b~ = b' if nl + k N  <~ n <. n 2, 

where b' is some fixed letter. This defines a sliding-block codej~from U × A 
into B which yields the desired primitive channel ~. 

If the waiting time r is sufficiently large and if the cut-off rule K is 
sufficiently large, then most of the output consists of blocks of length N that 
are conditionally independent, given x. Thus the CABI property guarantees 
that for suitable choice of a and sufficiently large N, the resulting channel 
will be within ~ of p while property (b) guarantees that 

Prob(f(Z,  x) 4: j~(Z, R, x)) < e + 3, all x. 

This proves the lemma. 

We now use this lemma to establish /)-completeness (Theorem 5.3) and 
obtain a representation theorem (Theorem 5.4) for the class of d-continuous, 
CABI channels. These two results are simple consequences of 

LEMMA 5.2. Suppose {v (n) } is a sequenee o f  d-continuous, CABI 
channels such that D(v ~), v("+~))= e, ,  where ~ e, converges. Let Z be an 
I.I.D. noise source uniformly distributed on U I =  [0, 1]. There is a 
measurable function f :  U × A -~ B such that if  v is the channel defined by 

then 

Y,  = f ( T n Z ,  T"X), 

lim /)(v, v ~ )  = O. 
n ~ o o  
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Proof. Let {8, } be a summable sequence of positive numbers. Also let V, 
R (1), Rt2),..., be a sequence of I.I.D. processes, independent of each other, 
such that V, is uniformly distributed on [0, 1], each R (° is binary and 
nontrivial, and V, and each R (f is a function of Z , .  We then define the 
I.I.D. processes W (k) = { W~ k)}, k = 1, 2 ..... according to 

W~k) _ ( Z . , R ( f  ,R(2) (k) - . . . . . .  R ,  ). 

We can now use the approximation theorem of (Neuhoff  and Shields 1979) 
to choose a primitive channel ~(~) with noise source W ") and encoder f l  such 
that 

D(v "), ~(') < 81, 

Since/5(v (1), v (2)) = 81, we have 

/5(¢ "), v (2)) < 61 + 81, 

so we can apply Lemma 5.1 to obtain a primitive channel f(2) with noise 
source W (2) and encoder fz such that 

/)(ly(2) ¢(2)) < 62 and Prob(f~ :¢: f2)  <: 81 q- 82 + 81- 

We  can then proceed by induction to obtain primitive channels ~(3), g(a) ..... 
with respective noise sources W (3), W(4),..., and encoders f3 , f4  ..... such that 

(8) /')0)(" + 1>, l~(" + l)) < 8. + 1 

and 

(9) Prob(f .+l(Z,x)¢ f . (Z ,x))  < 5.+~ + 8. + e., all x. 

It follows from (9) that for each sequence x the limit 

f (Z ,  x) = !imo~ f . (Z,  x) 

exists with probability 1 and from (8) that the channel v defined by Y. = 
f (T 'Z ,  T"X) is the / ) - l imi t  of ~("). The triangle inequality 

B(v, v (")) <. B(v, ~(")) +/5(~(">, v (')) 

shows that l im, / ) (v ,  v (")) --- 0, which proves Lemma 5.2. 

THEOREM 5.3. The class old-continuous, CABI channels is D-complete. 

Proof. If {v (')} is / ) -Cauchy then we can drop to a subsequence, if 
necessary, to obtain 

D(v (~), v ("+1)) < 2 ". 
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If each v (") is d-continuous and CABI, we can use Lemma 5.2 to obtain the 
limit channel v, which is necessarily d-continuous and CABI (Neuhoff and 
Shields 1979). 

THEOREM 5.4. I f  v is d-continuous and CABI and Z & an Ll.D. noise 
source, uniformly distributed on [0, 1 ], there is a measurable function f (z ,  x) 
such that if f is the channel defined by 

then 

1?n = f (T"Z,  T"X), 

/ f ( v ,  = o. 

Proof. We just apply Lemma 5.2 with each v (') equal to v. 

The converse of Theorem 5.4 is false; that is, there is a measurable 
function f (z ,  x) such that if ~ is defined by !?, = f (TnZ,  T"X), then ~ is not 
d-continuous, as shown in the Appendix of (Neuhoff and Shields 1979). One 
might hope that such "infinitely" primitive channels are D-distance zero 
from the class of d-continuous, CABI channels, which is the/f-closure of the 
primitive channels. This is not true, as pointed out to us by J. P. Thouvenot, 
because of a result in Bailey (1976). A sequence x is typical of the stationary 
process a if each finite sequence at1 occurs in x with limiting relative 
frequency equal to a(atl). One can show that the set E of sequences that are 
typical of some ergodic measure of entropy zero is a Borel set so that its 
indicator function f =  TE is measurable. Bailey showed that there is no 
sequence {f,} such that f , (x )  depends only on x~ for whichf , (x )  converges 
almost everywhere to f (x)  for each ergodic measure a. Thus, if ~ is the 
channel defined by 17~ =f(T~X),  then D(v, ~) must be positive for any d- 
continuous, CABI channel v. 

VI.  PROOFS FOR SECTION I I I  

(1) I f  we let S denote the class of stationary sources a and let 

a, = f d~(Vx, Vx) da(x), 

then the definition of D s takes the form 

D s = s u p  lira a n. 
S n~oO 

If a, v, and f are stationary, then Property (A.3a) can be used to show that 
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ta.} is superaddit ive;  i.e., na. >/ma m + la;, whenever n = m + l. It  follows 
(cf. Gal lager  1968) that  lim n a n exists and equals sup .  a . ,  and hence we can 
write 

D s --- sup sup 
S n 

= sup sup 
n S 

d.(vx, L) da(x) 

d.(vx, ~x) as(x). 

Next we show that  supn can be replaced by lim n to obtain the formula  

Ds(v, ¢) = lira sup f dn(V~, Vx) da(x). (6.1) 
rt S 

We establish this by using the superaddi t ivi ty  of  {an} to obtain 

na n >/kmak,,, + la; >/kma,n, 

if n = k m  + l. If  l < m, then we can write 

na, ) kmam >~ n a m -  m. 

Thus if b ,  = SUPs a, and n ) m, then we have 

m 
b. ) b m - - - ,  

rl 

so that  sup .  b n = lira n b. ,  which proves (6.1). 
We  will now show that  replacing S by the larger class B of  block 

s ta t ionary sources does not increase D s. F o r  any N let a be an N-s ta t ionary  
source and let/3 be the s ta t ionary source defined by the formula  

N - - 1  N ~(E) ~- Z a(ViE)* 
i = 0  

Then for any n 

i = 0  

= [ d°(v~, ~x) da(x), 
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where we have used the stationarity of v and ~. It follows that the original 
definition, (CD3), can be written in the form 

Ds(v, 6) = sup l im[  d,(v~,_, vx) da(x). (6.2) 
ozEB n J 

We now show that if S is replaced in (CD3) by the smaller class E of 
ergodic sources, then D s does not decrease. If a is a nonergodic stationary 
source, then a has an ergodie decomposition [a o, w]. Hence 

Since there must exist some 0 such that the quantity in brackets is at least as 
large as the left-hand side of the above, it follows that D s is not made 
smaller by replacing S by E in (CD3). 

(2) For any block-stationary a, lira. d.(av, a~) is just d(av, a¢). The 
limit cannot, however, be replaced by sup.. 

(3) In the definition of D, for any a E S l i m .  d.(av, a~) is just 
•av, a~), which by Property (A.2)(a), equals sup, &(av, aF). Using the same 
technique as used in (1) for D s one can show 

D(v, 1~) = sup sup d.,(av, a6) 
tt o : e$  

= lira sup d,(av, a~). 
n a E S  

We now show that if the class S of stationary sources is replaced by the 
smaller class E of ergodic sources, then D does not get smaller. Let a be a 
nonergodic source in S and let [a o, w] be its ergodic decomposition. Then 

av(E× F)= [fEvx(F)dao(x)] dw(O), 

and there is a similar expression for a~. Hence by the convexity of d, 
(Property (A.4)(b)) 

d.(av, a¢) <~ ( d.(ao v, ao ¢) ctw(O). 
.3 

Since there must exist some 0 such that d,(av, a¢) ~ d,(a o v, a o ¢), it follows 
that D is not made smaller by replacing S by E. 

(4) Each distance is obviously non-negative and symmetric. The 
triangle inequality for each follows directly from the triangle inequality for 

643/55/1 3 17 
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d R. Hence, each is a pseudometric. An example of a pair of channels v, ~ for 
which /5(v, 6 ) =  0 was given in (Neuhoff and Shields 1979, Appendix A). 
Since Property (5) shows that the other distances are smaller, they too are 
zero. Hence, none of them are metrics. 

(5) The inequality /5/>_D is elementary. The inequality _D>~D s 
follows deom Fatou's lemma. The inequality D s >/D B follows from Proper- 
ty (A.4)(a) of the Appendix. Finally the inequality D~ >/D is obvious. 

(6) We demonstrate the nonequivalence of the various distances 
through a series of examples consisting entirely of binary deterministic 
channels with elphabets A 1 =B1 = {0, 1}. Let us observe that if v and f are 
deterministic channels with inputs x and ~ that produce outputs y and )~, 
respectively, then d~(Vx, Vx) = dn(y ,  .9). The binary complement  a ~ is defined 

C by aC= 0 iff a = 1 and we use (U~m) ¢ to denote the sequence ui ,  m ~ i <~ n. 

(a) To show t h a t / 5  and D are not equivalent, we exhibit a pair 
of channels v and ~ such that/5(v, ~) = 1 and _D(v, 6) = 0. Let 
v be the identity channel; that is, the output Y equals the 
input X. Let u( l ) ,u  ~2) ..... be a collection of aperiodic 
sequences in A such that no one is a shift of another (i.e., 
Tiu~J) 4= u ~), all i, j,  k with j :/= k). Let v ~J') be the sequence 
such that v(,J)=(u~J)) ~ if l < ~ n < . j ,  and v~ni)=u(j ) if 
otherwise. Let ~ be the deterministic channel that produces 
T~v (j) if X =  T~u ~j) for some i, j and produces X if otherwise. 

For any n there is an input sequence, namely u ("), for 
which the channels produce unequal outputs. In particular, 

d,(v~,~, ~ , , )  = d , (u  ~'), v ~n~) = 1. 

It follows that /)(v, ~ ) =  1. On the other hand for any input 
sequence x, the outputs are eventually identical. In particular, 
if x = Tiu ~), then 

dm(vx, ~)  = dm(u ~ ,  v ~ )  <~ n__, 
m 

while if x 4= Tiu ~n), all i, n, t h e n  dm(l~x, ~x) = O. Hence for any 
X 

lim s u p  dm(Vx, ~x) = 0 
m-~oo 

(b) 
and it follows that _D(v, 6) = 0. 

To show that _D is not equivalent to D s we exhibit a pair of 
channels v and ~ such that _D = 1 and D s = 0. Let v be the 
identity channel. Let u be some aperiodic input sequence, let 
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v = u  c, and let ~ be the channel that produces T~v when 
X = T~u for some i and produces X otherwise. For  any n 

Hence _D(v, ~) = 1. On the other hand, for any x ~ T~u, all i, 

d,(v~, Vx) = 0 all n. 

Now for any stationary a, the set {..., T ~u, u, Tu,...} has 
zero probability; hence 

f. d.(Vx, Vx) da(x)  = O. 

(c) 
Therefore Ds(v, 0 = O. 

Let us note that by Property (10) D B = 0 whenever D = 0. 
Hence it is not possible to demonstrate the nonequivalence of  
D B and D as in parts (a) and (b). To show that D B is not 
equivalent to D we exhibit a sequence of channels {v (k) } that 
converges to a channel v in the D-distance, but not in the D B- 
distance. 

For  any integer L >~ 2 let u (L) be the periodic sequence 
having period L and (u~ L) ..... u~ LI) = (0 1 1 1 1...). Let v (L~ be 
the periodic sequence having period L and (v]L),..., v~ L~) = 
(0 1 0 1 0...). Let v be the deterministic channel that produces 
Uv  (L) when X =  Tiu (L) for some i and L and produces X 
otherwise. For  any K let v (K) be the deterministic channel 
that produces Tiv (L) when X =  Tiu (L~ for some L < K and 
some i and produces w (~') = (vCL)) c when X = Tiu ~L) for some 
L / >  K and some i and produces X otherwise. Observe that 
the output of  v equals the output of  v (/° except if X is a shift 
of  u (L) for some L >/K, in which case the outputs disagree in 
every place. Therefore for any n 

d(Vx ' . ~t;)~ 1, x = Tiu (L) some i and L >~ K, V x J = 

(6.3) 
= 0, otherwise. 

We now show that DB(v , v(K)) - ,  1 as K--. 0o. Fix K > / 3  and 
let a (K) be the K-stationary source that assigns probability 
one to u (K). Then for any n Eq. (6.3) implies 

d . ( , ~ " % ,  a~I~'v ('~) = d . % ~ , ,  "v ~,~,, "~ ~ --  1. 

Hence Dr~(v, v (/~)) = I for all K >~ 3. 
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To show that  D(v, v(r))--+ 0 as K--+ m,  we will show that 
for any K and any stat ionary source a, 

iv1 (K)~ <5" L d(av, ~ " ~  K" 

Note that Property (3) implies that it is sufficient to consider 
only ergodic a. So let us fix K, n, and a and let 6 =  v tin. 
Since a is ergodic, the invariant sets E ( L ) =  {T~u(L): 0 ~  i~< 
L - - 1 }  either all have probabil i ty zero or exactly one has 
probabil i ty one. In the former case Property (A.4)(a) and 
(6.3) imply that for any n 

dn(av, a6) ~ f dn(vx, 6x) aa(x) = 0. (6.4) 

Hence d(av, a6) = 0. In the latter case there is exactly one L 
such that a({Tiu(L)})= l /L,  i = 0  ..... L - -  1. If  L < K ,  then 
just as in (6.4) d(av, a6) = 0. On the other hand if L >~ K, we 
can show that d(av, a6) is small by joining av and a6 so that 
the input X to v equals T)(, where X is the input to 6. In 
particular let co E avVa6  be the stat ionary measure on 
A × B N A X B  such that 

1 m({Tiu (L) } × {Tiv (L) } × {Ti+lU(L)} × {Ti+Iw(L)})=--~, 

i = 0,..., L -- 1. 

Then by Property (A.2)(b) 

d(av, a6) <~ 

<~ 

<~ 

Eo, dL(x, 2) + aL(r, ?) 
dL(u (L), Tu (L)) + dL(v (L), Tw (L)) 

2 1 T+Z- 

3 3 

L <~ K • 

In conclusion we have shown that for any ergodic a, 
d(av, av (K)) ~ 3/1(. It follows that D(v, v (~)) ~< 3/K and, 
finally, that D(v, v(K))~ 0 as K ~  oo. 

(7a) Suppose v and ~ are memoryless.  S i n c e / )  >~_D ~> D s ~> DB ~> D, it 
suffices to show t h a t / 5 / >  D. Since v and ¢ are memoryless,  for any a C A 1, 
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there are measures/~a and/2 a on B 1 such that  for any x with x I = a,/~a and 
Pa equal v xl and Vx ,~1 respectively. Let us choose a to maximize d l ~ . , f i ~ )  and 
let u = (...a, a, a,...). Then for any x and n the memoryless  property implies 
(see Property (A.3)(b))  

dn(lJx, ~x) -- L ~ dl(~lxi,fixi) < dl(~la,fia)" 
- -  n i= 1 

It follows tha t /9(v ,  F) ~ d l ~  a, pa). Now let a be the stat ionary source such 
that a ( { u } ) =  1. Then 

D(V, ~) /> d(av, a6) = d(v , ,  vu) =- dlQ, la, fla) /> /5(P, ~)" 

(7b) F rom part  (a) we see that  if/5(v, 6) = 0, then d l ~  ~, rio) = 0. This 
means /l~ = fi~, which in turn implies that v = 6. Hence D is a metric for 
memoryless  channels. 

(8a) Suppose v and f are d-continuous. Since 15/>_D/> D s/> D B it 
suffices to show that /5 < D B. Given 8 > 0 we use the d-continuity property 
of  both v and 6 to choose N so that if x N = 2 N, then 

.< e e (6.5) 
dN(V ~, v~) ..~ T and dN(6x, 6~) <<. T "  

In addition we may  choose N so there exists u C A such that 

e (6.6) dN(v., 6.) >//5(v, 0 3 " 

Let v be the periodic sequence with period N such that ViN +'~N+x~ = U~V for all i. 
Then (6.5), (6.6), and the triangle inequality imply 

dN(%, ~)  >1 g(v,  6) - 6. (6.7) 

Since v is periodic, v v and ~ are N-stat ionary and Property (A.2)(a) implies 

d(vv, vv) /> dN(Vv, vv)" (6.8) 

Now let a be the N-stat ionary source such that a ( { v } ) =  1. Then by the 
definition of  D B 

DB(V , 1~) /> d(a '¢ ,  ate) = d ( % ,  l ~ v ) / > / 5 ( v ,  1~) - 8, 

where we have used (6.7) and (6.8). Since e is arbitrary,  we have 

DB(V, 6) />/5(V, 6). 
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(8b) To show that D and / )  are un i fo rmly  equivalent we will show 
that if v and ~ are d-continuous, then 

z3(v, 0 D(v, 0 >~ 1 ~  (6.9) 

Fix e, 0 < e </5(v,  0)/3. By the d-continuity of v and 17 we can choose N O so 
that if x N0 = £No, then 

dNo(Vx, vz) <~ e and dNo(0 x, 0x) ~< e. (6.10) 

In addition let us choose N O to be 2 j-~ for some positive integer j so large 
that there exists u E A such that 

dNo(V u, 0u) >//)(V, 0) -- e. (6.1 1 ) 

We now claim there exists a periodic sequence v with period N =  3N o 
such that two inequalities hold 

d(v~,, 0~) >/zS(v, 0) e (6.12) 

d(v, Tkv)>/~, 0 < k < N .  (6.13) 

The idea is to choose _w = (w~ ... Wuo ) that is far apart from cyclic shifts of 
itself and let v ~ (v ..... VN) = (U, _W, _W), where u ~ (u I ..... uNo ). (The cyclic 
shift of w is (w2, w 3 ..... wN0, w~).) With _v so-chosen, Properties (A.2)(a) and 
(A,3)(a) imply 

'(6.14) 

Equation (6.12) then follows directly from (6.10), (6.11), (6.14), and the 
triangle inequality. To demonstrate (6.13) we arbitrarily choose two letters a 
and b from the alphabet A~ and let _w be a maximal length binary shift 
register sequence with length N o and with a's and b's as components (cf. 
Gallager 1968, pp. 230, 231). It is well known that any such sequence differs 
from any cyclic shift of itself in (N o + 1)/2 places. Furthermore we may 
assume that _w differs from u in at least N/2 places, for otherwise we could 
replace w by its complement (i.e., interchange a's and b's) and retain the 
property that it differs from cyclic shifts of itself in at least (N o + 1)/2 
places. To prove (6.13) we first observe that the periodicity of v implies 

d(v, Tkl)) = dN(ff, Sk~), 

where S_v denotes the cyclic shift of _v. To compute du(y, Sk_v) one must 
count the number of places where v and Sg_v disagree and divide by N. If k is 
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a multiple of N 0, then imbedded in this count is a count of the number of 
disagreements between u and _w, which is at least No/2. If k is not a multiple 
of No~2, then imbedded in this count is a count of the number of 
disagreements between w and some cyclic shift of w. In any case the number 
of disagreements is at least No~2 and (6.13) follows. 

Having proved (6.12) and (6.13), our goal now is to show 

d(%, 17~) (6.15) D(v, ~) >/ 6 

Since e is arbitrary, (6.12) and (6.15) imply D(v, ~) >//)(v, ¢ ) ) / ) ( v ,  ~)/18, 
which is the desired result. 

To prove (6.15), consider the stationary source a such that 
a({Tiv}) = 1IN. We will show that for any stationary joining 2 of av and a f  

EadN((XY ), (Xf ) )  ) d(v,, ~,) (6.16) 
6 

Since D >/d(av, a~), Eq. (6.15) follows from (6.16) and Property (A.2)(b). 
The idea behind (6.16) is that any joining must make X and 2 equal to shifts 
of v. If  the linking makes X = ) (  with significant probability, then (6.12) 
implies E a d  N is large. On the other hand if X is a shift of X with significant 
probability, then (6.13) implies Ead N is large. We now give the details. 

First consider the case where av and aF are ergodic. Then by Property 
(A.2)(c) it is sufficient to assume 2 is ergodic. For i =  0 ..... N -  1, let E i = 
{Tiv} × B. Notice that the sets Ei × E i are disjoint, that Ei × E~ = ( T ×  T) ~ 
(E 0 × E0) and that their union is invariant under T × 7". Since 2 is ergodic, 
their union has probability 0 or 1. In the former case X 4= J? with probability 
one and so 

E~dN((XY), (2f9 >~ E~dN(X N, 2 ~) > ~, (6.17) 

where the last inequality follows from (6.13). In the latter case X = J ~  with 
probability one and so 

E a dN( (XY), (AP~ = E A dN( Y , (6.18) 

Let co; be the measure on B × B induced by / l  restricted to E i × E i. That is, 

co,(F X P)-- 't({riv} XFX {r'v} XP) 
).(E i X El) 

F, fi E B. (6.19) 

Since the sets {E i × Ei}N=Xo~ are disjoint, are shifts of one another, and have 
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total measure 1, 2(E i × E,) = N -1 ,  all i. It is then easy to show that co, is an 
N-stationary joining of vri ~ and vr~, and it follows that 

: E~odN(y ' ~r) EadN(Y' ~ -N ,=o 

1 N--1 

/=0  

= ~v~, g) ,  (6.20) 

where the last equality follows Property (A.5). Together (6.17), (6.18), and 
(6.20) imply 

I 1 -  ~ I d(v~ '~)  (6.21) E a dN((XY ), ( X ~  >/min -~-, d(v~,, v~) > / ~ ,  

which is the desired result (6.16). 
Finally we prove (6.12) assuming av and ag are stationary but not 

necessarily ergodic. In this case av and a~ have ergodic decompositions 
[(aV)o, w] and [(ag)o, ~3], and the ergodic decomposition theory of Rohlin 
(1962) also shows there is a measure r ~ w Vr) and a measurable mapping 
(0, 09) ~ 20,0 C (ag)o V(a~)o such that 20, o is stationary and ergodic and for 
any F@ A × B × A × B, 

2(F) = f 20,o(F ) dr(O, ~o). 

Let G be the collection of all O, ~o such that the invariant set I..); (E; × E,) has 
2o. o measure 1. Then 

Ea[du]=f Eao,o[duldr(O,~p)+ f~ Eao,o[duldr(O,q~), (6.22) 

where d N denotes dw((XY ), (_~I>)). The argument leading to (6.17) shows that 
the second integral above can be bounded as 

r(GC) (6.23) ;acEao,o [dNl dr(O, q~) >1 

We now consider the first integral in (6.22). For (0, (9)E G, let COo,o, i be 
defined as in (6.19), but with 20, o replacing 2. It is straightforward to show 
that COo,o, i is an N-stationary joining of the N-stationary processes v°t~ and 
*o where l) T i v  ~ 

vOo(F)A= (aV)o (If'v} × F) a({Tiv}) =N(av)o ({Tiv I ×F) 
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and where vr, ~ ~ is defined similarly. The argument leading to (6.20) shows 
that for (0, 0) C G, 

E o,o[4d >t d(v °, 
Substituting this relation into the first integral in (6.22) gives 

fG Ea°'o[G] dr(O, q) >~ f d(v °, ¢o) dr(t), ~o) -- fG~ d(v°' go) dr(O, ~). (6.24) 

The second integral in (6.24) is upper bounded by r(G~). To bound the first 
integral we observe that 

%(F) = f v°(F) dw(O) and ~v(F) = f ~ (F )  d&(o). 

Since r ~ w Vv~, Property (A.4)(c) implies 

d(v o, ~o) dr(O, (o) >/d(v~,, ~,). 

Replacing the terms in (6.24) by their bounds gives 

fG&o.o [ 4 ]  > I ¢,) - r(C01 +, 

where 171 + ~=max{y, 0}. Finally, putting this inequality and (6.23) into 
(6.22) gives 

c) 
Ea[dN] >/Id(%'v~)-r(G¢)l+ + - T  - )  6 ' 

where the last inequality is easy to derive. This is the desired result (6.16) 
and completes the proof. 

(8c) Now we give an example of a pair of d-continuous channels and 
v and ~ such that D(v, 0 > D(v, ¢). Let L be an even integer, let u be the 
sequence 0 1 1 1 ... 1 of length L, and let v and ~ be binary deterministic 
channels ( A I = B I = { 0 , 1 } )  such that if X~+L-1=u,  then y ~ + L - l =  
0 1 0 1 . . . 0 1  and I7"~ +r ~ = I 0 1 0 . . .  10, while if ~l~kk_i+L-ll 4=_U for all 
i ~ {0, 1,..., L -- 1 t, then Yk = IT"k = Xk" Notice that v and ~ produce identical 
outputs where and only where u does not occur in the input. Second, since 
Yk and I7- k are determined by x k L+l, Xk--L + 2, ' ,  Xk+L 1, both channels have 
finite input memory and are therefore d-continuous (Neuhoff and Shields 
1979). 

In order to compute/)(v, ~) we consider the periodic input sequence v with 
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period N and v L = u. For  this input the outputs YLand I)~ disagree for all k. 
Hence, for any n, d~(v~, ~ )  = 1. It follows that D(v, ~) = 1. 

We now show that  D(v, ~ ) <  1. Let a be a stationary source. We shall 
obtain two bounds for d(av, a¢) by choosing two stat ionary joinings co and o5 
of av and a~ and using the inequality 

d(av, a~) <<. E~cl°((Xr), (X?)), (6.25) 

which by Property (A.2)(b) holds for any n and any stat ionary joining co 
and av and af. 

The first bound is obtained by choosing co so that X = J(  with probabil i ty 
one. That  is, we let 

co(E x ~ x P~ x P) = f ~  vx(v) 6AP) da(x) 

and observe that  co is stationary and has marginals  av and af,  respectively. 
Since co makes  X = )?, it follows that for any n 

d(av, af) <~ E~od~((XY ), (XY)) 

: e , o d ° ( Y ,  P) 

= f E~x6[d,,(Y, I7")] da(x), (6.26) 

where vx~ x denotes the product measure on B X B. When X = ) ~ =  x, the 
sequences Y" and I2 n disagree only where u occurs, and for each occurrence 
of _u there will be L disagreements. Let N(x") denote the number  of  
occurrences of y in x". That  is, N(x") is the number  of  integers i, 1 ~< i ~< 

i + L - - 1  n -- L + 1, such that  xi = y. It is easy to see that  

_ _  L E~x~xdn(y, re)4 N(x")L ~ . 
n tl 

Substituting this into (6.26), then using the fact that E,~[N(x")]= 
( n - - L  + 1)a((_u)) and simplifying gives 

L 
d(av, aQ <~ a((u))L + - - .  (6.27) 

n 

The second bound to d(av, af) is obtained by choosing 03 so that X = TX 
with probabil i ty one. That  is, we let 

03(E X F X / ' X P ) =  ~(E XFX T- ' i '  X T-'P) 



C H A N N E L  D I S T A N C E S  A N D  R E P R E S E N T A T I O N  261 

and observe that 05 has marginals cry and a~, respectively. We then have for 
any n 

d(av, a6) <~ E~ d.((XY),  (2!73) 

= f E ~  x [d.((XY), (219))] da(x). (6.28) 

When J ( =  TX = Tx, then wherever u occurs in x, there will be L - 2 places 
where )(  agrees with X. Furthermore in these L - 2 places I 7 will agree with 
Y. Hence the number of places where (XY) ~ agrees with (2(I))" is at least 
N(xn)(L -- 2), so that 

E~x~rx[dn((XY), (217)) 1 ~ 1 
N(x")(L -- 2) 

Substituting this into (6.28) and simplifying gives 

d(,~v, a~) ~< 1 - a(<_u>)(L - 2) 
n - - L + l  

f/ 

2 L 2 
~< 1 - a ( < u > ) L  + -Z + --n + --'Ln 

This inequality together with (6.27) shows that for any a and n 

! L 2 2 
d(av, a¢) <~ @ + - - +  + - - .  

n - {  Ln z 

It follows that 

1 2 
D(v, ~) <~ T +- Z ,  

and if L >/6, D(v, ~) < 1. 

(8d) Let v be a d-continuous channel. The construction given in 
(Neuhoff and Shields 1979, Appendix A) provides a distinct channel ~ such 
that 15@, ¢) = 0, and it is easy to see that ~ is also d-continuous. Hence /5  is 
not a metric on the d-continuous channels and, consequently, neither are the 
weaker distances. 

(9a) The equicontinuity of the mappings {q/~}~ B from (C, DB) into 
(P, d) follow directly from the definition of D B . 

(9b) The example presented in (6c) shows that equicontinuity is lost 
when D B is replaced by D. 
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(9c) It follows directly from the definition that the mappings {~u~}~ s 
from (C, D) into (P, d) are equicontinuous. 

(10) Statements (10a) and (10b) are obviously equivalent, as are 
statements (10c) and (10e). Statement (10b) implies (10c) since D B >/D. 
Statement (10c) implies (10d) because if D = 0, then for any stationary 
source a we have av=a~. Since v~ and ~ are each versions of the 
conditional probability of Y given X, they must be identical for almost all x. 
Therefore for any a ~ S and any n 

f d.(v~, 6~) da(x) = o, 

and this implies Ds(v, ~)= 0. Finally statement (10d) implies (10b) because 
Ds/> Ds. 

A P P E N D I X  

Properties of the d Distance 

(A.1) The partition definition of d,(a, fl) (Ornstein 1973): 

Let a, fl be measures on A n, where A 1 = {al , . . .  , a j} ,  J < OO. Let (C, 2) be a 
monatomic measure space. A sequence of partitions pO), p~Z),..., p~,~ where 
p(i)= {p~'): x EA1} is said to reflect a if 

(0 2 Px~ = a({x'}), all x" ~ A' .  

For any {p¢i)}~,=~ that reflects a, 

d,(a, f l )=  inf --1 ~ [pCi)_ Q(i)[, 
[O~i~l F/ i=1  

where the infimum is overall sequence of partitions {Q~i)}~, 1 on 2 that reflect 
fl and where 

),(P) (3 Q~J)). 
j¢-k 

(A.2) For N-stationary processes and a and fl 

(a) d(a, fl) = sup~ d~u(a, ~). 
(b) For any m 

d(a, fl) = inf E~o[dmN(X , Y)], 
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where the infimum is over all N-stat ionary measures co C a Vfl. The above 
are straightforward generalizations of the well-known special case where a 
and fl are stat ionary ( N =  1) (Ornstein 1973). 

(c) If  a and fl are stat ionary and ergodic then the infimum over co can 
be restricted to stat ionary ergodic 60 (Ornstein 1973). 

(A.3) Let a and fl be measures on An and let n = I + m, then 

(a) nJ.(a,B) ) Id,(a',,fl'1) + md~(aT+,,fl~+ ,), 
(b) equality holds if a is the product  of a t and a~'+l and B is the 

product  of  fit and fl~+ 1. 

(A.4) Convexity:  

In the proof  of Proposi t ion (A.1) of  (Neuhoff  and Shields 1979) it was 
shown that  for any source a, and channels v and f, and integer n 

(a) d.(av, a~) <<. f d.(V"x / , ~)  da(x). 
The techniques used to prove the above can also be used to establish (b) 

and (c). 

(b) I f  a and fl are measures on A" with arbitrary decomposit ions 

a = f cto dco(O ) and f l=  f flo dco(O) 

then 

d.(a, ~) < f d,,(ao, ~o) dw(O). 

(c) I f  a and fl are N-sta t ionary processes on A with arbitrary decom- 
positions 

j a = ) a o dw~(O) and fl = flo dw~(q)), 

then for any measure r ~ w~ Vw~, 

d(a,  fl) ~ f d(ao, rio) dr(O, co). 

(A.5) If  v and 17 are stationary, then 

&vTx, % )  = d(Vx, ~) 

As the proof  is straightforward, we omit it. 

all x. 
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