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The integral transform 

F(z) = I--- (f’(W(g(W)4 4 ‘0 
where a and /I are real, of pairs of special analytic functions f(z) = z + ‘... g(z) = 
z + ..., univalent in the open unit disc A is studied. The transform and our results 
extend some recent results due to Shirakova. 

1. INTRODUCTION 

Let f(z) = z + - * * be analytic and univalent in the open unit disc A in the 
complex plane. In a recent note, Shirakova [ 121 studied a transform off 
given by 

F(z) = f (f ‘(t))“(f (t)/t>‘-a & 
0 

where a is a real number, 0 < a < 1. Some of his results are: (1) If f is 
convex, then F is convex. (2) Iff is alpha-convex in the sense of Mocanu [8], 
then F is alpha-convex for all a, 0 ,< a < a. (3) Iff is starlike, then F is close- 
to-convex. These results are certainly in the spirit of earlier ones due to 
Causey [ 11, Causey and White [2], Kim and Merkes [S], Merkes and 
Wright [6], Miller et al. [7], Royster [ 111, and Silverman [ 131, among 
others. 

In this article we shall study a slightly more general transform, extend 
some of Shirakova’s results, and note a possible further direction for study as 
one similar to one introduced by Hornich [3]. 
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2. DEFINITIONS AND KNOWN RESULTS 

We shall only be interested in the set S of functions f(z) = z + .a. that are 
analytic and univalent in the open unit disc A. 

If fE S, then f is starlike if and only if Re(zf’(z)/f(s)} > 0 holds in A. 
The set of all starlike functions f in S is denoted by S*. 

If fE S, then f is convex if and only if Re{ 1 + zf”(z)/f’(z)} > 0 holds in 
A. The set of all such f in S is denoted by C. 

If f E S, then f is said to be a-convex, a real, if and only if 

RW - 4 zf ‘(z)/f(z) + a(1 + zf “(z)/f ‘(4)l > 0 

holds in A. The set of all a-convex functions is denoted by M,: It is known 
that A4, c S* holds for all a, <cc < a < co, and that M, c C for all a, 
1 <a < co [8]. 

If f E S, then f is said to be close-to-convex if and only if there exists 
e’“# E C, b real and -7c/2 < b ( 7r/2 such that Re[f ‘(z)/#‘(z)] > 0 holds in 
A. The set of all such functions f is denoted by K. It is known that a 
necessary and sufficient condition for f E S to satisfy f E K is that 

--71 < j.e2 d arg(zf ‘(z)) = r,4’ Re [ 1 + z $$-/-I dB < 3n, 
01 

(1) 

z = re”, hold for all 0 < 19, < 19, < 8, + 27r, and for all 0 < r < 1 [4]. 
If 4 E C, then 

+<e, - 0,) < jey Re [$$I de = J:: d arg 4’(z) < n + f(e, - e,), 

(2) 

z = reie, holds for all 0 < 8, < e2 < 8, + 27r, and all 0 < r < 1 [5]. 
Iff E K, then 

--7c + ge, - 0,) G jey d arg f (z) = 11: Re [ $$] d8 

(3) 
G 2~ f f(e, - e,), 

z = reie, holds for all 0 < 0, < 8, < 0, + 2s and for all 0 < r < 1 [5]. 
We include a short proof of (3), much like that of Kim and Merkes [5 1. 

Since f E K, there exists eib# E C, b real and -n/2 < b < 7r/2, such that 
f’(z) = d’(z) p(z), where p(z) = 1 + ... is analytic and has positive real part 
in A. Hence, d argf ‘(z) = d arg $‘(z) + d argp(z) and, this, with (2) and the 
relation --7c < d argp(z) Q z’, yields (3). 
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3. GENERALIZATIONS OF SHIRAKOVA'S RESULTS 

We shall study the transform of pairs (J g), 

f’(z) = 1.’ (f’(W(g(t)/~)D dt, 
-0 

(4) 

where f and g are elements of certain subsets of S, and where a and p are 
real constants. The special cases a = 0 or /I = 0 have been well studied by a 
number of authors [ 1, 2, 5-7, 11, 13 1, so that our results include many due 
to them. 

LEMMA 1. Let f and g be fixed elements in S. Then the set of all (a,/3) 
for which the transform (4) is a convex (close-to-convex) function is a closed 
convex set in the (a, /Q-plane. 

Proof: Let (aI, p,) and (a,, p,) be pairs such that 

Fi(z) = 1.’ (f’(t))“i( g(t)/QD’ dt 
-0 

(5) 

is convex in A for i = 1, 2. Then, for the function 

FA(z) = \’ (f’(t))A1”‘+A’“‘( g(t)/t)“141+“‘4’ dt, 
-0 

whereA,>O,A,>O,andA.,+A,=l,wehave 

1 + zFj;(z)/F;(z) = A,(1 + (zFl’(z)/F;(z))) + &(l + (zF$‘(z)/F;(z))), (6) 

from which we conclude that FL is convex if F, and F, are convex. If F, E K 
and F, E K, then we use (1) and (6) to conclude that FA is close-to-convex. 
This completes the proof. 

COROLLARY. Suppose F, and F, are close-to-convex and satisfy 

Re{Fj(z)/&(z)} > 0, z E A, i= 1,2, 

for eibl#, and eib2& in C, bi real and --n/2 < bi < 7712. Then FA satisfies the 
inequality 

WFi(z)h%(z>l > 0, zEA, 

where 
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Proof: Since #n is convex [5], it follows that FA is indeed close-to-convex 
(with respect to #A(z)). 

We now state and prove our main results. 

THEOREM 1. (i) The transform F in (4) is convex for all pairs 
(f(z), g(z)) of convex functions only for those (a, 0) in the closed convex hull 
of the points (0, 0), (1, 0), and (0,2). 

(ii) The transform F in (4) is close-to-convex for all pairs (f(z), g(z)) of 
convex functions only for those (a, p) in the closed convex hull of the points 
(3, O), (0,3), C-&3), (- f, 01, (0, -I>, and <t, -1). 

These results are sharp. 

Proof (i) It is a simple matter to show that F is indeed convex for the 
pairs (O,O), (LO>, and (0,2). Then Lemma 1 implies the first part of our 
result. The choice off(z) = g(z) = z/( 1 - z) shows that our result is sharp. 

(ii) It is easy to verify that F is indeed close-to-convex for all pairs 
(f(z), g(z)) of close-to-convex for the pairs (i, 0), (0, 3), (-f, 3), (-t, 0), 
(0, -l), and (4, -1) [6]. It is instructive, however, to use a technique used 
by Kim and Merkes [5] and Silverman [ 131 to show how those vertices were 
obtained. 

From (4) we obtain 

1+ $g=(l-a+fi)+a (l+gy) +p& (7) 

which will be used to obtain criteria on a and p in order that the Kaplan 
inequality (1) holds for F. It is clear from (7) that since we plan to use (2) as 
related to both f and g, we must distinguish four cases. 

Case A. a > 0, /3 > 0. We use (2) and (7) to obtain 

de>(l -a-@)(e,-s,), 

z = rei6. Hence, F satisfies (1) for all 0 < 8, < e2 < 8, + 27r if and only if 
either 1 -a-$?>0 or 1 -a--f/?<0 and (2-2a-/?)> 1 holds. Hence, 
it is clear that for pairs (a,/3) in the first quadrant, for which F is certainly 
close-to-convex for all f E C, g E C, are those (a, /I) in the closed triangle 
with vertices (0, 0), (j, 0), and (0, 3). 

Case B. a ,< 0, p > 0. A similar calculation shows that in this case we 
have 

de > (1 - a - fp)(e, - 8,) + 2na, 

409/89/L3 



32 CAUSEY AND READE 

z = re”. Hence, F satisfies (1) if (a, p) satisfies 1 - a - f/I > 0 and 2a > - 1 
or if (a, /I) satisfies 1 - a - f/I < 0 and /I < 3. Hence, in this case, F is close- 
to-convex for those (a, p) that lie in the closed rectangle whose vertices are 
(0, O), @X3), (- i, 3), and (-& 0). 

Case C. a < 0, p < 0, and Case D. a > 0, p Q 0 can be treated in the 
same way to yield the remaining vertices noted in conclusion (ii). 

To show our result is sharp, we again appeal to the functionf(z) = g(z) = 
z/( 1 - z) to obtain F,(z) = ILg( 1 - t)- ‘v* dt and this is known to be close- 
to-convex only for -3 < -2a - p < 1 [5]. We also appeal to now-classic 
results due to Merkes and Wright [6] that when /I = 0, F in (4) is close-to- 
convex for all convex f only for -3 < a < 2 and for a = 0, F is close-to- 
convex for convex g, only for - 1 < /3 < 3. All these inequalities now support 
our statement that our result (ii) is sharp. 

As we have already noted, our results include earlier ones due to Merkes 
and Wright 161. Moreover, our results overlap earlier ones due to Silverman 
[ 131, who considered the transform (4) with fE C and g E S*. It is 
interesting to note that Silverman’s range of (a,/?) for the close-to-convexity 
of the transform (4) is the same as our range even though he permits a larger 
class of competitive g to enter into his considerations. 

THEOREM 2. The set of (a, /I) for which the transform in (4) is close-to- 
convex for all close-to-convex f and g is the closed convex hull of the points 
(1, O), (0, I>, C-f, O>, and (0, -iI. 

Proof: First, if /3 = 0, then Merkes and Wright [6] have shown that the 
transform F is close-to-convex for all close-to-convex f only for the range 
- f < a < 1, and for a = 0, the transform F is close-to-convex only for the 
range - f < /I < 1. These considerations, plus the techniques used in the 
proof of Theorem 1 yield the (a,/?) pairs noted. 

To show our results are sharp, we must distinguish four cases. 

Case A a > 0, /I > 0. We shall make use of the function 

f,(z) = (z - eZai cos az’)/( 1 - e”z)*, (8) 

where a is a real constant, 0 < a < 7~. The function f, maps A one-to-one 
onto the plane slit along a vertical half-line extending upward from the tip 

fn(eC30i) = -(cos a/2) - i(e-““/4 sin a). 

Hence it is close-to-convex. It is geometrically clear that if the points eiel, 
e-3oi 

, eie *, ePin appear on the unit circle in that order, then 

argle’hf;(eje2) - eiey;(ej@l)] = --n 
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and 
arg fa(e’s2) - arg fo(eiel) = -92 + 6(u), 

where 6(a) > 0 and lim,,, 6(a) = 0. Geometrically, the tip of the slit tends to 
(-(cos a/2) - im) as u 10. 

Now consider ar > 0, /I > 0, a + p = 1 + E, E > 0, and the transform (4) 
with f(z) = g(z) =f,(z). We obtain 

i 
** d arg(eieF’(eie)) = (1 - a - /3)(S, - 0,) - rr(cz + p) + 6(a) n 
I3 

Now we may choose 0z - 0i and 6(a) as small as we wish to conclude, since 
E > 0 is fixed, that the transform F here will satisfy 

I 
.82 

d arg(e’“F’(e’“)) < -R, 
01 

so that F cannot satisfy Kaplan condition (1). Hence, the transform (4) is 
not close-to-convex for all close-to-convex functions f and g for the (q/3) 
pairs satisfying a + /? > 1. Thus 01 + /3 < 1 is a necessary condition that (4) 
be close-to-convex for close-to-convex functions f and g. 

Case B a < 0, j3 > 0. We have already noted that the only pairs (a, /3) we 
need consider are those for which a +/I < 1. We now show that if 
-3a + /I > 1, then there is a non close-to-convex transform (4). First we note 
that for the function (8), if the points eie2, ee30i, eiel, ema’ appear in that 
order on the unit circle, then 

arg eie2JL(eie2) - arg eietf;(eiel) = 3n. 

If we select 8, and 0z so that eiel = e-3’i, 0 < b < u, eiez = eebi and if we 
introduce the function 

then 

fa(z) = (z - eZbi cos bz’)/( 1 - eibz)*, 

argf,(e”z) - argf,(eiel) = --71+ 6(a, b) n, 

~?(a, b) >O and lim,,, 6(a, b) = 0. Hence, for the transform F, withf=f, and 
g=g,, we have 

J .e2 d arg(eieF’(ei”)) = (1 - a - p)(B, - 8,) + 3na - pn + &a, b) /In 
% 
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where we set -3a + p = 1 + E, E > 0, with E fixed. Now lim,,, 6(a, b) = 0 
and this carries with it lim(0, - 0,) = 0, too. Hence, for a suffkiently small, 
and 0, - 0, # 0, we conclude 

I 
-02 

d arg(ei”F’(ei”)) < --71 
.-VI 

so that the transform of the particular pair (f,&), with 0 < b < a and a 
sufficiently small, is not close-to-convex for (a, J3) satisfying -3cf + /I > 1. 
Hence, a necessary condition for the transform (4) to be close-to-convex for 
all close-to-convex f and g is that -3a + /3 < 1 holds. 

Case C a < 0, /3 < 0. We wish to show that if -3a - 2/I > 1, then there 
is a transform F, for close-to-convex functions f and g, that is not close-to- 
convex. We again use the function f, given in (8). We select eiel and eie2, 
close to and straddling e-“, so that e-3ai, eiel, e+‘, eie2 appear in that order 
on the unit circle. Then it is geometrically clear we can choose eiei and eiez 
so that fa(eiel) =fa(eie2). Then the transform F with f = g = f, satisfies the 
relation 

J 
.a2 

d arg(e’“F’(e”)) = (1 - a - ,8)(0, - S,) + 3na + 2x/3 
01 

= (1 -a -p)(e, -e,) - (1 + E)X, 

where we have set -3a - 2p = 1 + E, E > 0. Since E is fixed and 8, - 8, can 
be made as small as we wish, it follows that F satisfies 

J 
-02 

d arg(eieF’(eie)) < -rc, 
01 

for 0, and 8, near to and separated by e-“. Hence, for each pair (a, /?) that 
satisfies -3a - 2p > 1, there is a transform (4) of close-to-convex functions f 
and g that is not itself close-to-convex. 

Case D a > 0, /? < 0. Function (8) maps A onto the plane slit vertically, 
with the tip of the slit at fG(e-3ai) and the end of the slit at fQ(ePQi). It is 
geometrically clear that if eiel and eie2 straddle e-3ni, but near e-3ai, and if 
f (eiel) = f (eie2), then 

arg eie2f L(e”2) - arg e’@tfA(e’@I) = -n. 

It is also geometrically clear that if eie3 and eies straddle eP”‘, but near e mai, 
and if&(eie3) = fa(eie4), then 

arg f4(eie4) - arg f h(eie3) = 2~. 
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We now construct a function g, of the form (8) with the end of its slit at 
j,(em3”‘), the tip of the slit of the mapping discussed above. Such a function 
is 

g,(z) = (2 - e60i cos 3azZ)/( 1 - e30iz)*. 

And for 8, and 8, close to and straddling eC30i, we have 

arg gJeie2) - arg g,(eiB1) = 27~ 

Hence, for the transform (4) with f =f, and g = g,, we have 

I 4 d arg(e@F’(e”)) = (1 - a - /3)(0, - 8,) - art f 2pn. 
.e1 

(9) 

To show the sharpness of our result concerning the (a, p) pairs, we assume 
a - 2/I = 1 + 8, where E > 0. Then (9) yields 

fe2 d arg(eieF’(eie)) = (1 - a - p)(S, - 8,) - z( 1 + s). 
06 

Now 8, - 0, may be taken as small as we wish, so that this last equation 
shows that 

I’* d arg(e’“F’(e’“)) < -rc 
-0, 

(10) 

will hold for eiel and eie2 sufficiently close to e-3ai. Hence (1) is violated, so 
that the transform F here is not close-to-convex for a > 0, p ,< 0, and 
a-2p> 1. 

4. IMPROVEMENTS OF SOME OF SHIROKOVA'S RESULTS 

Let Bilk denote the class of all functions f(z) = z + ..a, analytic and 
univalent in A, that satisfy the inequality 

i 
e2 

d arg(zf’f”“-‘) > -71, z = reie, 
6 

for all 0 < 8, < 0, < 19~ + 27r and for all 0 < r < 1, where k is a fixed real, 
0 ,< k < 1. Shirakova proposed the problem of finding the range of k, 
0 < k < 1, for which the Shirakova transform 

F,(z) = f (f’(0Ydf(t>/t>‘-” dt, (11) 
0 
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where 0 < a < 1, is close-to-convex in A for fE B,,, . We offer some 
improvement of Shirakova’s result. 

LEMMA 2. Let f E B,, where m > 0. Then 

2n+G>( 
02 

01 
d argf(z) >-G. (14 

Proof: Reade ] lo] has shown that if fE B,, m > 0, then there is a 
univalent starlike function a(z) such that 

Re{zf’(z)f”-‘(z)/om(z)} > 0, zEA. (13) 

Now it follows from a result of Mocana [8] that 

M(z)= m,‘“‘&] 
[ 

Ilm 

0 t 

is a starlike (indeed m-convex) function in A. Hence, (13) may be written in 
the form 

Re{f’(z)f”-‘(z)/M’(z) Mm-‘(z)} > 0, z E A. 

This last, in turn, by a result due to Sakaguchi [ 91 yields 

Re{fm(z)/Mm(z)l > 0, zEA, 

which implies the relation (12). This completes our proof. 

Our result (12) is an improvement of a result due to Shirakova. She 
proved that 

I 
82 

d argf(z) > -271. 
01 

holds for alIfE B,, m > 1. 

THEOREM 3. Let a befixed, 0 Q a < 1. Iff E Bilk, then F,(z) is close-to- 
convex for all k satisfying 

a - (3 - dm)/2 < k < 1. (14) 

Proof. From (11) we obtain 

je* d arg(zF;(z)) = a (‘* d arg(zf’(z) $ (1 - a)) 11: d arg f (z), 
01 01 



ON THE UNIVALENCE OF’ FUNCTIONS 37 

2 = reie, so that F, is close-to-convex if and only if 

je* d arg(zf’(z)) t (( 1 - a)/a) i,“’ d argf(z) > --~/a (15) 
01 1 

holdsforal10(B,~8,~t98,+2~andforal10,<r<1. 
IffE Bilk, then 

37L > 
j 

l-k 02 
‘*darg(zf’(z))+T{ d argf(z) > --7c 
01 01 

(2 t k)n > is’d argf(z) > -rtk 

(16) 

0, 

both hold for all 0 < 8, < 0, < 8, + 2~ and for all 0 < r < 1. Here we have 
used (10) and (12). 

If k > a, then the inequalities (16) yield 

I l-k 02 
‘* d arg(zf’(z)) + k j 

k-a 02 
d argf(z) + x j d arsf(z) 

e1 e1 6 

> -r( 1 f (k - a)/a) 

or 

1 
e2 
e1 

d arg(zf’(z)) + L__lfje2 d argf(z) > - *. 
a 4 a 

Hence, (15) is satisfied so that F, is close-to-convex for all k satisfying 
l>k>a. 

If k < a, then we have 

I 
e2 
6 

darg(zf’(z)) t~!e*dargf(z)-~jezdarg~(z) 
6 $1 

> -n[ 1 + ((a - k)(2 + k)/ak)] 

or 

I e2d arg(zf’(z)) 
l-a e* 

e1 
+-j 

a d argf(z> 
e1 

> -n 
2ak+2a-2k-k2 

ak 
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Now (1.5) will hold provided 

(2ct + 2uk - 2k - k2)/ak < l/a, 

i.e., provided 

k > a - (3 - d/9 - 4a + 4a2)/2. 

We have thus established (14) which represents an improvement of 
another result due to Shirakova. 

5. CONCLUDING REMARKS 

The various integral transforms have led to considerations of Hornich 
Spaces [3). We propose to study the vector space V of all functions f(z) = 
z + .**, analytic in A, with 

where a and p are real. We propose to study the possible metrics on V and 
the attendant topologies [3]. 
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