On the Univalence of Functions Defined by Certain Integral Transforms

W. M. CAUSEY

Department of Mathematics, The University of Mississippi, University, Mississippi 38677

AND

MAXWELL O. READE

Department of Mathematics, The University of Michigan, Ann Arbor, Michigan 48109 Submitted by C. L. Dolph

The integral transform

$$F(z) = \int_0^z (f'(t))^{\alpha} (g(t)/t)^{\beta} dt,$$

where α and β are real, of pairs of special analytic functions $f(z) = z + \cdots$, $g(z) = z + \cdots$, univalent in the open unit disc Δ is studied. The transform and our results extend some recent results due to Shirakova.

1. INTRODUCTION

Let $f(z) = z + \cdots$ be analytic and univalent in the open unit disc Δ in the complex plane. In a recent note, Shirakova [12] studied a transform of f given by

$$F(z) = \int_0^z (f'(t))^a (f(t)/t)^{1-a} dt,$$

where a is a real number, $0 \le a \le 1$. Some of his results are: (1) If f is convex, then F is convex. (2) If f is alpha-convex in the sense of Mocanu [8], then F is alpha-convex for all $a, 0 \le a \le a$. (3) If f is starlike, then F is close-to-convex. These results are certainly in the spirit of earlier ones due to Causey [1], Causey and White [2], Kim and Merkes [5], Merkes and Wright [6], Miller *et al.* [7], Royster [11], and Silverman [13], among others.

In this article we shall study a slightly more general transform, extend some of Shirakova's results, and note a possible further direction for study as one similar to one introduced by Hornich [3].

2. DEFINITIONS AND KNOWN RESULTS

We shall only be interested in the set S of functions $f(z) = z + \cdots$ that are analytic and univalent in the open unit disc Δ .

If $f \in S$, then f is starlike if and only if $\operatorname{Re}\{zf'(z)/f(s)\} > 0$ holds in Δ . The set of all starlike functions f in S is denoted by S^* .

If $f \in S$, then f is convex if and only if $\operatorname{Re}\{1 + zf''(z)/f'(z)\} > 0$ holds in Δ . The set of all such f in S is denoted by C.

If $f \in S$, then f is said to be α -convex, α real, if and only if

$$\operatorname{Re}[(1-\alpha) zf'(z)/f(z) + \alpha(1+zf''(z)/f'(z))] > 0$$

holds in Δ . The set of all α -convex functions is denoted by M_{α} . It is known that $M_{\alpha} \subset S^*$ holds for all α , $<\infty < \alpha < \infty$, and that $M_{\alpha} \subset C$ for all α , $1 \leq \alpha < \infty$ [8].

If $f \in S$, then f is said to be close-to-convex if and only if there exists $e^{ib}\phi \in C$, b real and $-\pi/2 < b < \pi/2$ such that $\operatorname{Re}[f'(z)/\phi'(z)] > 0$ holds in Δ . The set of all such functions f is denoted by K. It is known that a necessary and sufficient condition for $f \in S$ to satisfy $f \in K$ is that

$$-\pi < \int_{\theta_1}^{\theta_2} d\arg(zf'(z)) = \int_{\theta_1}^{\theta_2} \operatorname{Re}\left[1 + z\frac{f''(z)}{f'(z)}\right] d\theta < 3\pi, \tag{1}$$

 $z = re^{i\theta}$, hold for all $0 \le \theta_1 < \theta_2 \le \theta_1 + 2\pi$, and for all $0 \le r < 1$ [4]. If $\phi \in C$, then

$$\frac{1}{2}(\theta_2 - \theta_1) \leqslant \int_{\theta_1}^{\theta_2} \operatorname{Re}\left[\frac{z\phi'(z)}{\phi(z)}\right] d\theta = \int_{\theta_1}^{\theta_2} d\arg\phi'(z) \leqslant \pi + \frac{1}{2}(\theta_2 - \theta_1),$$
(2)

 $z = re^{i\theta}$, holds for all $0 \le \theta_1 < \theta_2 \le \theta_1 + 2\pi$, and all $0 \le r < 1$ [5]. If $f \in K$, then

$$-\pi + \frac{1}{2}(\theta_2 - \theta_1) \leqslant \int_{\theta_1}^{\theta_2} d\arg f(z) = \int_{\theta_1}^{\theta_2} \operatorname{Re}\left[\frac{zf'(z)}{f(z)}\right] d\theta$$
$$\leqslant 2\pi + \frac{1}{2}(\theta_2 - \theta_1), \tag{3}$$

 $z = re^{i\theta}$, holds for all $0 \le \theta_1 < \theta_2 \le \theta_1 + 2\pi$, and for all $0 \le r < 1$ [5].

We include a short proof of (3), much like that of Kim and Merkes [5]. Since $f \in K$, there exists $e^{ib}\phi \in C$, b real and $-\pi/2 < b < \pi/2$, such that $f'(z) = \phi'(z)\rho(z)$, where $\rho(z) = 1 + \cdots$ is analytic and has positive real part in Δ . Hence, $d \arg f'(z) = d \arg \phi'(z) + d \arg p(z)$ and, this, with (2) and the relation $-\pi \leq d \arg p(z) \leq \pi$, yields (3).

CAUSEY AND READE

3. GENERALIZATIONS OF SHIRAKOVA'S RESULTS

We shall study the transform of pairs (f, g),

$$F(z) = \int_0^z (f'(t))^{\alpha} (g(t)/t)^{\beta} dt, \qquad (4)$$

where f and g are elements of certain subsets of S, and where α and β are real constants. The special cases $\alpha = 0$ or $\beta = 0$ have been well studied by a number of authors [1, 2, 5–7, 11, 13], so that our results include many due to them.

LEMMA 1. Let f and g be fixed elements in S. Then the set of all (α, β) for which the transform (4) is a convex (close-to-convex) function is a closed convex set in the (α, β) -plane.

Proof. Let (α_1, β_1) and (α_2, β_2) be pairs such that

$$F_{i}(z) = \int_{0}^{z} (f'(t))^{\alpha_{i}} (g(t)/t)^{\beta_{i}} dt$$
(5)

is convex in Δ for i = 1, 2. Then, for the function

$$F_{\lambda}(z) = \int_0^z (f'(t))^{\lambda_1 \alpha_1 + \lambda_2 \alpha_2} (g(t)/t)^{\lambda_1 \beta_1 + \lambda_2 \beta_2} dt,$$

where $\lambda_1 \ge 0$, $\lambda_2 \ge 0$, and $\lambda_1 + \lambda_2 = 1$, we have

$$1 + zF_{\lambda}''(z)/F_{\lambda}'(z) = \lambda_1(1 + (zF_1''(z)/F_1'(z))) + \lambda_2(1 + (zF_2''(z)/F_2'(z))), \quad (6)$$

from which we conclude that F_{λ} is convex if F_1 and F_2 are convex. If $F_1 \in K$ and $F_2 \in K$, then we use (1) and (6) to conclude that F_{λ} is close-to-convex. This completes the proof.

COROLLARY. Suppose F_1 and F_2 are close-to-convex and satisfy

 $\operatorname{Re}\{F'_i(z)/\phi'_i(z)\} > 0, \quad z \in \Delta, \quad i = 1, 2,$

for $e^{ib_1}\phi_1$ and $e^{ib_2}\phi_2$ in C, b_i real and $-\pi/2 < b_i < \pi/2$. Then F_{λ} satisfies the inequality

$$\operatorname{Re}\{F_{\lambda}'(z)/\phi_{\lambda}'(z)\}>0, \qquad z\in\varDelta,$$

where

$$\phi_{\lambda} = \int_0^z (\phi_1'(t))^{\lambda_1} (\phi_2'(z))^{\lambda_2} dt.$$

Proof. Since ϕ_{λ} is convex [5], it follows that F_{λ} is indeed close-to-convex (with respect to $\phi_{\lambda}(z)$).

We now state and prove our main results.

THEOREM 1. (i) The transform F in (4) is convex for all pairs (f(z), g(z)) of convex functions only for those (α, β) in the closed convex hull of the points (0, 0), (1, 0), and (0, 2).

(ii) The transform F in (4) is close-to-convex for all pairs (f(z), g(z)) of convex functions only for those (α, β) in the closed convex hull of the points $(\frac{3}{2}, 0), (0, 3), (-\frac{1}{2}, 3), (-\frac{1}{2}, 0), (0, -1), and (\frac{3}{2}, -1).$

These results are sharp.

Proof. (i) It is a simple matter to show that F is indeed convex for the pairs (0, 0), (1, 0), and (0, 2). Then Lemma 1 implies the first part of our result. The choice of f(z) = g(z) = z/(1-z) shows that our result is sharp.

(ii) It is easy to verify that F is indeed close-to-convex for all pairs (f(z), g(z)) of close-to-convex for the pairs $(\frac{3}{2}, 0)$, (0, 3), $(-\frac{1}{2}, 3)$, $(-\frac{1}{2}, 0)$, (0, -1), and $(\frac{3}{2}, -1)$ [6]. It is instructive, however, to use a technique used by Kim and Merkes [5] and Silverman [13] to show how those vertices were obtained.

From (4) we obtain

$$1 + \frac{zF''(z)}{F'(z)} = (1 - \alpha + \beta) + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right) + \beta \frac{zg'(z)}{g(z)},$$
 (7)

which will be used to obtain criteria on α and β in order that the Kaplan inequality (1) holds for F. It is clear from (7) that since we plan to use (2) as related to both f and g, we must distinguish four cases.

Case A. $\alpha \ge 0, \beta \ge 0$. We use (2) and (7) to obtain

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left(1+\frac{zF''(z)}{F'(z)}\right) d\theta \ge (1-\alpha-\frac{1}{2}\beta)(\theta_2-\theta_1),$$

 $z = re^{i\theta}$. Hence, F satisfies (1) for all $0 \le \theta_1 < \theta_2 \le \theta_1 + 2\pi$ if and only if either $1 - \alpha - \frac{1}{2}\beta \ge 0$ or $1 - \alpha - \frac{1}{2}\beta \le 0$ and $(2 - 2\alpha - \beta) \ge 1$ holds. Hence, it is clear that for pairs (α, β) in the first quadrant, for which F is certainly close-to-convex for all $f \in C$, $g \in C$, are those (α, β) in the closed triangle with vertices $(0, 0), (\frac{3}{2}, 0)$, and (0, 3).

Case B. $\alpha \leq 0, \beta \geq 0$. A similar calculation shows that in this case we have

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left(1 + \frac{zF''(z)}{F'(z)}\right) d\theta \ge (1 - \alpha - \frac{1}{2}\beta)(\theta_2 - \theta_1) + 2\pi\alpha,$$

 $z = re^{i\theta}$. Hence, F satisfies (1) if (α, β) satisfies $1 - \alpha - \frac{1}{2}\beta \ge 0$ and $2\alpha \ge -1$ or if (α, β) satisfies $1 - \alpha - \frac{1}{2}\beta \le 0$ and $\beta \le 3$. Hence, in this case, F is closeto-convex for those (α, β) that lie in the closed rectangle whose vertices are $(0, 0), (0, 3), (-\frac{1}{2}, 3), \text{ and } (-\frac{1}{2}, 0).$

Case C. $\alpha \leq 0, \beta \leq 0$, and Case D. $\alpha \geq 0, \beta \leq 0$ can be treated in the same way to yield the remaining vertices noted in conclusion (ii).

To show our result is sharp, we again appeal to the function f(z) = g(z) = z/(1-z) to obtain $F_0(z) = \int_0^z (1-t)^{-2\alpha-\beta} dt$ and this is known to be close-to-convex only for $-3 \le -2\alpha - \beta \le 1$ [5]. We also appeal to now-classic results due to Merkes and Wright [6] that when $\beta = 0$, F in (4) is close-to-convex for all convex f only for $-\frac{1}{2} \le \alpha \le 2$ and for $\alpha = 0$, F is close-to-convex for convex g, only for $-1 \le \beta \le 3$. All these inequalities now support our statement that our result (ii) is sharp.

As we have already noted, our results include earlier ones due to Merkes and Wright [6]. Moreover, our results overlap earlier ones due to Silverman [13], who considered the transform (4) with $f \in C$ and $g \in S^*$. It is interesting to note that Silverman's range of (α, β) for the close-to-convexity of the transform (4) is the same as our range even though he permits a larger class of competitive g to enter into his considerations.

THEOREM 2. The set of (α, β) for which the transform in (4) is close-toconvex for all close-to-convex f and g is the closed convex hull of the points (1, 0), (0, 1), $(-\frac{1}{3}, 0)$, and $(0, -\frac{1}{2})$.

Proof. First, if $\beta = 0$, then Merkes and Wright [6] have shown that the transform F is close-to-convex for all close-to-convex f only for the range $-\frac{1}{3} \leq \alpha \leq 1$, and for $\alpha = 0$, the transform F is close-to-convex only for the range $-\frac{1}{2} \leq \beta \leq 1$. These considerations, plus the techniques used in the proof of Theorem 1 yield the (α, β) pairs noted.

To show our results are sharp, we must distinguish four cases.

Case A $\alpha \ge 0$, $\beta \ge 0$. We shall make use of the function

$$f_a(z) = (z - e^{2ai} \cos az^2) / (1 - e^{ai}z)^2, \tag{8}$$

where a is a real constant, $0 < a < \pi$. The function f_a maps Δ one-to-one onto the plane slit along a vertical half-line extending upward from the tip

$$f_a(e^{-3ai}) = -(\cos a/2) - i(e^{-2ai}/4\sin a)$$

Hence it is close-to-convex. It is geometrically clear that if the points $e^{i\theta_1}$, e^{-3ai} , $e^{i\theta_2}$, e^{-ia} appear on the unit circle in that order, then

$$\arg[e^{i\theta_2}f'_a(e^{i\theta_2}) - e^{i\theta_1}f'_a(e^{i\theta_1})] = -\pi$$

and

$$\arg f_a(e^{i\theta_2}) - \arg f_a(e^{i\theta_1}) = -\pi + \delta(a),$$

where $\delta(a) > 0$ and $\lim_{a\to 0} \delta(a) = 0$. Geometrically, the tip of the slit tends to $(-(\cos a/2) - i\infty)$ as $a \downarrow 0$.

Now consider $\alpha \ge 0$, $\beta \ge 0$, $\alpha + \beta = 1 + \varepsilon$, $\varepsilon > 0$, and the transform (4) with $f(z) = g(z) = f_a(z)$. We obtain

$$\int_{\theta}^{\theta_2} d \arg(e^{i\theta}F'(e^{i\theta})) = (1 - \alpha - \beta)(\theta_2 - \theta_1) - \pi(\alpha + \beta) + \delta(\alpha)\pi$$
$$= \varepsilon(\theta_2 - \theta_1) - \pi\varepsilon - \pi + \delta(\alpha)\pi.$$

Now we may choose $\theta_2 - \theta_1$ and $\delta(a)$ as small as we wish to conclude, since $\varepsilon > 0$ is fixed, that the transform F here will satisfy

$$\int_{\theta_1}^{\theta_2} d\arg(e^{i\theta}F'(e^{i\theta})) < -\pi,$$

so that F cannot satisfy Kaplan condition (1). Hence, the transform (4) is not close-to-convex for all close-to-convex functions f and g for the (α, β) pairs satisfying $\alpha + \beta > 1$. Thus $\alpha + \beta \le 1$ is a necessary condition that (4) be close-to-convex for close-to-convex functions f and g.

Case B $\alpha \leq 0, \beta \geq 0$. We have already noted that the only pairs (α, β) we need consider are those for which $\alpha + \beta \leq 1$. We now show that if $-3\alpha + \beta > 1$, then there is a non close-to-convex transform (4). First we note that for the function (8), if the points $e^{i\theta_2}$, e^{-3ai} , $e^{i\theta_1}$, e^{-ai} appear in that order on the unit circle, then

$$\arg e^{i\theta_2} f'_a(e^{i\theta_2}) - \arg e^{i\theta_1} f'_a(e^{i\theta_1}) = 3\pi.$$

If we select θ_1 and θ_2 so that $e^{i\theta_1} = e^{-3bi}$, 0 < b < a, $e^{i\theta_2} = e^{-bi}$ and if we introduce the function

$$f_b(z) = (z - e^{2bi} \cos bz^2)/(1 - e^{ib}z)^2,$$

then

$$\arg f_b(e^{i\theta_2}) - \arg f_b(e^{i\theta_1}) = -\pi + \delta(a, b)\pi,$$

 $\delta(a, b) > 0$ and $\lim_{a \to 0} \delta(a, b) = 0$. Hence, for the transform F, with $f = f_a$ and $g = g_b$, we have

$$\int_{\theta_1}^{\theta_2} d \arg(e^{i\theta} F'(e^{i\theta})) = (1 - \alpha - \beta)(\theta_2 - \theta_1) + 3\pi\alpha - \beta\pi + \delta(a, b) \beta\pi$$
$$= (1 - \alpha - \beta)(\theta_2 - \theta_1) - (1 + \varepsilon + \delta\beta)\pi,$$

where we set $-3\alpha + \beta = 1 + \varepsilon$, $\varepsilon > 0$, with ε fixed. Now $\lim_{a\to 0} \delta(a, b) = 0$ and this carries with it $\lim_{a\to 0} (\theta_2 - \theta_1) = 0$, too. Hence, for a sufficiently small, and $\theta_2 - \theta_1 \neq 0$, we conclude

$$\int_{\theta_1}^{\theta_2} d \arg(e^{i\theta}F'(e^{i\theta})) < -\pi$$

so that the transform of the particular pair (f_a, f_b) , with 0 < b < a and a sufficiently small, is not close-to-convex for (α, β) satisfying $-3\alpha + \beta > 1$. Hence, a necessary condition for the transform (4) to be close-to-convex for all close-to-convex f and g is that $-3\alpha + \beta \le 1$ holds.

Case C $a \leq 0$, $\beta \leq 0$. We wish to show that if $-3a - 2\beta > 1$, then there is a transform F, for close-to-convex functions f and g, that is not close-toconvex. We again use the function f_a given in (8). We select $e^{i\theta_1}$ and $e^{i\theta_2}$, close to and straddling e^{-ia} , so that e^{-3ai} , $e^{i\theta_1}$, e^{-ai} , $e^{i\theta_2}$ appear in that order on the unit circle. Then it is geometrically clear we can choose $e^{i\theta_1}$ and $e^{i\theta_2}$ so that $f_a(e^{i\theta_1}) = f_a(e^{i\theta_2})$. Then the transform F with $f = g = f_a$ satisfies the relation

$$\int_{\theta_1}^{\theta_2} d\arg(e^{i\theta}F'(e^{i\theta})) = (1-\alpha-\beta)(\theta_2-\theta_1) + 3\pi\alpha + 2\pi\beta$$
$$= (1-\alpha-\beta)(\theta_2-\theta_1) - (1+\varepsilon)\pi,$$

where we have set $-3\alpha - 2\beta = 1 + \varepsilon$, $\varepsilon > 0$. Since ε is fixed and $\theta_2 - \theta_1$ can be made as small as we wish, it follows that F satisfies

$$\int_{\theta_1}^{\theta_2} d \arg(e^{i\theta}F'(e^{i\theta})) < -\pi.$$

for θ_1 and θ_2 near to and separated by e^{-ia} . Hence, for each pair (α, β) that satisfies $-3\alpha - 2\beta > 1$, there is a transform (4) of close-to-convex functions f and g that is not itself close-to-convex.

Case D $\alpha \ge 0$, $\beta \le 0$. Function (8) maps Δ onto the plane slit vertically, with the tip of the slit at $f_a(e^{-3ai})$ and the end of the slit at $f_a(e^{-ai})$. It is geometrically clear that if $e^{i\theta_1}$ and $e^{i\theta_2}$ straddle e^{-3ai} , but near e^{-3ai} , and if $f(e^{i\theta_1}) = f(e^{i\theta_2})$, then

$$\arg e^{i\theta_2} f'_a(e^{i\theta_2}) - \arg e^{i\theta_1} f'_a(e^{i\theta_1}) = -\pi.$$

It is also geometrically clear that if $e^{i\theta_3}$ and $e^{i\theta_4}$ straddle e^{-ai} , but near e^{-ai} , and if $f_a(e^{i\theta_3}) = f_a(e^{i\theta_4})$, then

$$\arg f_a(e^{i\theta_4}) - \arg f'_a(e^{i\theta_3}) = 2\pi.$$

We now construct a function g_a of the form (8) with the end of its slit at $f_a(e^{-3ai})$, the tip of the slit of the mapping discussed above. Such a function is

$$g_a(z) = (z - e^{6ai} \cos 3az^2)/(1 - e^{3ai}z)^2.$$

And for θ_1 and θ_2 close to and straddling e^{-3ai} , we have

$$\arg g_a(e^{i\theta_2}) - \arg g_a(e^{i\theta_1}) = 2\pi.$$

Hence, for the transform (4) with $f = f_a$ and $g = g_a$, we have

$$\int_{\theta_1}^{\theta_2} d\arg(e^{i\theta}F'(e^{i\theta})) = (1 - \alpha - \beta)(\theta_2 - \theta_1) - \alpha\pi + 2\beta\pi.$$
(9)

To show the sharpness of our result concerning the (α, β) pairs, we assume $\alpha - 2\beta = 1 + \varepsilon$, where $\varepsilon > 0$. Then (9) yields

$$\int_{\theta_1}^{\theta_2} d\arg(e^{i\theta}F'(e^{i\theta})) = (1-\alpha-\beta)(\theta_2-\theta_1) - \pi(1+\varepsilon).$$

Now $\theta_2 - \theta_1$ may be taken as small as we wish, so that this last equation shows that

$$\int_{\theta_1}^{\theta_2} d\arg(e^{i\theta}F'(e^{i\theta})) < -\pi \tag{10}$$

will hold for $e^{i\theta_1}$ and $e^{i\theta_2}$ sufficiently close to e^{-3ai} . Hence (1) is violated, so that the transform F here is not close-to-convex for $\alpha \ge 0$, $\beta \le 0$, and $\alpha - 2\beta > 1$.

4. IMPROVEMENTS OF SOME OF SHIROKOVA'S RESULTS

Let $B_{1/k}$ denote the class of all functions $f(z) = z + \cdots$, analytic and univalent in Δ , that satisfy the inequality

$$\int_{\theta_1}^{\theta_2} d\arg(zf'f^{1/k-1}) > -\pi, \qquad z = re^{i\theta},$$

for all $0 \le \theta_1 < \theta_2 \le \theta_1 + 2\pi$ and for all $0 \le r < 1$, where k is a fixed real, $0 \le k \le 1$. Shirakova proposed the problem of finding the range of k, $0 \le k \le 1$, for which the Shirakova transform

$$F_{\alpha}(z) = \int_{0}^{z} (f'(t))^{\alpha} (f(t)/t)^{1-\alpha} dt, \qquad (11)$$

where $0 \le \alpha \le 1$, is close-to-convex in Δ for $f \in B_{1/k}$. We offer some improvement of Shirakova's result.

LEMMA 2. Let $f \in B_m$, where m > 0. Then

$$2\pi + \frac{\pi}{m} > \int_{\theta_1}^{\theta_2} d\arg f(z) > \frac{-\pi}{m}.$$
 (12)

Proof. Reade [10] has shown that if $f \in B_m$, m > 0, then there is a univalent starlike function $\sigma(z)$ such that

$$\operatorname{Re}\{zf'(z)f^{m-1}(z)/\sigma^{m}(z)\} > 0, \qquad z \in \varDelta.$$
(13)

Now it follows from a result of Mocana [8] that

$$M(z) = \left[m\int_0^z \frac{\sigma^m(t)}{t}\,dt\right]^{1/m}$$

is a starlike (indeed *m*-convex) function in Δ . Hence, (13) may be written in the form

$$\operatorname{Re}\{f'(z)f^{m-1}(z)/M'(z)M^{m-1}(z)\}>0, \qquad z\in \varDelta.$$

This last, in turn, by a result due to Sakaguchi [9] yields

$$\operatorname{Re}\{f^{m}(z)/M^{m}(z)\}>0, \qquad z\in\varDelta,$$

which implies the relation (12). This completes our proof.

Our result (12) is an improvement of a result due to Shirakova. She proved that

$$\int_{\theta_1}^{\theta_2} d\arg f(z) > -2\pi.$$

holds for all $f \in B_m$, $m \ge 1$.

THEOREM 3. Let α be fixed, $0 \leq \alpha \leq 1$. If $f \in B_{1/k}$, then $F_{\alpha}(z)$ is close-toconvex for all k satisfying

$$\alpha - (3 - \sqrt{9 - 4\alpha + \alpha^2})/2 \leqslant k \leqslant 1.$$
⁽¹⁴⁾

Proof. From (11) we obtain

$$\int_{\theta_1}^{\theta_2} d\arg(zF'_{\alpha}(z)) = \alpha \int_{\theta_1}^{\theta_2} d\arg(zf'(z) + (1-\alpha)) \int_{\theta_1}^{\theta_2} d\arg f(z),$$

 $z = re^{i\theta}$, so that F_{α} is close-to-convex if and only if

$$\int_{\theta_1}^{\theta_2} d\arg(zf'(z)) + ((1-\alpha)/\alpha) \int_{\theta_1}^{\theta_2} d\arg f(z) > -\pi/\alpha$$
(15)

holds for all $0 \le \theta_1 < \theta_2 \le \theta_1 + 2\pi$ and for all $0 \le r < 1$.

If $f \in B_{1/k}$, then

$$3\pi > \int_{\theta_1}^{\theta_2} d\arg(zf'(z)) + \frac{1-k}{k} \int_{\theta_1}^{\theta_2} d\arg f(z) > -\pi$$

$$(2+k)\pi > \int_{\theta_1}^{\theta_2} d\arg f(z) > -\pi k$$
(16)

both hold for all $0 \le \theta_1 < \theta_2 \le \theta_1 + 2\pi$ and for all $0 \le r < 1$. Here we have used (10) and (12).

If $k \ge \alpha$, then the inequalities (16) yield

$$\int_{\theta_1}^{\theta_2} d\arg(zf'(z)) + \frac{1-k}{k} \int_{\theta_1}^{\theta_2} d\arg f(z) + \frac{k-\alpha}{\alpha k} \int_{\theta_1}^{\theta_2} d\arg f(z)$$
$$> -\pi (1+(k-\alpha)/\alpha)$$

or

$$\int_{\theta_1}^{\theta_2} d\arg(zf'(z)) + \frac{1-\alpha}{\alpha} \int_{\theta_1}^{\theta_2} d\arg f(z) > -\frac{\pi k}{\alpha}.$$

Hence, (15) is satisfied so that F_{α} is close-to-convex for all k satisfying $1 \ge k \ge \alpha$.

If $k < \alpha$, then we have

$$\int_{\theta_1}^{\theta_2} d\arg(zf'(z)) + \frac{1-k}{k} \int_{\theta_1}^{\theta_2} d\arg f(z) - \frac{\alpha-k}{\alpha k} \int_{\theta_1}^{\theta_2} d\arg f(z)$$
$$> -\pi [1 + ((\alpha-k)(2+k)/\alpha k)]$$

or

$$\int_{\theta_1}^{\theta_2} d\arg(zf'(z)) + \frac{1-\alpha}{\alpha} \int_{\theta_1}^{\theta_2} d\arg f(z)$$

> $-\pi \left[\frac{2\alpha k + 2\alpha - 2k - k^2}{\alpha k} \right].$

Now (15) will hold provided

$$(2\alpha + 2\alpha k - 2k - k^2)/\alpha k \leq 1/\alpha,$$

i.e., provided

$$k \ge \alpha - (3 - \sqrt{9 - 4\alpha + 4\alpha^2})/2.$$

We have thus established (14) which represents an improvement of another result due to Shirakova.

5. CONCLUDING REMARKS

The various integral transforms have led to considerations of Hornich Spaces [3]. We propose to study the vector space V of all functions $f(z) = z + \cdots$, analytic in Δ , with

$$\alpha[f_1] + \beta[f_2] \equiv \int_0^z f_1'(t)^{\alpha} (f_1(t)/t)^{1-\alpha} f_2'(t)^{\beta} (f_2(t)/t)^{1-\beta} dt,$$

where α and β are real. We propose to study the possible metrics on V and the attendant topologies [3].

References

- 1. W. M. CAUSEY, The close-to-convexity and univalence of an integral, Math. Z. 99 (1967), 207-212.
- 2. W. M. CAUSEY AND W. L. WHITE, Starlikeness of certain functions with integral representations, J. Math. Anal. Appl. 64 (1978), 458-466.
- 3. H. HORNICH, Ein Banachraum analytischer Funktionen in Zusammenhang mit den schlichten Funktionen, *Monatsh. Math.* 73 (1969), 36-45.
- 4. W. KAPLAN, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185.
- 5. Y. J. KIM AND E. P. MERKES, On certain convex sets in the space of locally schlicht functions, *Trans. Amer. Math. Soc.* 196 (1974), 217-224.
- E. P. MERKES AND D. J. WRIGHT, On the univalence of a certain integral, Proc. Amer. Math. Soc. 27 (1971), 97-100.
- 7. S. S. MILLER, P. T. MOCANU, AND M. O. READE, Starlike integral operators, *Pacific J. Math.* **79** (1978), 157–168.
- 8. P. T. MOCANU, Une propriété de convexité généralisée dans la théorie de la représentation conforme, *Mathematica (Cluj)* 11 (34) (1969), 127-133.
- 9. P. T. MOCANU AND M. O. READE, On generalized convexity in conformal mappings, Rev. Roumaine Math. Pures Appl. 16 (1971), 1541-1544.
- 10. M. O. READE, On Ogawa's criterion for univalence, Publ. Math. Debrecen 11 (1964), 39-43.
- 11. W. C. ROYSTER, On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385-387.

- 12. E. A. SHIRAKOVA, The univalence of certain integrals, Soviet Math. (Iz VUZ) 21 (1977), 84-90, English translation.
- 13. H. SILVERMAN, Products of starlike and convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 29 (1975), 109-116.