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ABSTRACT 

Recent observations of anharmonic pseudo-shrinkages in polyatomic molecules 
greatly exceeding the genuine shrinkage due to vibrational foreshortening have forced a 
re-examination of anharmonically induced skewing of internuclear distribution peaks for 
non-bonded distances. It is found that the so called “predictive model” introduced to 
treat skewing in three-atom fragments X-A-X, is entirely inadequate for multiligated 
cases such as AX, and AX,. The physical basis of the observed “anharmonic shrinkage” 
is discussed and a theoretical treatment relating observed peak skewing to anharmonic 
potential terms 1s developed. Because practically no spectroscopic or quantum theor- 
etical information exists to test the expressions derived, a simple mechanical model, 
found in previous studies to have considerable predictive power for quadratic force 
fields, has been extended to cubic terms. It accounts reasonably well for the observa- 
tions of anomalous “shrinkages” in hot CF, , SiF, and SF, Accordingly, it appears that 
diffraction studies may be able to provide new insights into the physical character of 
molecular force fields. 

INTRODUCTION 

In recent studies of laser-pumped molecules [l, 21 and of thermally excited 
molecules [3, 41, electron diffraction has been shown to provide informa- 
tion that is not easily derived by other methods. If the information latent 
within diffracted intensities is to be extracted with minimum degradation 
by systematic errors, however, an attention to rigor in the diffraction 
analyses is required exceeding that heretofore applied or even feasible in 
conventional diffraction investigations. One chronic deficiency of diffrac- 
tion analyses has been a lack of basis for estimating the skewness in proba- 
bility distributions associated with non-bonded distances. This was forcefully 
brought to our attention in recent studies [43 of simple, symmetrical 
molecules at high temperatures. Even after normal %h.ri.nkage” corrections 
for bond foreshortenings due to perpendicular vibrations had been made, 
non-bonded distances appeared to be conspicuously shorter than expected 
from the observed bond lengths. This was puzzling, because we had used the 
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non-bonded asymmetry parameters recommended not long ago in a paper 
[5] that was supposed to provide the first generally applicable answer to the 
problem in cases where the anharmonic force field is not explicitly known 
(namely in almost all cases). It turns out that the published answer [5] is 
totally inadequate in accounting for the effects of anharmonicity beyond 
those imparted by the stretching anharmonicity and anharmonicity associa- 
ted with the non-linear transformation between internal coordinates and 
normal coordinates. Unfortunately, the author had not been sufficiently 
heedful of the literature where, over a decade ago, the crucial concept 
involved had not only been recognized and described, but also given the 
name “anharmonic shrinkage effect [S] .” In contrast to the true shrinkage 
effect of the Bastiansen-Morino variety [7, 81, the “anharmonic shrinkage 
effect” is not a genuine shrinkage effect. It does not shift the center of 
gravity of non-bonded distribution peaks relative to the bonded peaks by 
foreshortening. Instead, it skews the peaks and displaces the maxima to dis- 
tances inside the centers of gravity, making the peak positions appear to shift 
inward unless an appropriate skew parameter is built into the data refine- 
ment. In the original examples [ 6,9,10 ] of anharmonic shrinkage the mole- 
cules were unusual in several respects and the prominent skewing in their 
geminal peaks was induced by the coupling of modes of different symmetry 
brought about by large-amplitude pseudo-rotations. We now see that even in 
prosaic molecules such as simple tetra- and hexa-halides the effect can be 
significant, also, and can become plainly evident, at elevated tempera- 
tures [4]. 

It cannot be said that full enlightenment is yet at hand. Such enlighten- 
ment will require more information about anharmonicity than is currently 
known. Nevertheless, it is possible to show in prototype cases at high 
temperature how the skewing arises, what principal modes are involved, how 
the peak distortions can be calculated from spectroscopic or quantum 
theoretic data and how, in the absence of spectroscopic or theoretical data, 
the effect can be estimated. Such a treatment is outlined in the following 
sections for simple tetrahedral and octahedral molecules. 

QUALITATIVE DESCRIPTION OF EFFECT 

In the original cases (XeF6, IF, , ReF, ) where anharmonic shrinkage 
effects were observed [S, 9, lo] it was found that the anharmonic coupling 
of modes of different symmetry that underlay the effect could be envisaged 
as “steric” in nature. That is, the signs of the coupling terms were given 
properly by a picture of atom-atom or bond-bond avoidance. It turns out 
that the same picture applies to the tetra- and hexa-fluorides studied more 
recently. Consider, for example, the bending modes belonging to the same 
irreducible representation as translation in octahedral and tetrahedral mole- 
cules, i.e. tl, for Oh and tz for Td symmetries. While atom pairs swing apart 
on one side of a molecule, they bump together on the opposite side. Now, if 
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molecules vibrated truly harmonically, the closing down of angles would 
mirror the opening up of angles and the non-bonded atom-atom distribu- 
tions would be quite symmetric. In actuality, however, atoms offer more 
resistance to close approaches than to wide separations. Hence, while they 
may spend approximately half their time in displacements inside the center 
of gravity, the displacements tend to be smaller than they are on the outside 
swing where the motion is more unfettered. This constraint on motion skews 
the distribution to be narrower and therefore higher at negative displacements 
than it is at positive displacements. In the language of normal coordinates, 
what has happened is a mixing in, in phase, of modes of different symmetry 
to relieve the non-Hookean forces encountered at the Iarger displacements. In 
an Oh molecule, for example, tzg impurities reheve the backside congestion 
imparted by tr, or tzu while, in Td, e mixing moderates the crowding caused 
by f2 _ The form of the anharmonic potential function for bond bending 
associated with this type of relief will be discussed in the following. 
Naturally, anharrnonic components couphng stretches with bends contribute 
to skewing to some degree but the major contributions beyond those from 
Morse and non-linear transformation effects appear to be from pure bending. 

TREATMENT OF HOT MOLECULES 

Approach to distribution function 

For well-characterized force fields the theoretical treatment of anharmonic 
effects could be carried out as quantitatively as need and resources dictated, 
along lines developed by Hilderbrandt and Kohl [ 11, 121. Two factors work 
against such a solution. First, very little information exists about anharmonic 
potential constants for molecules larger than triatomic. Secondly, even in 
the simple triatomic cases studied by Hilderbrandt and Kohl, the computer 
time consumed in deriving and manipulating excited state wavefunctions 
becomes prodigious at elevated temperatures. Therefore it seems justifiable 
to introduce a high-temperature approximation which, together with a prom- 
ising model force field, gives a semiquantitative account of recent obser- 
vations. 

Let the potential function V be expressed as 

v = v, + v, 
where V, and V, represent the harmonic and anharmonic components. At 
high temperatures the probability distribution can be expressed as a Boltz- 
mann distribution in potential energy, or 

PB = N’exp(-V&T) (2a) 

= N’ exp( -V,F T)exp( -VIJk T) (2b) 

= NP,exp(--V,/W (2c) 
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where N’ and N are normalization constants and Ph is the distribution when 
V, is neglected. 

For the present purposes a further simplification may be made, taking 
Va/7zT to be small, and writing 

PB = NP, [l- (VJhT)] (3) 

In order to carry out calculations with rigor it is necessary to use rectilinear 
coordinates as a basis [13,14] among which internal coordinates Riy sym- 
metry coordinates S,, or normal coordinates Qi are constructed from Carte- 
sian displacement coordinates. Rectilinear coordinates are distinguished from 
the natural curvilinear stretch and bend coordinates by identifying the latter 
with circumflexes (e.g. Bi or 8i). The anharmonic potential energy contri- 
butions (for which we shall not go beyond cubic terms) are 

i i k 

where each cubic constant can be expressed, as discussed in detail in ref. 14, 
as 

(5) 

with fijk representing the intrinsic anharmonicity in terms of the natural 
curvilinear stretch and bend coordinates, Si, sj and fi,, and the second term 
ansing from the non-linearity of transformations between curvilinear and 
rectilinear coordinates. As will be explained later, the crucial quantity charac- 
terizing the skew of a radial distribution peak is the mean-cube displacement 
from the mean, or 

(y3) = ((r - O->)3> 

(6) 

where dr is the generalized volume element in displacement coordinates. An 
even more convenient parameter of skewness for electron diffraction is 

6 = ty’)/(y*F (7) 

In view of eqns. (4)-(6), it can be seen that this asymmetry parameter 6 
can be expressed as a sum of contributions 

6 = c 1 c 6ijk @a) 

i j k 

=li+aT @W 

of which we may regard E as arising from the cubic anharmonicity in natural 
internal coordinates and aT as arising from non-linear transformations. In the 
remainder of this article it will be assumed that the so called “predictive 
model” of ref. 5 establishes that part of 6 due to Morse anharrnonicity tiM 
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and non-linear transformations QT , and the emphasis here will be on C& , the 
remainder of Z due to bond bending anbarrnonicity. It may very well be true 
that a treatment of fzik (lS!Iorse) and f& in the formalism of eqns. (5)-(7) 
would give a better representation of GM and QT than that of ref. 5. -4 further 
improvement extending the treatment to lower temperatures can be made by 
replacing Pa, the Boltzmann distribution in quadratic potential energy, by 
the distribution 

Ph Q: IIi eXp(+3i2 /2C3i2 )) (9) 

where the (Si’ ) are derived from normal coordinate copulations instead of 
via the Boltzmann values tSi2 ) = fii/kT- For the quadratic terms there is no 
difference between the rectilinear and curvilinear quantities f,i and fii and 
no material difference between the (Si2 ) and {Si2 ). 

Skewness and diffraction intensities 

First, the relation between the anharmonic potential terms and the 
intensity of electrons scattered by an anharmonically vibratmg molecule is 
sought. It is well known [ 153 that the reduced molecular intensity M(s) is 
well approx~ated by a superposition of terms, one for each internuclear 
distance ri, with the form 

S~i(S)/~i(S) = ,"[P, (r)/F] Sin SF dF 
0 

WW 

= Cie-‘mzs72 [sin sfr, -KS+ - KzS4 _ * . )] Jr, (1W 

where Gi (s) is a function including scattering factors and phase shifts, Pi(r) is 
the radial distribution function for the internuclear distance in question, lm2 
is an effective mean-square internuclear distance nearly equal to IS2 [i.e. the 
moment ((I‘ - (F>)~ l] and related as explained elsewhere [ 15 J , while the 
constants fc, K~, . . . , manifest the anharmonically induced skewing in P(F). 
In work published to date, there has been no indication that K~ and higher- 
order modulation constants are sign~i~~t in electron diffraction; therefore, 
they are neglected. It has become customary to represent the nearly Gaussian 
peak Pi(r) by an expansion of the type 

P(y) = A(c-K/~)"~ (1 + f K,yn)exp(ay2 ) (11) 
n=l 

where, as mentioned in the foregoing, y is defined as the displacement from 
r, , not F, , and a! is taken as l/2 ZS2 to make A = 1 up to terms quartic in 1,. 
It is the K, with odd n which skew P(y). In the treatment of ref. 5 it was 
assumed that the essential skewness was ascribable solely to K3 but that is 
certainly not the case in the present investigation. 
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A great simplification, found by inserting eqn. (11) into eqn. (10) and 
comparing results with those from 

(y3) = j-y3 P(y) dy - (12) 

is that 

K = (r3 )/6A 

= <y3)/6 (13) 

with good accuracy, irrespective of how the contributions to (y3) are distri- 
buted among coefficients K3, KS, K7, . . . . Therefore it is convenient in 
some computations to represent the function P(y) by a specific mathematical 
form with adjustable mean-square amplitude Zp2 and standard coefficient of 
skewness A3 , where 

A, - (y3Mg3 (14) 

For historical reasons the form of P(y) most commonly adopted has been 
that of the ground state of a Morse oscillator [ 161 with potential constant a 
and mean-square amplitude I,. For the present purposes where an attempt is 
made to fit a distribution among excited states by such a ground-state func- 
tion, it is necessary to invoke temperaturedependent parameters (L and I,, 
with the result that (I is no longer a (temperature-independent) potential 
constant. To remind ourselves of this distinction this temperaturedependent 
parameter is denoted as 6. It should also be carefully noted that the Morse 
result [ 171 

r - r, = (3/2)aZ,* (15) 

valid at any (moderate) temperature for a Morse diatomic oscillator with 
potential constant a, no longer holds for the general oscillator when a is re- 
placed by 6:. The analytical expression for the distribution and its eqn. (ll)- 
type expansion are given in refs. 15 and 16. Its standard coefficient of skew- 
ness is 

A3 = Cl, (16) 
and, hence, in terms of 6 and I,, the frequency modulation parameter of the 
diffracted intensity function is very nearly 

the second of which equations was obtained for cold diatomic oscillators a 
quarter of a century ago [17]. It is fair to ask whether it is realistic to repre- 
sent an arbitrary skewed distribution by a special Morse function when (1) it 
is unnecessary and (2) the arbitrary skewed function undoubtedly has an 
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appreciably different shape from that of the Morse ground-state distribution. 
The answers are (1) that several popular computer codes incorporate the 
Morse function, (2) that it is the coefficient of skewness, As, which matters 
[cf. eqn. (17a) and the statement under eqn. (13)] and not the exact shape 

that led to it, and (3) that the Morse function yields the very simple results 
of eqns. (16) and (17). 

Relation between skewness and cubic potential constants 

For tetrahedral f0$ molecules with e and tl bending symmetry coordi- 
nates (%, %, ) and (Sqx, ky, 8,, ), respectively [ 181, the symmet~-bowed 
pure-bend cubic constants are &, fzG4 and F4444 , Only the first two of these 
contribute to (y3 1 and, accordingly, only these are considered. Since all of the 
six non-bonded distances have precisely the same probability distributions, 
in the calculation of (y3 > it is only necessary to examine one atom pair, say 
x1 ‘. - X, - Through linear terms, the internuclear displacement 

Y =q12 - (Sf3)‘~‘B (18) 

where R is rE (A-X), can be written for bends as 

3’ = [(&z/3) + (54z/6x’2 )]R (19) 
That part of the bending anharmonicity governing moments of the y distri- 
bution is, through cubic terms, 

In the following the bending contributions to asymmetry parameter &, are 
derived and it is assumed that the remaining Morse and transformation contri- 
butions to 6 and K can be derived by the model of ref. 5 where (& + ar ) 
is c&led aeff. 

In order to evaluate that part of (y3 ) (and, hence, of B = (y3 >/Zg4 ) attribu- 
table to fzz2 and f2 4 4 , it is sufficient for our purposes to represent Pt, of eqn. 

(3) as 

Pkr. = Pz exp [-(S:, + S:, )/(2(S,2 >) ] x exp[-(S& + S& + S& )/ 

(2a2))l (21) 

where (S2’ > = <S&J = (S&,) and (Sa2 ) 3 (S4,2 ) = <Si v) = <St z) are mean-square 
values of the symmetry coordinates and Pr is the distribution in all other co- 
ordinates. Contributions from P, cancel in the normalization of <y3 >. Again, 
it is not necessary to distinguish between <Si2 ) and {&’ ). Insertion of eqns. 
(X9)-(21) into eqn. (6) leads to 
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a222 = - tS,* )3 &R3 /(36~=4~T) (22) 

and 

ff244 = - (52’ >EL? 1’ f244R3/(6Z~~~T) (23) 

For octahedral AXs molecules with t,,, tze and tPu symmetry coordinates 
(QaXt h,, %z 1, &, , &, , gsr 1 and (sex, k, ,%r )-for beds IX% 191, the 
allowed pure-bend cubic constants are t&+5, f44Jb, fseti and fss5 , the latter of 
which does not contribute to (y3 ). For atomic pair XI - . . X2, the displaee- 
ment y is, through linear terms in bends [ QJ 

Bending anharmonicity contributing to <y3 ) is 

v, = A45 (&&&~ + * ’ - I$- L %s cs,,&i, $- s4xssy 1 

+ Lt, &,k336, $- . - * 1 cm 

A treatment exactly analogous to that for tetrahedral molecules yields 

a445 = as42 F a52 > R3 &&.q5 (26) 

a456 = 2c(s4* MS,* We2 1R3 j&j (27) 

and 

(is&j = cts,* W62 j2 R3 j$:566 (23) 

where 

C = -18”2 /(321 %T) s - cw 

Representative numerical examples will be given in a later section. 

A model field for estimating cubic constants 

In view of the dearth of published cubic constants, it is necessary to for- 
mulate some procedure for estimating them if the equations in the foregoing 
are tr have any utility. One extremely simple model is proposed which has 
the v -%ue, at least, of giving the right order of magnitude of the one measured 
cubir constant available (fGg5 for SF, 1201) and accounting, as well, quite satis- 
facts ily for the anharmonic shrinkages of CF, and SiF,+ . The model has 
been st~ingly successful in representing quadratic bending constants in 
cases studied to date [Zl, 221. It is not the purpose of the present article to 
defend this repelling-points-on-a-sphere (POS) model beyond the above state- 
ments, to discuss its application in detail, or to derive the equations presented 
for force constants below. 

It is suggested that the bending potential energy, following the Sidgwick- 
Powell-Gillespie-Nyholm “valence shell electron pair repulsion” model 
[23’j can be expressed by a POS formulation 



V& = K C C (l/rzj)” K,n>O 
i> i 
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(30) 

where rij is the distance between the valence “points-on-a-sphere” and where 
K and n can be adjusted to make eqn. (30) agree as closely as possible with 
the known quadratic bending potential surface. Then, for tetrahedral mole- 
cules, in units of (3/8)“j2K/Rn 

f 22 = n(n + 2)/8 (31) 

f44 = n(n + 6118 (32) 

f222 = -(6l’*/192)n(n + 2) (n + 7) (33) 

and 

f2244 = -(6’12/96) (n3 + 9n2 + 6n) (34) 

For octahedral molecules, in units of (Z/R” ), Bernstein and Vernon 
[24] have show-n that 

f44 = p/2(: + 3 + 2-(31 

fs* = py$ +:)I 

and 

fee = [1-y3 + 2-y)] 

(35) 

(36) 

(37) 

From a table of numerical computations of Bernstein and Vernon, the 
following expressions accurate to perhaps 1% have been constructed for 
cubic constants 

A445 = - (1.49 X 104) (n4 - 21.7n’ - 1.3n2 + 1890n - 940) (38) 

f4S6 = - (3.86 X 104) (n3 - 64~2~ + 820n - 1020) (39) 

and 

A566 = - (8.04 X 103) (n4 - 12.5n3 - 305~2~ + 4580n- 1430) (40) 

in the same energy units as the quadratic constants. A range of 1 < n < 11 
applies to eqns. (38) and (40) and 3 < n G 9 to eqn. (39). 

Numerical illustra ticw7.s 

Computations were carried out for CF4 and SiF4 using the force fields 
of Clark and Rippon [25] and for SF6 with the potential constants of 
McDowell et al. [26] ; values of a, the Morse potential constant, were taken 
from Herschbach and Laurie [27]. First, values of K and the hardness par- 
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arneter n of eqns. (30)-(40) were found which would reproduce the quad- 
ratic bending constants of the A& moIecules exactly and those of AXs in 
the mean. Constants n and Q are recorded in Table 1. Next, the force fields 
were recast into the modified anharmonic Urey--Bradley form [ 3, 281 
appropriate for calculation of the Morse and transformation contribution 
(G, and aT ) via the simplified model of ref _ 5. The resultant values, obta~ed 
by Goates [3] are listed in Table 1. Subsequently, cubic constants were 
evaluated using the POS model of eqns. (33), (34) and (37)-(40). Finally, 
mean-square amplitudes <Sf ) were computed by normal coordinate calcula- 
tions and inserted into eqns. (22), (23) and (26)-( 29) to obtain the values of 
bending asymmetry parameters & given in Table 1. For purposes of 
comparison are hsted experimental values of ii obtained in diffraction 
analyses_ These values were adjusted to make experimental shrinkages fit 
theoretics shrinkages in recent experiments described elsewhere [4] _ Values 
are preliminary and represent trial refinements of only a small fraction of the 
total data. It is evident that experimental and model (points-on-a-sphere + 
Boltzmann i- “predictive model”) values are in rough agreement with each 
other. It is not unlikely that a better evaluation of the Morse-non-linearity 
terms than provided by the “predictive model” of ref. 5 would improve the 
agreement. A possible procedure for accomplishing this was suggested in the 
foregoing. 

CONCLUSIONS 

The purpose of this paper is to point out that asymmetries in non-bonded 
radial distribution peaks can be substantial and can cause appreciable errors 
ti deriving non-bonded distances, particularly at elevated temperatures, 
Compelling arguments, both experimental and theoretical, have been 
advanced to show that the so called “predictive model” of ref. 5 is entirely 

TABLE 1 

Potential constants and non-bonded skew parameters for molecules at various tempera- 
tures (A-’ for all a values) 

Molecule T(K) na (a, + CPy ilp &he 

CF, 1600 6.5 2.0 0.0 2.6 2.6 3.0 
SIF, 900 3.8 1.9 -1.0 1.6 0.6 0.9 
SF*g 780 6.3 1.6 0.0 1.9 1.9 3.5 

1700 6.3 1.6 0.1 1.8 1.9 3.7 

aHardness exponent, points-on-a-sphere potential functian, eqn. (30). bMorse potential 
constant. =Mose and non-linear transformation contributions to skew parameter, eqn. 
(a), calculated according to the crude model of ref. 5. dBending anharmonicity contri- 
butions to skew according to points-on-a-sphere eqns. (22), (23) and (26)-(28). =Surn 
af (a, + aT) and fib. fhdixninary e 8 1 ctron diffraction results. gResults pertain to F-F 
(C&d. 
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inadequate to represent the total effect of skewing in non-bonded distances 
in molecules larger than triatomic. Too Iittle spectroscopic information is 
available to allow precise computations to be made, yet, but a promising, 
simple model has been proposed which leads to useful estimations of mag- 
nitudes. 

The approximation introduced to make computations tractable in this 
preliminary exploration consists of taking a Boltzmann distribution in 
potential energy truncated to (1 - V,/hT) in the anharmonic factor. This 
must fail, of course, at low temperatures when the distribution is largely dic- 
tated by zero-point vibrations and at extremely high temperatures where 
V, is proportional to the cube of displacements and kT is proportional to 
only the square. But over a large and reasonable range the approximation 
should be satisfactory. In this range the convenient skew parameter &, for 
bending is roughly independent of temperature as can be seen in eqns. (22), 
(23) and (26)-(28) where each mean-square amplitude is approximately 
proportional to kT. Although parameters ir, and 6 may not be strong 
functions of temperature, their influence on derived mean bond lengths 
increases rapidly with temperature because the intensity modulation para- 
meter K of eqn. (17) is proportional, approximately, to 6 times T’. 

Errors introduced into analyses of internuclear distances in CF4 , SiF, and 
SF6 when 6 was neglected or when only the 6 of ref. 5 was included were 
approximateIy proportional to T and of the order of 0.01 A at 1500 K. 
Because such an error may be enormously greater than that due to random 
intensity errors, it would seem fitting to develop a procedure to compensate 
for it satisfactorily. 
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