Nonsolvable Signalizer Functors on Finite Groups

Patrick P. McBride
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Communicated by W. Feit
Received November 4, 1981

1. Introduction

Recently Gorenstein and Lyons obtained the first nonsolvable signalizer functor theorems [9]. They pinpointed certain "unbalancing" problems. This paper grew from an attempt to manage such problems. Theorem A is the result. Theorem B and Corollary C give some measure of the practical scope of Theorem A.

Suppose p is a prime, A is an elementary Abelian p-subgroup of a finite group G, and θ is an A-signalizer functor on G. The unbalancing difficulties, referred to above, occur only if there are "certain" nonidentity subgroups X of G, such that $C_{X}(A)$ is solvable. Using methods of Glauberman [5, Lemma 2.11 and Theorem 4.5] we are able to reduce the problem: either the "unbalancing" problems vanish or $\theta\left(C_{G}(A)\right)$ is solvable. The latter case is treated in [13]. The rest of the work is treated here. This work pivots on Theorems 5.16 and 6.5 , results which closely resemble [5, Lemma 2.11 and Theorem 4.5].

2. Notation, Definitions, and Conventions

Conventions. All groups treated in this paper are finite. All simple groups are nonabelian. We shall reserve p and r for primes.

Suppose A, B are groups and B acts on A. Then $A B$ is the usual product if A and B are subgroups of a common group; otherwise $A B$ is the semidirect product of A by B.

Suppose a group G is the direct product of subgroups $A_{1}, A_{2}, \ldots, A_{n}$. Let X be a subset of G. Then $\operatorname{Proj}_{A_{1}}(X)$ is the usual projection map of X on A_{i}. We often write $\operatorname{Proj}_{A}(X)$ when $G=A \times C_{G}(A)$. Then projections are taken with respect to the pair $\left(A, C_{G}(A)\right)$. If X is contained in a subgroup N, we may

[^0]apply the above conventions to N. We do so by stating that projections are being taken in N.

Notations and Definitions. Our notation for groups of Lie type agrees with [2]. Most of the specialized notation is taken from [5, 7, 13]. For the convenience of the reader we shall repeat many of these. What is not explained can be found in $[2,8]$, or is hopefully self-explanatory.
(1) Let S be a finite set. When the members of S are sets, $\cap S$ is the intersection of the members of S. When the members of S are groups, $\times S$ is the direct product of the members of S. When the members of S are real numbers, $\sum S$ is the sum of the members of S.
(2) A section of a group G is a quotient group K / L of a subgroup K of G by a normal subgroup L of K.
(3) A simple group G is outer p-cyclic means that the outer automorphism group of $G, \operatorname{Out}(G)$, has cyclic Sylow p-subgroups.
(4) The group G is near p-solvable means that G is a p^{\prime}-group, and any simple section of G is isomorphic to $A_{1}(q), A_{1}\left(3^{p}\right),{ }^{2} B_{2}(q)$, or ${ }^{2} A_{2}\left(q^{2}\right)$, where $q=2^{p}$.
(5) A localized subgroup of a group G is any subgroup which normalizes a nonidentity solvable subgroup of G.
(6) Hypothesis A (applied to a pair (G, p)).
(A.1) p is a prime and G is a simple p^{\prime}-group.
(A.2) G is outer p-cyclic.
(A.3) G is near p-solvable, or the following three conditions apply to any automorphism f of G of order p.
(A.3.1) Let $C=C_{G}(f)$. Then C is not a localized subgroup of G.
(A.3.2) $F^{*}(C)$ is simple.
(A.3.3) Any p^{\prime}-automorphism of G which centralizes C is trivial.
(7) Hypothesis B (applicd to a pair (G, p)). p is a primc. G is a p^{\prime} group. Hypothesis A applies to (K, p) for all simple sections K of G.
(8) The group G is near A-solvable means that A is an elementary p group, (G, p) satisfies Hypothesis B , and $\mathrm{C}_{G}(A)$ is solvable.
(9) The statement " θ is an A-signalizer functor on G " means that A is an Abelian p-subgroup of the group G for some prime p, and that for each $a \in A^{\#}$ there is defined an A-invariant p^{\prime}-subgroup $\theta\left(C_{G}(a)\right)$ of $C_{G}(a)$ such that

$$
\begin{equation*}
\theta\left(C_{G}(a)\right) \cap C_{G}(b) \leqslant \theta\left(C_{G}(b)\right) \quad \text { for all } a, b \in A^{\#} \tag{*}
\end{equation*}
$$

The property $\left(^{*}\right.$) is called balance.
In definitions (10) through (18), let θ, G, A, and p be as in Definition 9.
(10) Hypothesis (C) (applied to θ). The pairs $\left(\theta\left(C_{G}(a)\right), p\right)$ satisfy Hypothesis B for all $a \in A^{*}$.
(11) The associated set of A-signalizers is the set of all A-invariant p^{\prime} subgroups X of G such that $C_{X}(a) \leqslant \theta\left(C_{G}(a)\right)$ for all $a \in A^{*}$, and such that (X, p) satisfies Hypothesis B. It is denoted $И_{\theta}(A)$. The set of all maximal elements of $И_{\theta}(A)$ under inclusion is denoted by $И_{\theta}^{*}(A)$.
(12) We say that θ is complete if G contains a unique maximal element of $И_{\theta}(A)$ under inclusion. This element is then denoted by $\theta(G)$.
(13) We say that θ is locally complete if, for every nonidentity element X of $U_{\theta}(A), N_{G}(X)$ contains a group $\theta\left(N_{G}(X)\right)$ which is the unique maximal element among all elements of $И_{\theta}(A)$ contained in $N_{G}(X)$. In this case, we put $\theta\left(C_{G}(X)\right)=\theta\left(N_{G}(X)\right) \cap C_{G}(X)$.
(14) For every nonidentity subgroup B of A, let

$$
\theta\left(C_{G}(B)\right)=\bigcap\left\{\theta\left(C_{G}(b)\right) \mid b \in B^{*}\right\} .
$$

(15) The set of all elements of $И_{\theta}(A)$ which are $\theta\left(C_{G}(A)\right)$-invariant is denoted $\hat{\mathrm{h}}_{\theta}(A)$.
(16) The set of all elements of $И_{\theta}(A)$ which contain $\theta\left(C_{G}(A)\right)$ is denoted $\tilde{\mathrm{V}}_{\theta}(A)$.
(17) $\pi(\theta)=\bigcup\left\{\pi\left(\theta\left(C_{G}(a)\right)\right) \mid a \in A^{*}\right\}$ and $|\theta|=\sum_{a \in A^{\#}}\left|\theta\left(C_{G}(a)\right)\right|$.
(18) For any $r \in \pi(\theta)$, let $И_{\theta}(A ; r)$ be the set of all r-groups in $И_{\theta}(A)$, and let $И_{\theta}^{*}(A ; r)$ be the set of maximal elements of $U_{\theta}(A ; r)$. The elements of $И_{\theta}^{*}(A ; r)$ are called $S_{r}(A)$-subgroups of G.
(19) The solvable radical of a group G is the maximal solvable normal subgroup of G. It is denoted $\operatorname{Sol}(G)$.
(20) The set of subnormal simple subgroups of a group G is denoted $\mathscr{L}(G)$. Let $\bar{G}=G / \operatorname{Sol}(G)$. Then $\mathscr{M}(G)$ is the set of all subgroups X of G, which contain $\operatorname{Sol}(G)$, and which satisfy $\bar{X} \in \mathscr{L}(\bar{G})$.
(21) A group is semi-simple means that it is the direct product of its normal simple subgroups. This use is not in accord with [8, p. 501]. A group is perfect if it is its own derived group. A group is an E-group if it is perfect, and modulo its center is semi-simple. A group is a K-group if modulo its solvable radical it is semi-simple. Let G be a group. The Fitting subgroup of G is denoted $F(G)$. The unique maximal normal E-subgroup of G is denoted $E(G)$. The generalized Fitting subgroup of G equals $E(G) F(G)$. It is denoted $F^{*}(G)$. The unique maximal normal K-subgroup of G is denoted $K(G)$. We define $\hat{K}(G)=\left(\cap\left\{N_{G}(M) \mid M \in \mathscr{M}(G)\right\}\right) \operatorname{Sol}(G)$.
(22) Suppose A is an Abelian p-group acting on the p^{\prime}-group G. For
each subgroup X of G, the smear of X by A is the subgroup $\left\langle X^{A}\right\rangle \cap C_{G}(A)$. It is denoted $X * * A . \quad \mathscr{L}^{A}(G)=\{L \in \mathscr{L}(G) \mid L * * A \quad$ is nonsolvable $\}$. $\mathscr{M}^{A}(G)=\{M \in \mathscr{M}(G) \mid M * * A$ is nonsolvable $\} . K^{A}(G)=\left\langle\mathscr{M}^{A}(G)\right\rangle$. Finally, $K_{A}(G)=C_{G}\left(K^{A}(G) / \operatorname{Sol}(G)\right)$.
(23) We are interested in structures which are like wreathed structures. Suppose G is a group. The expression $G=H \underline{w}(A, N, C)$ means: A is an Abelian subgroup of G, H is a subgroup of $G, G=\langle H, A\rangle,\left\langle H^{G}\right\rangle=$ $\times H^{G}, N=N_{A}(H)$, and $C=C_{A}(H)$.
(24) Suppose the group G is the direct product of its subgroups $G_{1}, G_{2}, \ldots, G_{n}$. A diagonal subgroup of G, with respect to $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$, is any subgroup X such that $\operatorname{Proj}_{G_{i}}: X \rightarrow G_{i}$ is an isomorphism.
(25) A direct factor of the group G is any subgroup K of G such that $K \times L=G$ for some subgroup L of G. We say G is indecomposable if its only direct factors are G and 1 . We denote the set of all indecomposable direct factors of G by $\operatorname{Ind}(G)$.

3. Statement of Main Results

Theorem A. Suppose p is a prime, A is an Abelian subgroup of a group $G, m(A) \geqslant 3$, and θ is an A-signalizer functor on G which satisfies Hypothesis C. Then θ is complete.

Theorem B. Suppose p is a prime, G is a simple p^{\prime}-group, and at least one of the following conditions apply to G :
(a) $\operatorname{Out}(G)$ is prime to p,
(b) G is a Chevalley or a twisted Chevalley group, or
(c) G has an Abelian Sylow 2-subgroup.

Then it follows that (G, p) satisfies Hypothesis A.
Corollary C. Suppose $p=2$ or 3 , A is an Abelian p-subgroup of the finite group $G, m(A) \geqslant 3$, and θ is an A-signalizer functor on G. Then θ is complete.

4. Proof of Theorem B and Corollary C

We list the Lie notation used in this section. For greater detail see [2].
Definition. Let K be a finite field. We write $\Lambda(K)$ for any of the groups $A_{n}(K), B_{n}(K), C_{n}(K), D_{n}(K), G_{2}(K), F_{4}(K)$, or $E_{n}(K)$. In this section we
shall reserve $G(K)$ to mean $\Lambda(K)$ or some twisted version ${ }^{i} \Lambda(K)$ of $\Lambda(K)$. The root system and fundamental root system corresponding to Λ are given respectively by Φ and Π.

Let Z be the integers. Then \hat{H} is the set of automorphisms of $A(K)$ of the form $h(\chi), \chi \in \operatorname{Hom}(Z \Phi, K)$, defined by $h(\chi): x_{r}(s) \rightarrow x_{r}(s \chi(r))$ for $r \in \Phi$. The group of field automorphisms of $\Lambda(K)$ is denoted \mathscr{F}. Let A_{1} be the inner automorphism group of $G(K), A_{2}$ the automorphism group induced by $N_{\hat{I}}(G(K))$ on $G(K), A_{3}=F$, and $A_{4}=$ the automorphism group generated by the graph automorphism of $G(K)$. By $[14,15,17]$, $\operatorname{Aut}(G(K))=A_{1} A_{2} A_{3} A_{4}, A_{2} \cong N_{\hat{H}}(G(K))$, and $A_{3} \cong N_{\mathscr{F}}(G(K))$. Hence we shall identify A_{2} and A_{3} with $N_{\hat{H}}(G(K))$ and $N_{\mathscr{F}}(G(K))$, respectively. Also when convenient we may identify $\operatorname{Aut}\left({ }^{i} \Lambda(K)\right)$ with a subgroup of $\operatorname{Aut}(\Lambda(K))$ and $G(K)$ with A_{1}.

Let U (resp. V) be the positive (resp. ncgative) unipotent subgroups of $\Lambda(K)$.

Lemma 4.1. Suppose $G(K)$ is a p^{\prime}-group. Then A_{3} contains a Sylow psubgroup P of $\operatorname{Aut}(G)$. Moreover P is cyclic.

Proof. $\quad \pi\left(A_{1}\right)=\pi(G), \pi\left(A_{2}\right)=\pi\left(K^{\#}\right) \subseteq \pi(G)$, and $\pi\left(A_{4}\right) \subseteq \pi(G)$. Hence by Sylow's theorems, A_{3} contains a Sylow p-subgroup of $\operatorname{Aut}(G)$. Since A_{3} is cyclic, the result follows.

Lemma 4.2. Let K have characteristic r. Suppose T is a subgroup of U, such that for all $s \in \Pi, T$ contains an element $\prod_{t \in \Phi^{+}} x_{t}\left(b_{t}\right)$, for which $b_{s} \neq 0$. Then U is the unique Sylow r-subgroup of $\Lambda(K)$ which contains T.

Proof. The proof of [1, Lemma 1.1] is based on these conditions and shows $N(T) \leqslant N(U)$. Since the conditions are inherited by $N_{U}(T)$, the result follows by induction on $|U: T|$.

Lemma 4.3. Suppose $G(K)$ is a p^{\prime}-group and f is an automorphism of $G(K)$ of order p. Let $C=C_{G(K)}(f)$ and $D=C_{\mathrm{Aut}(G(K))}(C)$. Then $D=\langle f\rangle$.

Proof. Let r be the characteristic of K. By Lemma 4.1 we may suppose f is a field automorphism. Then by Lemma $4.2, U$ is the unique Sylow r subgroup of $A(K)$ containing $U \cap C$. Since $U \cap C$ and $V \cap C$ are conjugate, it follows that V is the unique Sylow r-subgroup of $\Lambda(K)$ containing $V \cap C$. Hence $D \subseteq N(U) \cap N(V) \cap \operatorname{Aut}(G(K))=A_{2} A_{3} A_{4}$. Since $A_{2} A_{3}$ normalizes each root group it follows that $D \subseteq A_{2} A_{3}$. Now straightforward calculations assisted by [2, Theorem 5.3.3(ii), Proposition 13.6.1] yield the result.

Lemma 4.4. Suppose $G \cong A_{1}(q), A_{1}\left(3^{p}\right),{ }^{2} A_{2}(q)$, or ${ }^{2} B_{2}(q)$, where $q=2^{p}$. Suppose in addition that G is a p^{\prime}-group. Then G is near p-solvable.

Proof. When $G \cong{ }^{2} B_{2}(q)$, the result is given by [17, Theorem 9]. Otherwise the result follows from [4, Sects. 8.4 and 8.5].

Proof of Theorem B. (a) In this case all the conditions are vacuously satisfied.
(b) Suppose $G(K)$ is a p^{\prime}-group. We must show ($\left.G(K), p\right)$ satisfies Hypothesis A. By (a), we may suppose that $p \in \pi(\operatorname{Aut}(G(K))$. By Lemma 4.1, $G(K)$ is outer p-cyclic. Let f be an automorphism of $G(K)$ of order p and let $C=C_{G(K)}(f)$. By Lemma 4.3, any p^{\prime}-automorphism of $G(K)$ which centralizes C is trivial.

By Lemma 4.4, we may suppose $G \not \not \not A_{1}(q), A_{1}\left(3^{p}\right),{ }^{2} A_{2}\left(q^{2}\right)$, or ${ }^{2} B_{2}(q)$ for $q=2^{p}$. By $[1], C$ is a maximal subgroup of $G(K)$. Hence it suffices to show $F^{*}(C)$ is simple. By [2, Theorems 21.1.2, 14.4.1, comments on p. 175, and the note on p. 268] it suffices to show ${ }^{2} G_{2}(3)$ and ${ }^{2} F_{4}(2)$ have trivial center. The argument on [2, p. 173] carries over to the above two situations. This completes (b).
(c) Let G be a p^{\prime}-simple group with Abelian Sylow 2 -subgroup. We must show (G,p) satisfies Hypothesis A. By parts (a), (b), and [10, 20], we may suppose G has an elementary Abelian Sylow 2-subgroup P of order 8, that $C_{G}(j) \cong Z_{2} \times A_{1}(q)$ where $q=3^{n}$ for some odd integer n at least 3 , and that G has an automorphism of order p. Such groups have been studied extensively $[11,15,19,21]$. Let $N=N_{G}(P), A_{1}$ be the group of inner automorphisms of G, and B_{2} the group of automorphisms centralizing N. By [20, p. 335], there follows

$$
\begin{equation*}
\operatorname{Aut}(N)=\operatorname{Inn}(N) \cong N \tag{4.1}
\end{equation*}
$$

So by the Frattini argument

$$
\begin{equation*}
\operatorname{Aut}(G)=A_{1} B_{2} \tag{4.2}
\end{equation*}
$$

G does not have a strongly embedded subgroup, and N is transitive on $P^{\#}$, whence $G=\left\langle N, C_{G}(j)\right\rangle$ for any $j \in P^{\#}$. Hence

$$
\begin{equation*}
B_{2} \text { acts faithfully on }\left(C_{G}(j)\right)^{\prime} \cong A_{1}\left(3^{n}\right) \text { for any } j \in P^{\#} \tag{4.3}
\end{equation*}
$$

Now suppose f is an automorphism of G of order p. By (4.2), we may suppose $f \in B_{2}$. Hence by (4.3), G is outer p-cyclic. Let $C=C_{G}(f)$. Any automorphism k of G which centralizes C must centralize N. Hence $k \in B_{2}$. By (4.3) and (b), it follows that $k \in\langle f\rangle$.

Let $j \in P^{*}$. Then $C_{N}(j)$ normalizes no nontrivial subgroup of odd order of $C_{G}(j)$. Hence N normalizes no nontrivial subgroup of odd order. Since N is transitive on $P^{\#}$ we obtain

$$
\begin{equation*}
\text { Suppose } N \leqslant H \leqslant G \text {. Then } H=N \text { or } F^{*}(H) \text { is simple. } \tag{4.4}
\end{equation*}
$$

To complete the proof it suffices by (4.4) to show that $N \neq C$. The order of N is 168. Let e be an element of N of order 3 , and t an involution of N centralizing e. By [11,21], e is contained in a unique Sylow 3-subgroup R of G. So t and f normalize R. Now $e \in C_{R}(t) \leqslant R^{\prime}$. Hence it suffices to show $C_{R / \Phi(R)}(f) \neq 1$. However, $N_{G}(R)$ is transitive on $(R / \Phi(R))^{\#}$ whence $\langle e\rangle<C_{R}(f)$. Hence $N \neq C$. This completes the proof of Theorem B.

Proof of Corollary C (assuming Theorem A). $\quad \theta$ satisfies Hypothesis B by [3] if $p=2$, or by Theorem B part (b) and [6] or [18] if $p=3$. Theorem A then yields the corollary.

5. Preliminary Lemmas

Lemma 5.1. Suppose the Abelian p-group A acts on the p^{\prime}-group X. Then $X=\left\langle C_{X}\left(A_{0}\right)\right| A / A_{0}$ is cyclic \rangle.

Proof. See [7, Lemma 2.1].
Lemma 5.2 (Glauberman). Suppose the π-group A acts on the π^{\prime}-group K. Suppose K is generated by A-invariant pairwise permuting subgroups $K_{1}, K_{2}, \ldots, K_{n}$. Then $C_{K}(A)=C_{K_{1}}(A) C_{K_{2}}(A) \cdots C_{K_{n}}(A)$.

Proof. See [9, Lemma 2.1].

Lemma 5.3. Suppose θ is an A-signalizer functor on a group G, $P \in И_{\theta}(A ; r)$ and B is a noncyclic subgroup of A. Then the following statements are equivalent:
(1) $P \in И_{\theta}^{*}(A ; r)$
(2) $C_{P}(b)$ is an $S_{r}(A)$-subgroup of $\theta\left(C_{G}(b)\right)$ for all $b \in B^{\#}$.

Proof. See [7, Lemma 3.2].

Lemma 5.4. Let G be a group and $\bar{G}=G / \operatorname{Sol}(G)$. Then the functors F^{*}, K, E, and Sol satisfy:
(a) $\operatorname{Sol}(\bar{G})=\overline{1}$,
(b) $C_{G}\left(F^{*}(G)\right) \subseteq F^{*}(G)$, and
(c) $K(G)=K(\overline{\bar{G}})=E(\bar{G})=F^{*}(\bar{G})$ is semi-simple.

Proof. See [13, Lemma 2.4].
Lemma 5.5. Suppose the Abelian group A acts on the group
$G=G_{1} \times G_{2} \times \cdots \times G_{n}$. Suppose A acts on $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ via the induced action of A on subgroups. Then

$$
\operatorname{Proj}_{G_{i}}\left(C_{G}(A)\right)=C_{G_{i}}\left(N_{A}\left(G_{i}\right)\right)
$$

where projections are taken with respect to $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$.
Proof. See [13, Lemma 2.9].
Lemma 5.6. Suppose the group A acts on the group G, G is a direct product of a set S of subgroups of G on which A acts semi-regularly. Suppose W is a subgroup of $C_{G}(A)$, and $T \leqslant K \in S$ satisfies $T * * A \leqslant W$. Then $T \leqslant \operatorname{Proj}_{K}(W)$ when projections are taken with respect to S.

Proof. Let $t \in T$ and $y=\prod_{a \in A} t^{a}$. The elements of t^{A} commute pairwise; so y is well defined and centralized by A. So $t=\operatorname{Proj}_{K}(y) \in \operatorname{Proj}_{K}(W)$ as required.

Lemma 5.7. Suppose the group G acts faithfully on the set Ω, G has a Sylow p-subgroup S acting transitively on Ω, and $O^{p}(G)=O_{p}(G)$. Then $G=S$.

Proof. [See 13, Lemma 2.6].
Lemma 5.8. Suppose M is a group of operators of the semi-simple group K. Then $[K, M]=$ the product of components of K not centralized by M.

Proof. Suppose that K has a component L centralized by M. Then $[K, M]=\left[C_{K}(L) \times L, M\right] \leqslant C_{K}(L)<K$.

Now let $K_{1}=[K, M]$ and $K_{2}=C_{K}\left(K_{1}\right)$. Then both K_{1} and K_{2} are normal in $K M$, and $K=K_{1} \times K_{2}$. Hence $\left[K_{2}, M\right] \leqslant K_{1} \cap K_{2}=1$. So $K_{1}=[K, M]=$ $\left[K_{1} \times K_{2}, M\right]=\left[K_{1}, M\right]$. The previous paragraph implies that K_{1} has no component centralized by M.

Lemma 5.9. Suppose G is a group and $K(G) \leqslant X \leqslant G$. Then $K(G)-K(X)$.

Proof. See [13, Lemma 2.15].
Lemma 5.10. Suppose the group G is semisimple. Let $\mathscr{L}=\mathscr{L}(G)$. Suppose H is a subgroup of G such that $\operatorname{Proj}_{L}(H)=L$ for all $L \in \mathscr{L}$. For each nonempty subset T of \mathscr{L} let $G_{T}=\langle T\rangle$ and $H_{T}=H \cap G_{T}$. Then
(a) \mathscr{L} is the disjoint union of subsets $\mathscr{L}_{i}, 1 \leqslant i \leqslant k$,
(b) H is the direct product of $H_{\mathscr{L}_{i}}, 1 \leqslant i \leqslant k$, and
(c) $H_{\mathscr{L}_{i}}$ is a diagonal subgroup of $G_{\mathscr{L}_{i}}$.

Proof. Let T be a nonempty subset of \mathscr{L} of least possible order subject to $G_{T} \cap H \neq 1$. If $T=\mathscr{L}$, then H is already a diagonal subgroup of G and we are done. Suppose then that T is a proper subset of \mathscr{L}. Let $H^{*}=\operatorname{Proj}_{G_{T}}(H)$. Now $H_{T} \geqslant\left[H, H_{T}\right]=\left[H^{*}, H_{T}\right]$. So $H_{T} \triangleleft H^{*}$. Let $L \in T$. Then $1 \neq \operatorname{Proj}_{L}\left(H_{T}\right) \triangleleft \operatorname{Proj}_{L}(H)=L$. Hence H_{T} is a diagonal of G_{T}. So $H_{T} \leqslant H^{*} \leqslant N_{G_{T}}\left(H_{T}\right)=H_{T}$. Hence $H=H_{T} \times C_{H}\left(G_{T}\right)$. The result now follows by induction on $|\mathscr{L}|$.

Lemma 5.11. Suppose the elementary Abelian p-group A acts on the p^{\prime} group $G, m(A) \geqslant 2$, and each member of $\mathscr{L}(G / \operatorname{Sol}(G))$ is outer p-cyclic. Let $L=\left\langle K\left(C_{G}(a)\right) \mid a \in A^{*}\right\rangle$. Then $K(L)=K(G)$.

Proof. By Lemma 5.9, it suffices to show that $L \geqslant K(G)$. We may now make the following sequence of reductions; first $G=K(G)$, then $\operatorname{Sol}(G)=1$, then A is of order p^{2}, then $C_{A}(G)=1$, and finally A acts transitively on $\mathscr{L}(G)$. By the outer p-cyclic property and Lemma 5.1 , we may suppose $B=A \cap \hat{K}(G A) \cong Z_{p}$. Let $K \in \mathscr{L}(G)$. Then $1 \neq K\left(C_{K}(B)\right)=K\left(C_{G}(B)\right) \cap$ $K \leqslant L$. So $L \cap K \neq 1$. Let $B \neq E \in \mathscr{E}_{1}(A)$. Then $C_{G}(E) \leqslant L$. By Lemma 5.10, $L=G$.

Lemma 5.12. Suppose H is a group of operators on the group $G=\times \Omega$. Suppose the action of H on G induces a semiregular action of H on Ω. Then $Z\left(C_{G}(H)\right)=C_{Z(G)}(H)$.

Proof. Let $C=C_{G}(H)$. Take projections in G with respect to Ω. Since H acts semiregularly on Ω, it follows that $\operatorname{Proj}_{K}(C)=K$ for all $K \in \Omega$. Hence

$$
\begin{aligned}
C_{G}(C)= & \times\left\{C_{K}(C) \mid K \in \Omega\right\}=\times\left\{C_{K}\left(\operatorname{Proj}_{K}(C)\right) \mid K \in \Omega\right\} \\
& \times\left\{C_{K}(K) \mid K \in \Omega\right\}=Z(G)
\end{aligned}
$$

Hence $Z(C)=C \cap Z(G)$ as required.

Lemma 5.13. Suppose A is a p-group and G is near A-solvable. Then G is near p-solvable.

Proof. A simple section of G is isomorphic to a simple section of some chief factor of $G A$ in G. Hence we may assume G is nonsolvable and is minimal normal in $G A$. Then G is near ($A \cap \hat{K}(G A)$)-solvable. Hence we may suppose that G is simple. Since $C_{G}(A)$ is a localized subgroup of G and $A / C_{A}(G) \cong Z_{p}$, it follows by Hypothesis A.3. that G is near p-solvable.

Lemma 5.14. Suppose A is an elementary Abelian p-group of operators on the group G. Suppose (G, p) satisfies Hypothesis B. Let $D=C_{G}(A)$. Suppose X is a DA-invariant subgroup of G, and $\operatorname{Sol}(G)=1$. Let $J \in \mathscr{L}^{A}(G)$. Then $F^{*}(J * * A) \leqslant X$ or J is centralized by X.

Proof. Let $L=\left\langle J^{A}\right\rangle, \quad X_{1}=X \cap K(G), \quad$ and $\quad X_{2}=\operatorname{Proj}_{L}\left(X_{1}\right)$, where projections are being taken in $K(G)$. Then X_{2} is $C_{L}(A)$-invariant. First suppose $X_{2} \cap(J * * A)=1$. Thus $C_{X_{2}}(A)=1$. By [12], X_{2} is solvable. By Lemma 5.5 and Hypothesis A, $\operatorname{Proj}_{J}(J * * A)=C_{J}\left(N_{A}(J)\right)$ is not localized. Hence, $\operatorname{Proj}_{J}\left(X_{2}\right)=1$. Hence $X_{2}=1$. Hence $[J * * A, X] \leqslant X_{1} \leqslant C_{G}(L)$. By the 3-subgroup lemma, $\left[F^{*}(J * * A), X\right]=\left[F^{*}(J * * A), F^{*}(J * * A), X\right]=1$. Since $L=$ the product of components of G not centralized by $F^{*}(J * * A)$, it follows that L admits X. In particular $[J * * A, X] \leqslant X_{1} \cap L=1$. By Lemma 5.7, X normalizes J. Hence by Lemma 5.5, X centralizes $\operatorname{Proj}_{J}(J * * A)=C_{J}\left(N_{A}(J)\right)$. By Hypothesis A.3.3, X centralizes J.

Next suppose $X_{2} \cap(J * * A) \neq 1$. By Lemma $5.5, J * * A \cong C_{J}\left(N_{A}(J)\right)$. Hence by Hypothesis A.3.2, $F^{*}(J * * A)$ is simple and is the unique minimal normal subgroup of $J * * A$. In particular, $F^{*}(J * * A) \leqslant X_{2}$. So

$$
\begin{aligned}
F^{*}(J * * A) & =\left[F^{*}(J * * A), F^{*}(J * * A)\right] \leqslant\left[J * * A, X_{2}\right]=\left[J * * A, X_{1}\right] \\
& \leqslant[D, X] \leqslant X
\end{aligned}
$$

This completes the proof of the lemma.

THEOREM 5.15. Suppose A is an elementary Abelian p-group of operators of the group G. Suppose (G, p) satisfies Hypothesis B. Let $D=C_{G}(A)$. Suppose X is a DA-invariant subgroup of G. Then all of the following hold.
(a) $X \leqslant K_{A}(G)$ if X is near A-solvable.
(b) Suppose $J \in \mathscr{M}^{A}(G)$ and $X=\hat{K}(X)$. Then J admits X.
(c) Suppose $X=K(X)$. Then X normalizes $K^{A}(G)$ and induces inner automorphisms on $K^{A}(G) / \operatorname{Sol}(G)$.
(d) Suppose $X=K(X)$. Then $X \leqslant K^{A}(G) K_{A}(G)$.
(e) Suppose $K_{A}(G)=1$ and $X=\hat{K}(X)$. Then $X \leqslant \hat{K}(G)$.
(f) Suppose $K_{A}(G)=1$ and $B \leqslant A$. Then $K\left(C_{G}(B)\right)=K\left(C_{K(G)}(B)\right)$. Moreover $\mathscr{L}\left(C_{G}(B)\right)=\left\{F^{*}(J * * B) \mid J \in \mathscr{L}(G)\right\}$.
(g) Suppose $K_{A}(G)=1$ and $B \leqslant A$. Then $\hat{K}\left(C_{G}(B)\right)=C_{\hat{K}(G)}(B)$.

Proof. (a) Without loss of generality assume $\operatorname{Sol}(G)=1$. If $K^{A}(G)=1$, there is nothing to prove. Suppose $K^{A}(G) \neq 1$. Let $J \in \mathscr{L}^{A}(G)$. Then $F^{*}(J * * A) \nless X$. Hence by Lemma $5.14,[J, X]=1$. So $X \leqslant K_{A}(G)$.
(b) We may suppose $\operatorname{Sol}(G)=1$. Let $J \in \mathscr{L}^{A}(G)$. If $F^{*}(J * * A) * X$, then $[X, J]=1$ by Lemma 5.14. Suppose then $F^{*}(J * * A) \leqslant X$. Let $L=\left\langle J^{A}\right\rangle$ and $\quad X_{1}=K(X \cap L)$. By Lemma 5.14, $\quad F^{*}(J * * A) \leqslant X_{1}$. By (a), $\operatorname{Sol}\left(X_{1}\right) \leqslant K_{A}(L)=1$. Also by $(\mathrm{a}), \quad \operatorname{Sol}(X) \leqslant K_{A}(G) \leqslant C_{G}(L)$. Hence $X_{1}=\left(X_{1} \times \operatorname{Sol}(X)\right)^{\infty}$ admits X. Since L is the product of components of G
not centralized by X_{1}, it follows that L admits X. By Lemma $5.7, J$ admits X.
(c) By (b), X normalizes $K^{4}(G)$. Hence we may suppose $G=K^{A}(G) X$ and $\operatorname{Sol}(G)=1$. By (a), $\operatorname{Sol}(X) \triangleleft G$. Hence $\operatorname{Sol}(X)=1$. Let $X_{1}=X \cap K(G)$, and $X_{2}=C_{X}\left(X_{1}\right)$. Then $X=X_{1} \times X_{2}$. Since X and X_{1} are $D A$-invariant, it follows that X_{2} is $D A$-invariant. By Lemma 5.14, $X_{2} \leqslant K_{A}(G)$.
(d) This is equivalent to (c).
(e) This is immediate from (b).
(f) $\mathrm{By}(\mathrm{c}), K\left(C_{G}(B)\right)=K\left(C_{K(G)}(B)\right)$. Certainly, $K_{B}(G)=1$.

So to complete (f) we may suppose by induction that $G=K(G)$, that $A=B$, and that A is transitive on $\mathscr{L}(G)$. Let $J \in \mathscr{L}(G)$. Then $C_{G}(A)=J * * A$. By Lemma $5.5, C_{G}(A) \cong C_{J}\left(N_{A}(J)\right)$. So we may suppose that G is simple. The conclusion now follows from Hypothesis A.
(g) By (b), $\hat{K}\left(C_{G}(B) \leqslant \hat{K}(G)\right.$. By (f), $C_{\hat{K}(G)}(B)=\hat{K}\left(C_{\hat{K}(G)}(B)\right)$. This proves (g) and the theorem.

Theorem 5.16. Suppose A is an elementary Abelian p-group of operators of the group G. Suppose (G, p) satisfies Hypothesis B. Let $D=C_{G}(A)$. Let $N S(G)$ be the set of all subgroups of G which are $D A-$ invariant and near A-solvable. Let $G_{n s}=\langle N S(G)\rangle$. Then
(a) $G_{n s} \in N S(G)$, and
(b) $G_{n s}$ admits all DA-invariant K-subgroups of G.

Proof. (a) DA permutes $N S\left(G_{n s}\right)$ and therefore normalizes $\left(G_{n s}\right)_{n s}$. Hence we may suppose $G=G_{n s}$. We may also suppose G has no near A solvable normal subgroups. Theorem $5.15(\mathrm{a})$ implies that $G=K_{A}(G)$. Hence $K(G)$, being near A-solvable, is trivial. Hence $G=1$.
(b) By Theorem $5.15(\mathrm{a}, \mathrm{d})$ we may suppose that $G=K^{A}(G) K_{A}(G)$. We may also suppose that G has no nontrivial near A-solvable normal subgroup. Hence $K\left(K_{A}(G)\right)=1$. Hence $K_{A}(G)=1$. So $G_{n s} \leqslant K_{A}(G)=1$, proving (b).

Theorem 5.17. Suppose H is a group, $\operatorname{Sol}(H)=1$, and H has a subgroup $B \cong Z_{p} \times Z_{p}$ acting regularly on $\mathscr{L}(H)$. Suppose θ is a B-signalizer functor on H which satisfies:

$$
C_{K(H)}(b) \leqslant \theta\left(C_{H}(b)\right) \quad \text { for all } b \in B^{*}
$$

and

$$
\theta\left(C_{H}(b)\right) \cong p\left(\theta\left(C_{H}(B)\right)\right) \quad \text { for all } b \in B^{*}
$$

Let $\tilde{N}=C_{H}\left(C_{K(H)}(N)\right)$ for each $N \triangleleft K(H)$. Then θ is complete. Moreover,

$$
\begin{aligned}
O(H B) & =\times\{\theta(H B) \cap \tilde{J} \mid J \in \mathscr{L}(H)\} \\
& =\times\left\{\operatorname{Proj}_{\tilde{J}}\left(\theta\left(C_{H}(B)\right)\right) \mid J \in \mathscr{L}(H)\right\},
\end{aligned}
$$

where projections in $\langle\widetilde{J} \mid J \in \mathscr{L}(H)\rangle$ are taken with respect to $\{\widetilde{J} \mid J \in \mathscr{L}(H)\}$.
Proof. By Lemma 5.7, $\left\langle И_{\theta}(B)\right\rangle \leqslant \hat{K}(H)$. Hence we may suppose that $H \cong \operatorname{Aut}(J)\rangle B$ for any $J \in \mathscr{L}(H)$. Let $H_{0}=\hat{\kappa}(H)$. Then $H=H_{0} B$, $H_{0}=\{\tilde{J} \mid J \in \mathscr{L}(H)\}$, and B acts regularly on $\{\tilde{J} \mid J \in \mathscr{L}(H)\}$. In particular, we can take projections in H_{0} with respect to $\{\tilde{J} \mid J \in \mathscr{L}(H)\}$.

Let $W=\theta\left(C_{H}(B)\right)$ and $W_{1}=\left\langle\operatorname{Proj}_{\tilde{J}}(W) \mid J \in \mathscr{L}(H)\right\rangle$. Then $C_{W_{1}}(b) \cong p W \cong$ $\theta\left(C_{H}(b)\right)$ for all $b \in B^{*}$. So it suffices to show $\theta\left(C_{H}(b)\right) \leqslant W_{1}$ for all $b \in B^{*}$.

Fix $\quad E \in \mathscr{E}_{1}(B)$. Let $\quad S=\left\{\left\langle J^{F}\right\rangle \mid J \in \mathscr{L}(H)\right\}, \quad T=\{\tilde{L} \mid L \in S\}$, and $V=\theta\left(C_{G}(E)\right)$. By hypothesis, $V=V_{1} \times V_{2} \times \cdots \times V_{p}$, where each $V_{i} \cong W$ and $C_{K(H)}(E) \leqslant V$. Thus

$$
\left\{V_{i} \cap K(G) \mid 1 \leqslant i \leqslant p\right\}=\left\{C_{L}(E) \mid L \in S\right\} .
$$

Suppose $C_{L}(E)=V_{i} \cap K(G)$. Then

$$
\begin{aligned}
V_{i}=\bigcap\left\{C_{V}\left(V_{j} \cap K(G)\right) \mid j \neq i\right\} & =\bigcap\left\{C_{V}\left(C_{M}(E)\right) \mid L \neq M \in S\right\} \\
& =\bigcap\left\{C_{\nu}(M) \mid L \neq M \in S\right\} \\
& \leqslant \bigcap\left\{C_{G}(M) \mid L \neq M \in S\right\}=\tilde{L} .
\end{aligned}
$$

So $V=\times\{V \cap \tilde{L} \mid L \in T\}$. Let $E \times F=B$. Then for $\tilde{L} \in T,(V \cap \tilde{L}) * * F=$ $C_{V}(F)=W$. Since F acts regularly on T, Lemma 5.6 yields that $V \cap \tilde{L} \leqslant \operatorname{Proj}_{L}(W) \leqslant W_{1}$ for all $\tilde{L} \in T$. Hence $V \leqslant W_{1}$. Since $E \in \mathscr{E}_{1}(B)$ was arbitrarily chosen, the theorem is complete.

6. The Minimal Counterexample

Henceforth we shall assume that Theorem A is false and that G is a counterexample of least possible order. Subject to this restriction we assume that $|\theta|$ is minimal. When convenient we shall write H_{B} for $\theta\left(C_{G}(B)\right)$ for each nonidentity subgroup B of A, and H_{a} for $H_{\langle a\rangle}$ for each $a \in A^{*}$. We shall also write D for H_{A}.

Following Theorem 5.16, for each $X \in \widetilde{\Pi}_{\theta}(A)$, we define $N S(X)$ to be the
set of $D A$-invariant near A-solvable subgroups of X, and $X_{n s}=\langle N S(X)\rangle$. Now define $\theta_{n s}\left(C_{G}(a)\right)=\left(\theta\left(C_{G}(a)\right)\right)_{n s}$ for each $a \in A^{*}$.
The goal of this section is to obtain sufficient structure of θ to determine the structure of G. For the convenience of the reader, we capsule this information in our first theorem.

Theorem 6.1. The following hold.
(a) A is elementary Abelian of order p^{3}.
(b) One of the following sets of conditions hold. Either (b1) or (b2) holds.
(b1) The following three conditions hold.
(b1.1) D is simple
(b1.2) Let $F \in \mathscr{E}_{1}(A)$. Then $H_{F} A=K \underline{w}(A, F, F)$ for some $K \cong D$.
(b1.3) $\quad H_{a} \in И_{\theta}^{*}(A)$ for all $a \in A^{*}$.
(b2) The following five conditions hold.
(b2.1) There is a distinguished $E \in \mathscr{E}_{1}(A)$ and a simple group K.
(b2.2) $F^{*}(D)$ is simple.
(b2.3) $\quad H_{E} A=L \underline{w}(A, E, E)$ for some $L \cong D$.
(b2.4) Let $E \neq F \in \mathscr{E}_{1}(A)$. Then $H_{F}=L \underline{w}(A, E F, F)$ for some $L \cong K$.
(b2.5) $H_{a} \in И_{\theta}^{*}(A)$ if $a \in A-E$.
(c) $G=\left\langle И_{\theta}(A)\right\rangle A$.
(d) $Z\left(\left\langle И_{\theta}(A)\right\rangle\right)=1$.

Lemma 6.2. (a) A is elementary abelian of order p^{3}.
(b) There is an $a \in A^{*}$ for which $\theta\left(C_{C}(a)\right)$ is not near A-solvable.
(c) θ is locally complete.
(d) $G=A\left\langle И_{\theta}(A)\right\rangle$.

Proof. (a), (d). These follow from the conditions of the countcrexamplc.
(c) See [7, Lemma 5.1].
(b) This follows from Lemma 5.13 and [13, Main Theorem].

Lemma 6.3. Let $X \in И_{\theta}(A)$. Then
(a) There is an $a \in A^{*}$ such that $K\left(H_{a}\right) \nless X$.
(b) There is a $B \in \mathscr{E}_{2}(A)$ such that $K\left(H_{B}\right) \nless X$.

Proof. Let $a \in A^{*}$. By Lemma 5.11,

$$
K\left(H_{a}\right)=K\left(\left\langle K\left(H_{B}\right) \mid a \in B \in \mathscr{E}_{2}(A)\right\rangle\right) \leqslant\left\langle K\left(H_{F}\right) \mid F \in \mathscr{E}_{2}(A)\right\rangle .
$$

Hence it suffices to show that (a) is true.

Suppose that (a) is false. Choose $X \in И_{\theta}(A)$ such that $K\left(H_{a}\right) \leqslant X$ for all $a \in A^{*}$. Let $B \in \mathscr{E}_{2}(A)$. By Lemmas 5.9 and 5.11,

$$
K(X)=K\left(\left\langle K\left(C_{X}(b)\right) \mid b \in B^{\#}\right\rangle\right)=K\left(\left\langle K\left(H_{b}\right) \mid b \in B^{\#}\right\rangle\right)
$$

admits H_{B}. This is contrary to Theorem $6.2(\mathrm{c})$, which proves the lemma.
Lemma 6.4. $Z\left(\left\langle И_{\theta}(A)\right\rangle\right)=1$.
Proof. See [13, Theorem 5.1(d)].
Theorem 6.5. (a) $\theta_{n s}$ is a complete A-signalizer functor on G.
(b) $\theta_{n s}\left(C_{G}(a)\right)$ admits any $D A$-invariant K-subgroup of $\theta\left(C_{G}(a)\right)$.

Proof. (a) This follows from Theorem 5.16(a) and Lemma 6.2(b).
(b) This follows from Theorem 5.16(b).

Theorem 6.6. $\quad \theta_{n s}(G)=1$. In particular, $K_{A}(X)=1$ whenever $X \in$ $\overline{\mathrm{h}}_{\theta}(A)$.

Proof. Let $W=\theta_{n s}(G)$. Choose a $B \in \mathscr{E}_{2}(A)$. By Lemma 5.1 and Theorem 6.5,

$$
K\left(H_{B}\right) \leqslant N_{G}\left(\left\langle\theta_{n s}\left(C_{G}(b)\right) \mid b \in B^{*}\right\rangle\right)=N_{G}\left(\left\langle C_{W}(b) \mid b \in B^{*}\right\rangle\right)=N_{G}(W) .
$$

Now Lemmas 6.2(c) and 6.3(b) imply that $W=1$.
Suppose $X \in \tilde{\Pi}_{\theta}(A)$. Then $K_{A}(X) \cap K(X) \leqslant \theta_{n s}(G)=1$. So $\operatorname{Sol}(X)=1$ and $K(X)=K^{A}(X)$. Hence $K_{A}(X)=C_{X}(K(G))=1$, as required.

Lemma 6.7. $\hat{K} \circ \theta=\theta$.
Proof. Theorem $5.15(\mathrm{~g})$ and Theorem 6.6 imply that $\hat{K} \circ \theta$ is an A signalizer functor on G. Lemma 6.3 implies that $\theta=\hat{K} \circ \theta$ as required.

Lemma 6.8. $\quad F^{*}(D)$ is simple.
Proof. By Lemma 6.2(b), $D \neq 1$. So Theorem 6.6 implies that $\mathscr{L}(D)$ is nonempty. Let $J \in \mathscr{L}(D)$. Define $\theta_{J}\left(C_{G}(a)\right)=\theta\left(C_{G}(a)\right) \cap C_{G}(J)$. Clearly θ_{J} is an A-signalizer functor of order less than θ. Hence θ_{J} is complete. Let $W=\theta_{J}(G)$. Suppose

Whenever $B \in \mathscr{E}_{2}(A), L \in \mathscr{L}\left(H_{B}\right)$, and $L \leqslant W$, it follows that $[W, L]=1$.

Then by Lemmas 6.2 (c), 6.3(b), and Theorem 6.6 it follows that $W=1$. So $F^{*}(D)$ is simple.

We shall prove (6.1). Let $B \in \mathscr{E}_{2}(A)$ and $L \in \mathscr{L}\left(H_{B}\right)$. Suppose $[W, L] \neq 1$. Then by Lemma 5.1, there is a $b \in B^{*}$ for which $\left[C_{w}(b), L\right] \neq 1$. Let $H=H_{b}$ and $H_{J}=\theta_{J}\left(C_{G}(b)\right)$. Thus $\left[H_{J}, L\right] \neq 1$. By Theorem $5.15(f)$, $L=F^{*}(M * * B)$ for some $M \in \mathscr{L}(H)$. Since H_{J} is B-invariant and $L \leqslant\left\langle M^{B}\right\rangle$, it follows that $\left[H_{J}, M\right] \neq 1$. Since H_{J} is $D A$-invariant, Lemma 5.14 implies that $L=F^{*}(M * * A) \leqslant H_{J} \leqslant W$. This proves (6.1) and completes the lemma.

Definitions. For each nonidentity subgroup B of A define $B_{C}=$ $C_{A}\left(K\left(H_{B}\right)\right.$, and $B_{N}=A \cap \hat{K}\left(H_{B} A\right)$. Let $\mathscr{S}_{i}=\left\{F \in \mathscr{E}_{1}(A) \| \mathscr{L}\left(H_{F}\right) \mid=p^{i}\right\}$.

Lemma 6.9. Let B be a nonidentity subgroup of A. Let $E, F \in \mathscr{F}_{1}(A)$. Then all of the following hold.
(a) $B_{C}=C_{A}\left(H_{B}\right)=C_{A}(L)$ for any $L \in \mathscr{L}\left(H_{B}\right)$.
(b) $B_{N}=N_{A}(L)$ for any $L \in \mathscr{L}\left(H_{B}\right)$.
(c) $\left|\mathscr{L}\left(H_{B}\right)\right|=\left|A / B_{N}\right|$.
(d) A / B_{N} acts regularly on $\mathscr{L}\left(H_{B}\right)$.
(e) Suppose $F \leqslant E_{N}$ and $E \leqslant F_{N}$. Then $\left|\mathscr{L}\left(H_{E}\right)\right|=\left|\mathscr{L}\left(H_{F}\right)\right|$.
(f) Suppose $F \leqslant E_{N}$ and $E \leqslant F_{N}$. Then $\left|\mathscr{L}\left(H_{E}\right)\right|=p\left|\mathscr{L}\left(H_{F}\right)\right|$.
(g) Suppose $F \leqslant E_{N}$ and $E \leqslant F_{N}$. Then $\left|\mathscr{L}\left(H_{E}\right)\right|=\left|\mathscr{L}\left(H_{F}\right)\right|$.
(h) B_{N} / B_{C} is cyclic.

Proof. (a), (b), (c), (d). Clearly $B_{C}=C_{A}\left(H_{B}\right)$. By Lemma 6.8, A acts transitively on $\mathscr{L}\left(H_{B}\right)$. Let V be any subgroup of A. Since A is Abelian, the members of $\mathscr{L}\left(H_{B}\right)$ centralized by V is a union of A orbits. Similarly, the members of $\mathscr{L}\left(H_{B}\right)$ normalized by V is a union of A orbits. Hence (a), (b), (c), (d) easily follow.
(h) This follows from (a), (b) and the outer p-cyclic property of members of $\mathscr{L}\left(H_{B}\right)$.
(e), (f), (g). Let $k=\left|\mathscr{L}\left(H_{E F}\right)\right|, r k=\left|\mathscr{L}\left(H_{E}\right)\right|$, and $s k=\left|\mathscr{L}\left(H_{F}\right)\right|$. By Theorem 6.6 and Theorem $5.15(\mathrm{~g}), s=1$ if $E \leqslant F_{N}$, and $s=|E|=p$ if $E \nless F_{N}$. The symmetric statements for r obtained by interchanging E and F yield (e), (f), and (g).

Lemma 6.10. $\mathscr{S}_{2} \neq \varnothing$.
Proof. Suppose $\mathscr{S}_{2}=\varnothing$. Then $\mathscr{E}_{1}(A)=\mathscr{S}_{0} \cup \mathscr{S}_{1}$. Suppose in addition that $\mathscr{S}_{1}=\varnothing$. Choose $a \in A^{*}$ with H_{a} of maximal possible order. Let $B=\langle a\rangle_{c}$. By Lemma 6.9(a), $H_{a} \leqslant H_{b}$ for all $b \in B^{*}$. Hence $H_{a}=H_{b}$ for all $b \in B^{*}$. By Lemma 6.9(h), $m(B) \geqslant 2$. Hence $\left\langle И_{\theta}(A)\right\rangle=H_{a}$. This is false; so $\mathscr{S}_{1} \neq \varnothing$.

Let $F \in \mathscr{S}_{1}$ and $B=F_{N}$. By Lemma 6.9(d), $m(B)=2$. Let $F \neq E \in \mathscr{E}_{1}(B)$. Since $\mathscr{S}_{2}=\varnothing$, Lemma $6.9(\mathrm{f})$, implies that $F \leqslant E_{N}$. By Lemma 6.9(g),
$E \in \mathscr{S}_{1}$. Hence $\mathscr{E}_{1}(B) \subseteq \mathscr{S}_{1}$, and $B=E_{N}$ for all $E \in \mathscr{E}_{1}(B)$. Let $L \in \mathscr{S}_{1}$ and $E \in \mathscr{E}_{1}\left(L_{N} \cap B\right)$. Then $L_{N}=E_{N}=B$. Hence $\mathscr{E}_{1}(B)=\mathscr{S}_{1}$.

Next choose $t \in A-B$ subject to H_{t} having maximal possible order. Let $R=\langle t\rangle_{C}$. By Lemma $6.9(\mathrm{~h}), A / R$ is cyclic. Choose $t \in T \in \mathscr{E}_{2}(R)$. Let $E=T \cap B$. By Lemma 6.9(a), $H_{r}=H_{t}$ for all $r \in T-E$, and $H_{t} \leqslant H_{E}$. Hence $\left\langle U_{\theta}(A)\right\rangle=\left\langle H_{r} \mid r \in T^{\#}\right\rangle=H_{E}$, a contradiction.

Lemma 6.11. One of the following hold.
(a) $\mathscr{S}_{2}=\mathscr{E}_{1}(A)$, or
(b) $\left|\mathscr{S}_{2}\right|=1, \mathscr{S}_{1} \cup \mathscr{S}_{2}=\mathscr{E}_{1}(A)$, and $F_{N}=F\left\langle\mathscr{S}_{2}\right\rangle$ for all $F \in \mathscr{E}_{1}(A)$.

Proof. Since A has order p^{3}, and $\mathscr{S}_{2} \neq \varnothing$ by Lemma 6.10, it follows from Lemma $6.9(\mathrm{~d}, \mathrm{e}, \mathrm{f})$ that $\mathscr{P}_{1} \cup \mathscr{S}_{2}=\mathscr{E}_{1}(A)$. We may suppose $\mathscr{S}_{2} \neq \mathscr{C}_{1}(A)$. Let $B=\left\langle\mathscr{S}_{2}\right\rangle$. We must show that B is cyclic. Choose $E \in \mathscr{S}_{1}$ with $E \nless B$ if possible. For each $F \in \mathscr{S}_{2}, F_{N}=F$; so by Lemma $6.9(\mathrm{e}), F \leqslant E_{N}$. Hence $B E \leqslant E_{N} \in \mathscr{E}_{2}(A)$. In particular, $B<A$; so $E \nless B$ and B is cyclic.

Lemma 6.12. Suppose X is a subgroup of G generated by some elements of $И_{\theta}(A)$. Then either
(a) X contains every element of $И_{\theta}(A)$ and $X \notin И_{\theta}(A)$, or
(b) $X \in И_{\theta}(A)$ and for any $B \in \mathscr{E}_{2}(A)$ there is an $a \in B^{*}$ such that $H_{a} \leqslant X$.

Proof. This is an easy variation of [5, Lemma 5.4].

Theorem 6.13. Suppose $\mathscr{S}_{1}=\varnothing$. Then Theorem 6.1 holds.
Proof. By Lemma 6.2(a,d), and Lemma 6.4, it suffices to show conclusion (b.1) holds.

Let $E, F \in \mathscr{E}_{1}(A)$ be distinct. $E_{N}=E$; so F acts regularly on $\mathscr{L}\left(H_{E}\right)$. Hence $K\left(H_{E}\right) \cap C(F)=K\left(K\left(H_{E}\right) \cap C(F)\right)$. Hence by Theorem $5.15(\mathrm{f})$, $K\left(H_{E}\right) \cap C(F)=K\left(H_{E} \cap C(F)\right)=K\left(H_{E F}\right)$. By symmetry, $K\left(H_{E}\right) \cap C(F)=$ $K\left(H_{E F}\right)=C(E) \cap K\left(H_{F}\right)$. Hence $K \circ \theta$ is an A-signalizer functor on G. By Lemma 6.3(a), $K\left(H_{a}\right)=H_{a}$ for all $a \in A^{\#}$. Let $a \in A^{\#}$ and $L \in \mathscr{L}\left(H_{a}\right)$. Since $A /\langle a\rangle$ acts regularly on $\mathscr{L}\left(H_{a}\right)$, it follows that $D=L * * A \cong L$. Hence (b1.1) and (bl.2) hold.

Suppose $H_{a}<X \in И_{\theta}(A)$. By Lemma 5.1, there is a $b \in A^{\#}$ such that $C_{X}(b) \neq C_{H_{a}}(b)=H_{\langle a, b\rangle}$. By Lemma $5.10, H_{\langle a, b\rangle}$ is a maximal A-invariant subgroup of H_{b}. Hence $H_{b}=C_{X}(b)$. Choose $B \in \mathscr{E}_{2}(A)$ with $b \in B$ but $a \notin B$. Then $H_{d}=\left\langle H_{d} \cap H_{b}, H_{d} \cap H_{a}\right\rangle \leqslant X$ for any $d \in B^{*}$. This is false. Hence conclusion (bl.3) holds and the theorem is complete.

Theorem 6.14. Suppose $\mathscr{S}_{1} \neq \varnothing$. Then $\mathscr{S}_{2}=\{E\}$ for a unique $E \in \mathscr{E}_{1}(A)$. Moreover the following conditions hold:
(a) For each $a \in A-E$,

$$
H_{a} A=X \underline{w}(A, E\langle a\rangle,\langle a\rangle)
$$

for some simple group X whose isomorphic class is independent of a.
(b) $H_{E} A=Y \underline{w}(A, E, E), Y \cong D$, and $F^{*}(D)$ is simple.

Proof. The first statement holds by Lemma 6.11. For each complement B of E in A define

$$
\begin{aligned}
\theta_{B}^{*}\left(C_{G}(a)\right) & =K\left(H_{a}\right) & & \text { if } \quad a \in A-E \\
& =\left\langle K\left(H_{b}\right) \cap H_{E} \mid b \in B^{*}\right\rangle & & \text { if } \quad a \in E^{*}
\end{aligned}
$$

The gist of the proof is to show θ_{B}^{*} is an A-signalizer functor on G with additional suitable properties.

Again for B a complement of E in A, define $\theta_{B}\left(C_{G}(b)\right)=K\left(H_{b}\right)$ for $b \in B^{\#}$. By Lemma $6.11(\mathrm{~b}),\langle e\rangle$ acts regularly on $\mathscr{L}\left(H_{f}\right)$ whenever $\langle e, f\rangle=B . \quad$ By Lemma $5.15(\mathrm{f})$ and Theorem 6.6, $K\left(H_{e}\right) \cap C_{G}(f)=$ $K\left(C_{G}(\langle e, f\rangle)\right)$. Hence θ_{B} is a B-signalizer functor on G. Now define $\tilde{\theta}_{B}\left(C_{B H_{E}}(b)\right)=\theta_{B}\left(C_{G}(b)\right) \cap H_{E}$. Then $\widetilde{\theta}_{B}$ is clearly a B-signalizer functor on $B H_{E}$. Since $E_{N}=E$, it follows that B acts regularly on $\mathscr{L}\left(H_{E}\right)$. Hence by Theorem $5.15(\mathrm{f})$ and Theorem $6.6, C_{K\left(H_{E}\right)}(b) \leqslant \tilde{\theta}_{B}\left(C_{H_{E} B}(b)\right.$) for all $b \in B^{*}$. Also

$$
\begin{aligned}
\tilde{\theta}_{B}\left(C_{B H_{E}}(b)\right) & =C_{K\left(H_{b}\right)}(E)=\times\left\{C_{L}(E) \mid L \in \mathscr{L}\left(H_{b}\right)\right\} \\
& \cong p\left(\left(\left(K\left(H_{b}\right) \cap C_{G}(B)\right) \cap C(E)\right)\right. \\
& =p\left(K\left(H_{B}\right) \cap C(E)\right) \\
& =p \tilde{\theta}_{B}\left(C_{B H_{E}}(B)\right)
\end{aligned}
$$

We have established all the conditions of Theorem 5.17 with (H, θ, B) replaced by $\left(B H_{E}, \tilde{\theta}_{B}, B\right)$. For each $L \in \mathscr{L}\left(H_{E}\right)$, let $\tilde{L}=C_{H_{E}}\left(C_{K\left(H_{E}\right)}(L)\right)$. By Theorem 5.17, we obtain

$$
\begin{equation*}
\widetilde{\theta}_{B}\left(B H_{E}\right)=\times\left\{\operatorname{Proj}_{\tilde{L}}\left(K\left(H_{B}\right) \cap H_{E}\right) \mid L \in \mathscr{L}\left(H_{E}\right)\right\} \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{B}^{*}\left(C_{G}(E)\right) \cap C_{G}(b)=\theta_{B}^{*}\left(C_{G}(b)\right) \cap C_{G}(E) \quad \text { for } b \in B^{\#} \tag{6.3}
\end{equation*}
$$

The functor θ_{B}^{*} is independent of the complement B of E in A on the subgroups $C_{G}(b)$ for $b \in A-E$. We next want to show that it is also
independent on $C_{G}(E)$. Suppose then that T is a complement for E in A distinct from B. Let $F=T \cap B$. Then $F \in \mathscr{E}_{1}(A)$. By (6.2),

$$
\begin{aligned}
\tilde{\theta}_{B}\left(B H_{E}\right) & =\times\left\{\operatorname{Proj}_{\tilde{L}}\left(K\left(H_{B}\right) \cap H_{E}\right) \mid L \in \mathscr{L}\left(H_{E}\right)\right\} \\
& =\times\left\{\operatorname{Proj}_{\tilde{L}}\left(K\left(H_{F}\right) \cap D\right) \mid L \in \mathscr{L}\left(H_{E}\right)\right\} \\
& =\times\left\{\operatorname{Proj}_{\tilde{L}}\left(K\left(H_{T}\right) \cap H_{E}\right) \mid L \in \mathscr{L}\left(H_{E}\right)\right\} \\
& =\tilde{\theta}_{T}\left(T H_{E}\right)
\end{aligned}
$$

Hence θ_{B}^{*} is independent of the complement B of E in A. Therefore by (6.3) there follows

$$
\begin{equation*}
\theta_{B}^{*}\left(C_{G}(E)\right) \cap C_{G}(a)=C_{G}(E) \cap \theta_{B}^{*}\left(C_{G}(a)\right) \quad \text { for all } a \in A-E . \tag{6.4}
\end{equation*}
$$

Next we show $\theta^{*}=\theta_{B}^{*}$ is balanced. Let $a, b \in A^{*}$ and $T=\langle a, b\rangle$. We have already shown $\theta^{*}\left(C_{G}(a)\right) \cap C_{G}(b) \leqslant \theta^{*}\left(C_{G}(b)\right)$ if $E \leqslant T$. Certainly $\theta^{*}\left(C_{G}(a)\right) \cap C_{G}(b) \leqslant \theta^{*}\left(C_{G}(b)\right)$ if T is cyclic. Suppose then $E<T$ and $a, b \in A-E$. Ву (6.4)

$$
\begin{aligned}
\theta^{*}\left(C_{G}(a)\right) \cap C_{G}(b) & =\theta^{*}\left(C_{G}(a)\right) \cap C_{G}(T) \\
& =\theta^{*}\left(C_{G}(E)\right) \cap C_{G}(T) \\
& =C_{G}(T) \cap \theta^{*}\left(C_{G}(b)\right) \leqslant \theta^{*}\left(C_{G}(b)\right) .
\end{aligned}
$$

Hence θ^{*} is an A-signalizer functor on G. By Lemma 6.3, $\theta^{*}=\theta$.
Clearly A is transitive on $\left\{\widetilde{L} \mid L \in \mathscr{L}\left(H_{E}\right)\right\}$. Hence by (6.2), $H_{E} A=Y \underline{w}(A, E, E)$ for some $Y \cong D$. By Lemma $6.8, F^{*}(D)$ is simple. This proves (b). Certainly, $H_{a} A=X_{a} \underline{w}(A,\langle a\rangle E,\langle a\rangle)$ for some simple group X_{a}, whenever $a \in A-E$. It remains to show that the isomorphic type of X_{a} is independent of $a \in A-E$. Define an equivalence relation \sim on \mathscr{S}_{1} by $T \sim F$ if and only if $X_{T} \cong X_{F}$. Certainly the elements of $\mathscr{E}_{1}(B)$ are equivalent if B is any complement for E in A. All hyperplanes of A have a nontrivial intersection. Hence \mathscr{S}_{1} is an equivalence class, as required.

Proof of Theorem 6.1. By Theorem 6.13 we may suppose $\mathscr{S}_{1} \neq \emptyset$. By Lemma 6.2(a, d) and Lemma 6.4, it suffices to show conclusion (b2) holds. By Theorem 6.14 it remains to show $H_{a} \in U_{\theta}^{*}(A)$ whenever $a \in A-E$. Suppose $a \in A-E$ and $H_{a}<X \in И_{\theta}(A)$. Extend $\langle a\rangle$ to a complement B of E in A. By Lemma 5.1, $H_{B}<C_{X}(b)$ for some $b \in B-\langle a\rangle$. By Lemma 5.10, $C_{X}(b)=H_{b}$. Hence $K\left(H_{E}\right)=\left\langle K\left(H_{E}\right) \cap C(a), K\left(H_{E}\right) \cap C(b)\right\rangle \leqslant X$. Hence for any $f \in B^{\#}, H_{f}=\left\langle H_{B}, K\left(H_{E}\right) \cap H_{f}\right\rangle \leqslant X$, a contradiction. This completes the proof of Theorem 6.1.

7. $S_{r}(A)$-Subgroups

We say θ is type (A) if θ satisfies conclusion (b1) of Theorem 6.1. We say θ is type (B) if θ satisfies conclusion (b2) of Theorem 6.1. When θ is type B we reserve E for the unique element of \mathscr{S}_{2}. For the remainder of the paper we will fix the following notation. Suppose B is a nonidentity subgroup of A and S is an $S_{r}(A)$-subgroup of G. Then

$$
\operatorname{Ind}(S, B)=\left\{S \cap L \mid L \in \operatorname{Ind}\left(H_{B}\right)\right\}
$$

We shall also reserve S for some $S_{r}(A)$-subgroup of G, and Z for $Z(S)$.
Lemma 7.1. Suppose $B \in \mathscr{E}_{2}(A)$ and $E * B$ if θ is type (B). Then
(a) $Z\left(C_{s}(a)\right) \cap C(B)=Z\left(C_{S}(B)\right)$ for $a \in B^{*}$, and
(b) $Z\left(C_{s}(B)\right)=C_{z(s)}(B)$.

Proof. (a) $B /\langle a\rangle$ acts semi-regularly on $\operatorname{Ind}(S, B)$, whence (a) follows by Lemma 5.12.
(b) By (a), $Z\left(C_{s}(B)\right) \leqslant C_{s}\left(\left\langle C_{s}(a) \mid a \in B^{*}\right\rangle\right)=Z(S)$. This proves (b), and the lemma.

Theorem 7.2. Suppose θ is type (A). Then

$$
Z\left(C_{s}(a)\right)=C_{Z(s)}(a) \quad \text { for all } a \in A^{*}
$$

Proof. By Lemma 7.1,

$$
Z\left(C_{S}(a)\right)=\left\langle Z\left(C_{S}(a)\right) \cap C(B) \mid a \in B \in \mathscr{E}_{2}(A)\right\rangle \leqslant Z(S)
$$

as required.

Theorem 7.3. Suppose θ is type (B). Then

$$
Z\left(C_{s}(a)\right)=C_{Z\{s\}}(a) \quad \text { for all } a \in A-E
$$

Proof. Let $Z=Z(S)$ and $Z_{B}=Z\left(C_{S}(B)\right)$ for all subgroups B of A. Let $E \neq F \in \mathscr{E}_{1}(A)$. Let

$$
\left.Z_{F}^{0}=\left\langle Z_{F} \cap C_{S}(B)\right| E \times B=A \text { and } F<B\right\rangle
$$

and

$$
Z_{F}^{1}=\bigcap\left\{\left[Z_{F}, B\right] \mid E \times B=A \text { and } F<B\right\} .
$$

By Lemma $7.1, Z_{F}^{0} \leqslant Z$. By $[8$, Theorem 5.2 .3$], Z_{F}^{1} \leqslant C_{Z_{F}}(E) \leqslant Z\left(C_{T}(F)\right)$, where $T=C_{S}(E)$. However, F acts semi-regularly on $\operatorname{Ind}(S, E)$. Hence $Z\left(C_{T}(F)\right) \leqslant Z(T)=Z_{E}$. So

$$
\begin{equation*}
Z_{F}=\left(Z_{F} \cap Z\right)\left(Z_{F} \cap Z_{E}\right) \quad \text { for all } F \in \mathscr{E}_{1}(A) \tag{7.1}
\end{equation*}
$$

Let $V=C_{z}(A)$ and $W=\times\left\{\operatorname{Proj}_{L}(V) \mid L \in \operatorname{Ind}(S, E)\right\}$. Let $F, K \in \mathscr{E}_{1}(A)$ satisfy $E \times F \times K=A$. By Lemma 7.1 and (7.1),

$$
\begin{aligned}
\left(Z_{F} \cap Z_{E}\right) \cap C_{S}(K) & =\left(Z_{F} \cap C_{S}(E)\right) \cap C_{S}(K) \\
& =\left(Z_{F} \cap C_{S}(K)\right) \cap C_{S}(E) \\
& =C_{Z}(F K) \cap C_{S}(E)=V
\end{aligned}
$$

Since E normalizes each member of $\operatorname{Ind}(S, F)$, it follows from (7.1) that $Z_{E} \cap Z_{F}=\times\left\{C_{Z(R)}(E) \mid R \in \operatorname{Ind}(S, F)\right\}$. Since K acts regularly on $\operatorname{Ind}(S, F)$, and $\left(Z_{F} \cap Z_{E}\right) \cap C_{S}(K)=V$, there follows from Lemma 5.6

$$
\begin{equation*}
Z_{E} \cap Z_{F}=\times\left\{\operatorname{Proj}_{R}(V) \mid R \in \operatorname{Ind}(S, F)\right\} \cong p V \tag{7.2}
\end{equation*}
$$

Since $\operatorname{Ind}(S, E F)=\left\{C_{R}(E) \mid R \in \operatorname{Ind}(S, F)\right\}$, (7.2) implies that

$$
\begin{equation*}
Z_{E} \cap Z_{F}=\times\left\{\operatorname{Proj}_{T}(V) \mid T \in \operatorname{Ind}(S, E F)\right\} \leqslant W \tag{7.3}
\end{equation*}
$$

Since A / E acts regularly on $\operatorname{Ind}(S, E)$, it follows that $p^{2} V \cong W \cong p\left(C_{W}(F)\right)$. Hence by (7.2) and (7.3) we obtain

$$
\begin{equation*}
Z_{E} \cap Z_{F}=C_{W}(F)=C_{W}(E F) \quad \text { whenever } E \neq F \in \mathscr{E}_{1}(A) \tag{7.4}
\end{equation*}
$$

In particular, (7.4) implies

$$
\begin{equation*}
Z_{E} \cap Z_{F}=Z_{E} \cap Z_{T} \quad \text { whenever } E F=E T \text { and } F, T \in \mathscr{E}_{1}(A) \tag{7.5}
\end{equation*}
$$

By (7.5), $Z_{E} \cap Z_{F} \leqslant Z$ whenever $E \neq F \in \mathscr{E}_{1}(A)$. Now (7.1) completes the theorem.

Lemma 7.4. Let S be an $S_{r}(A)$-subgroup of G. Let $Z=Z(S)$. Let $a \in A^{*}$. Suppose $\langle a\rangle \neq E$ if θ is type (B). Assume $r \in \pi(\theta)$. Then
(a) $r \in \pi\left(H_{a}\right)$,
(b) $Z \cap L \neq 1$ for any $L \in \operatorname{Ind}\left(H_{a}\right)$, and
(c) $Z \cap H_{a}=\times\left\{Z \cap L \mid L \in \operatorname{Ind}\left(H_{a}\right)\right\}$.

Proof. Choose a subgroup B of A which contains a but not E. By Theorem 6.1, $\pi\left(H_{b}\right)=\pi\left(H_{c}\right)$ for all $b, c \in B^{*}$. Hence by Lemmas 5.1 and 5.3, $1 \neq C_{S}(a)$ is an $S_{r}(A)$-subgroup of H_{a}. In particular, (a) holds. The structure of Sylow r-subgroups of H_{a} and Theorems 7.2 and 7.3 yield (b) and (c).

8. Conclusion of Proof.

We continue the conventions introduced at the beginning of part 7. In particular, $r \in \pi(\theta), S \in И_{\theta}^{*}(A: r)$, and $Z=Z(S)$.

Theorem 8.1. θ is type (B).
Proof. Suppose false. Then by Theorem 6.1, θ is type (A). In particular, D is simple, and for each nonidentity subgroup T of $A, A H_{T}=L \underline{w}(A, T, T)$ for some $L \cong D$.

Fix a hyperplane B of A. For each $L \in \mathscr{L}\left(H_{B}\right)$, let $Z_{L}=\bigcap\left\{C_{Z}(K) \mid L \neq\right.$ $\left.K \in \mathscr{L}\left(H_{B}\right)\right\}, M_{L}=\left\langle L, Z_{L}\right\rangle$, and $M=\left\langle M_{L} \mid L \in \mathscr{L}\left(H_{B}\right)\right\rangle$. By Lemma 7.4(c), $Z \cap H_{a} \leqslant M$ for all $a \in B^{*}$. By Lemma 7.4(b), $H_{a}=\left\langle H_{B}, Z \cap H_{a}\right\rangle \leqslant M$ for all $a \in B^{\#}$. Hence by Theorem $6.1(\mathrm{~b} 1.3)$ and (c) there follows

$$
\begin{equation*}
M=\left\langle И_{\theta}(A)\right\rangle . \tag{8.1}
\end{equation*}
$$

Since Z is Abelian, $\left[M_{L}, M_{K}\right]=1$ whenever $L \neq K$. Hence Theorem 6.1(d) yields

$$
\begin{equation*}
M=\times\left\{M_{L} \mid L \in \mathscr{L}\left(H_{B}\right)\right\} . \tag{8.2}
\end{equation*}
$$

Since A acts transitively on $\mathscr{L}\left(H_{B}\right)$ there follows, A acts transitively on $\left\{M_{L} \mid L \in \mathscr{L}\left(H_{B}\right)\right\}$ and $B=N_{A}\left(M_{L}\right)$ for $L \in \mathscr{L}\left(H_{B}\right)$.

By definition we also have

$$
\begin{equation*}
H_{B}=\times\left\{H_{B} \cap M_{L} \mid L \in \mathscr{L}\left(H_{B}\right)\right\} \tag{8.4}
\end{equation*}
$$

Now let B_{1}, B_{2}, B_{3} be 3 hyperplanes of A such that $\left\{B_{i} \cap B_{j} \mid 1 \leqslant i<j \leqslant 3\right\}$ are cyclic subgroups of A which generate A. Let $\left\{M_{j}^{i} \mid 1 \leqslant j \leqslant p\right\}=$ $\left\{M_{L} \mid L \in \mathscr{L}\left(H_{B_{i}}\right)\right\}$ for $i=1,2$, or 3. Let $M_{i, j, k}=M_{i}^{1} \cap M_{j}^{2} \cap M_{k}^{3}$. Since M is generated by perfect subgroups, (8.2) yields that

$$
\begin{aligned}
M=[M, M, M] & =\left[\underset{i}{X} M_{i}^{1}, \underset{j}{X} M_{j}^{2}, \underset{k}{X} M_{k}^{3}\right] \\
& \leqslant\left\langle\left[M_{i}^{1}, M_{j}^{2}, M_{k}^{3}\right] \mid 1 \leqslant i, j, k \leqslant p\right\rangle \\
& \leqslant\left\langle M_{i, j, k} \mid 1 \leqslant i, j, k \leqslant p\right\rangle
\end{aligned}
$$

By (8.2), $\left[M_{i, j, k}, M_{u, v, w}\right]=1$ if $(i, j, k) \neq(u, v, w)$. Hence Theorem $6.1(\mathrm{~d})$ yields

$$
\begin{equation*}
M=\times\left\{M_{i, j, k} \mid 1 \leqslant i, j, k \leqslant p\right\} . \tag{8.5}
\end{equation*}
$$

The choice of B_{1}, B_{2}, B_{3}, together with (8.2) yields

$$
\begin{equation*}
\text { A acts regularly on }\left\{M_{i, j, k} \mid 1 \leqslant i, j, k \leqslant p\right\} . \tag{8.6}
\end{equation*}
$$

Now let $W_{i, j, k}=\operatorname{Proj}_{M_{i, j, k}}(D)$, and $W=\left\langle W_{i, j, k} \mid 1 \leqslant i, j, k \leqslant p\right\rangle$. By (8.6), we obtain

$$
\begin{equation*}
W \cong p^{3} D \tag{8.7}
\end{equation*}
$$

By (8.4), we obtain

$$
\begin{equation*}
W \geqslant\left\langle H_{B_{1}}, H_{B_{2}}, H_{B_{3}}\right\rangle \tag{8.8}
\end{equation*}
$$

By Lemma 5.10 and (8.8), $H_{B_{i} \cap B_{j}}=\left\langle H_{B_{i}}, H_{B_{i}}\right\rangle \leqslant W$. Hence by (8.8) and Theorem 6.1(b1.3), $W=M$. By (8.6), (8.7), $p^{2} D \cong H_{a} \leqslant C_{W}(a) \cong p^{2} D$ for all $a \in A^{*}$. Hence $C_{W}(a)=H_{a}$ for all $a \in A^{\#}$. However (W, p) satisfies Hypothesis B. This contradiction yields the result.
L.emma 8.2. $F^{*}\left(H_{E}\right) \leqslant\langle D, Z\rangle$.

Proof. Let $W=\langle D, Z\rangle$ and $W_{b}=W \cap H_{b}$ for each $b \in A^{*}$. Let $b \in A-E$, and $J \in \mathscr{L}\left(H_{b}\right)$. By Lemma 7.4(b), $1 \neq Z \cap J \leqslant W_{b} \cap J \triangleleft$ $\operatorname{Proj}_{J}\left(W_{b}\right)$ where projections are being taken in H_{b} with respect to $\mathscr{L}\left(H_{b}\right)$. By Lemma $5.5, \quad C_{J}(E)=\operatorname{Proj}_{J}(D) \leqslant \operatorname{Proj}_{J}\left(W_{b}\right)$. Hence by Hypothesis (A.3.1), $W_{b} \cap J$ is nonsolvable. By $\left[8\right.$, Theorem 10.2.1], $C_{W_{b} \cap J}(E) \neq 1$. By Hypothesis (A.3.2), $F^{*}\left(C_{J}(E)\right)$ is the unique minimal normal subgroup of $C_{J}(E)$, whence $F^{*}\left(C_{J}(E)\right) \leqslant W_{b}$. So $F^{*}\left(H_{E}\right) \cap C_{G}(b)=F^{*}\left(H_{\langle E, b\rangle}\right) \leqslant\langle D, Z\rangle$ for all $b \in A-E$. Now Lemma 5.1 yields the lemma.

Lemma 8.3. Suppose B is a hyperplane of A which contains E. Let $L \in \operatorname{Ind}\left(H_{B}\right)$. Define \hat{L} to be the product of components of H_{E} not centralized by L. Then $\hat{L} \leqslant\langle Z, L\rangle$.

Proof. Let $Z_{0}=Z\left(C_{S}(E)\right), V=Z Z_{0}, V_{L}=\bigcap\left\{C_{V}(K) \mid L \neq K \in \operatorname{Ind}\left(H_{B}\right)\right\}$, $W_{L}=\left\langle V_{L}, L\right\rangle$, and $W=\left\langle W_{L} \mid L \in \operatorname{Ind}\left(H_{B}\right)\right\rangle$. Since V is Abelian, it follows that $\left[W_{L}, W_{K}\right]=1$ if $L \neq K$. In particular,

$$
\begin{equation*}
W_{L} \triangleleft W \quad \text { for any } L \in \operatorname{Ind}\left(H_{B}\right) \tag{8.9}
\end{equation*}
$$

By Lemma 7.4(c), $C_{Z}(a) \leqslant\left\langle V_{L} \mid L \in \operatorname{Ind}\left(H_{B}\right)\right\rangle \leqslant W$ if $a \in A-E$. By Lemma $5.3, C_{z}(E) \leqslant Z_{0} \leqslant W$. Hence by Lemma $5.1, Z \leqslant W$. Lemma 8.2 yields

$$
\begin{equation*}
F^{*}\left(H_{E}\right) \leqslant\langle D, Z\rangle \leqslant\left\langle H_{B}, Z\right\rangle \leqslant W \tag{8.10}
\end{equation*}
$$

Let $\quad \tilde{L}=\langle L, Z\rangle^{\prime} . \quad$ By $\quad(8.9), \quad \tilde{L} \leqslant\left\langle W_{L}, Z\right\rangle^{\prime} \leqslant W_{L} . \quad$ Since $\quad[\tilde{L}, K] \leqslant$
$\left[W_{L}, W_{K}\right]=1$ for distinct $L, K \in \operatorname{Ind}\left(H_{B}\right)$, and \tilde{L} admits $\langle L, Z\rangle$, there follows

$$
\begin{equation*}
\tilde{L} \triangleleft\left\langle Z, H_{B}\right\rangle . \tag{8.11}
\end{equation*}
$$

By (8.10) and (8.11), $\hat{L}=\left\langle F^{*}(L)^{F^{*}\left(H_{E}\right)}\right\rangle \leqslant\left\langle F^{*}(L)^{\left\langle H_{B}, Z\right\rangle}\right\rangle \leqslant \tilde{L} \leqslant\langle L, Z\rangle$ as required.

Lemma 8.4. Suppose $E \neq F \in \mathscr{E}_{1}(A), L \in \operatorname{Ind}\left(H_{E F}\right)$, and $K \in \operatorname{Ind}\left(H_{F}\right)$. Suppose in addition that $C_{K}(E) \neq L$. Let \hat{L} be the product of components of H_{E} not centralized by L. Then $[\hat{L}, K]=1$.

Proof. Let $\quad L_{1} \in \operatorname{Ind}\left(H_{F}\right)$ satisfy $\quad C_{L}(E)=L$. Then $[L, S \cap K] \leqslant$ $\left[L_{1}, K\right]=1$. Clearly, $[Z, S \cap K]=1$. Hence $[\langle L, Z\rangle, S \cap K]=1$. By Lemma 8.3, $[\hat{L}, S \cap K]=1$. Since $K=\langle K \cap S| S$ is some $S_{r}(A)$-subgroup, $r \in \pi(\theta)\rangle$, it follows that $[\hat{L}, K]=1$.

Theorem 8.5. Let $W=\left\langle И_{\theta}(A)\right\rangle$. Suppose $E \neq F \in \mathscr{E}_{1}(A)$. Then for each $K \in \operatorname{Ind}\left(H_{F}\right), W$ has direct factors W_{K} which contain K and satisfy $W=\times\left\{W_{K} \mid K \in \operatorname{Ind}\left(H_{F}\right)\right\}$. Moreover, A acts transitively on $\left\{W_{K}\right\}$.

Proof. For each $K \in \operatorname{Ind}\left(H_{F}\right)$, let $K_{0}=C_{K}(E)$, and \hat{K} be the product of components of H_{E} not centralized by K_{0}. Now let $W_{K}=\langle K, \hat{K}\rangle$. By Lemma 8.4, $[\hat{L}, K]=1$ whenever L, K, are distinct members of $\operatorname{Ind}\left(H_{F}\right)$. Moreover, $\left\{T \cap H_{E} \mid T \in \mathscr{L}\left(H_{F}\right)\right\}=\operatorname{Ind}\left(H_{E F}\right)=\left\{R * * F \mid R \in \operatorname{Ind}\left(H_{E}\right)\right\}$, whence $[\hat{L}, \hat{K}]=1 \quad$ if $\quad L \neq K$. Hence $\left[W_{L}, W_{K}\right]=1 \quad$ if $\quad L \neq K$. Now $\left\langle F^{*}\left(H_{E}\right), H_{F}\right\rangle \leqslant\left\langle W_{L} \mid L \in \operatorname{Ind}\left(H_{F}\right)\right\rangle$. Hence Theorem 6.1(b2.5) and Lemma 6.12 , yields $W=\times\left\{W_{K} \mid K \in \operatorname{Ind}\left(H_{F}\right)\right\}$. Since A acts transitively on $\operatorname{Ind}\left(H_{F}\right)$ and $E F=N_{A}(K)$ for each $K \in \operatorname{Ind}\left(H_{F}\right)$ the remaining statements also hold.

Proof of Theorem A. Let $F_{1}, F_{2} \in \mathscr{E}_{1}(A)$ satisfy $E F_{1} F_{2}=A$. Let $\mathscr{L}_{i}=\mathscr{L}\left(H_{F_{i}}\right)$ for $i=1$ or 2 . Let $W=\left\langle И_{\theta}(A)\right\rangle$. Following Theorem 8.5, for each $K \in \mathscr{L}_{l}$ let W_{K} be direct factors of W which contain K and which satisfy
(a) $W=\times\left\{W_{K} \mid K \in \mathscr{L}_{i}\right\}$ for $i=1$ or 2 .
(b) A is transitive on $\left\{W_{K} \mid K \in \mathscr{L}_{i}\right\}$ and $E F_{i}=N_{A}\left(W_{K}\right)$ for any $K \in \mathscr{L}_{i}$.

Let $\Omega=\left\{W_{K} \cap W_{L} \mid K \in \mathscr{L}_{1}, L \in \mathscr{L}_{2}\right\}$. As in Theorem 8.1 we obtain

$$
\begin{equation*}
W=\times \Omega, \text { and } \tag{8.12}
\end{equation*}
$$

$$
\begin{equation*}
A \text { acts transitively on } \Omega \text {, and } N_{A}(X)=E \text { for any } X \in \Omega \text {. } \tag{8.13}
\end{equation*}
$$

Let $M=H_{F_{1} F_{2}}, M_{X}=\operatorname{Proj}_{X}(M)$ for $X \in \Omega$, and $\hat{M}=\times\left\{M_{X} \mid X \in \Omega\right\}$. Let $K \in \mathscr{L}_{2}$. When (A, G, S, T, K, W) is replaced by ($F_{1} F_{2}, W, \mathscr{L}_{i}, K, W_{K}$),

Lemma 5.6 implies that $K \leqslant \hat{M}$. Hence $\left\langle H_{F_{1}}, H_{F_{2}}\right\rangle \leqslant \hat{M}$. By Theorem 6.1 (b.2.5) and Lemma 6.12, $\hat{M}=W$. By (8.12) and (8.13), $W \cong p^{2} M$. Let $a \in A-E$. By (8.13) and Theorem 6.1(b2.4), $C_{W}(a) \cong p M \cong H_{a}$. Hence $H_{a}=C_{W}(a)$ for all $a \in A-E$. Since W is a p^{\prime}-group, $H_{E} \leqslant C_{W}(E)=$ $\left\langle C_{W}(E) \cap C_{W}(a) \mid a \in A-E\right\rangle=\left\langle C_{W}(E) \cap H_{a} \mid a \in A-E\right\rangle \leqslant H_{E}$. Hence $C_{W}(b)=H_{b}$ for all $b \in A^{*}$. Since (M, p) satisfies Hypothesis B, it follows that (W, p) satisfies Hypothesis B. Hence $W \in И_{\theta}(A)$, a contradiction. This completes the proof of Theorem A. Hence Corollary C also holds, thus completing the proof of all parts.

References

1. N. Burgoyne, R. L. Greiss, Jr., and R. Lyons, Field automorphisms and maximal subgroups of finite Chevalley groups, unpublished.
2. R. Carter, "Simple Groups of Lie Type," Wiley, New York, 1972.
3. W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.
4. W. Feit, "The Current Situation in the Theory of Finite Simple Groups," Yale Univ. Press, New Haven, 1971.
5. G. Glauberman, On solvable signalizer functors in finite groups, Proc. London Math. Soc. (3) 33 (1976), 1-27.
6. G. Glauberman, Factorizations in Local Subgroups of Finite Groups, U. of Minnesota, Duluth monograph (1976).
7. D. Goldschmidt, Solvable signalizer functors on finite groups, J. Algebra 21 (1972), 341-351.
8. D. Gorenstein, "Finite Groups," Harper and Row, New York, 1969.
9. D. Gorenstein and R. Lyons, Nonsolvable signalizer functors on finite groups, unpublished.
10. Z. Janko, A new finite simple group with Abelian 2-Sylow groups and its characterization, J. Algebra 3 (1966), 147-187.
11. Z. Janko and J. G. Thompson, On a class of simple groups of Ree, J. Algebra 4 (1966), 274-292.
12. P. Martineau, Elementary Abelian fixed point free automorphism groups, Quart. J. of Math. (Oxford) (2) 23 (1972), 205-212.
13. P. McBride, Near solvable signalizer functors on finite groups, unpublished.
14. R. Ree, A family of simple groups associated with the simple Lie algebra of type $\left(F_{4}\right)$, Amer. J. Math. 83 (1961), 401-420.
15. R. Ree, A family of simple groups associated with the simple Lie algebra of type $\left(G_{2}\right)$, Amer. J. Math. 432-462.
16. R. Steinberg, Automorphisms of finite linear groups, Canad. J. Math. 12 (1960), 606-615.
17. M. Zuzuki, On a class of doubly transitive groups, Ann. of Math. 75 (1962), 105-145.
18. J. G. Thompson, Simple groups of order prime to 3 , I, II, unpublished.
19. J. Walter, Finite groups with Abelian Sylow 2-subgroups of order 8, Invent. Math. 2 (1967), 333-376.
20. J. Walter, The characterization of finite groups with Abelian Sylow 2-subgroups, Ann. of Math. 89 (1969), 405-514.
21. H. N. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc., 121 (1966), 62-89.

[^0]: * Partially supported by NSF Grant MCS 76-06626.

