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1. INTRODUCTION 

Recently Gorenstein and Lyons obtained the first nonsolvable signalizer 
functor theorems [9]. They pinpointed certain “unbalancing” problems. This 
paper grew from an attempt to manage such problems. Theorem A is the 
result. Theorem B and Corollary C give some measure of the practical scope 
of Theorem A. 

Suppose p is a prime, A is an elementary Abelian p-subgroup of a finite 
group G, and 8 is an A-signalizer functor on G. The unbalancing difficulties, 
referred to above, occur only if there are “certain” nonidentity subgroups X 
of G, such that C,(A) is solvable. Using methods of Glauberman [S, 
Lemma 2.11 and Theorem 4.51 we are able to reduce the problem: either the 
“unbalancing” problems vanish or O(C,(A)) is solvable. The latter case is 
treated in [ 131. The rest of the work is treated here. This work pivots on 
Theorems 5.16 and 6.5, results which closely resemble [5, Lemma 2.11 and 
Theorem 4.5 1. 

2. NOTATION, DEFINITIONS, AND CONVENTIONS 

Conventions. All groups treated in this paper are finite. All simple 
groups are nonabelian. We shall reserve p and r for primes. 

Suppose A, B are groups and B acts on A. Then AB is the usual product if 
A and B are subgroups of a common group; otherwise AB is the semidirect 
product of A by B. 

Suppose a group G is the direct product of subgroups A,, A2 ,..., A,,. Let X 
be a subset of G. Then Proj,,(X) is the usual projection map of X on Ai. We 
often write Proj,(X) when G = A x C,(A). Then projections are taken with 
respect to the pair (A, C,(A)). If X is contained in a subgroup N, we may 
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apply the above conventions to N. We do so by stating that projections are 
being taken in N. 

Notations and Definitions. Our notation for groups of Lie type agrees 
with [2]. Most of the specialized notation is taken from [S, 7, 131. For the 
convenience of the reader we shall repeat many of these. What is not 
explained can be found in [2,8], or is hopefully self-explanatory. 

(1) Let S be a finite set. When the members of S are sets, OS is the 
intersection of the members of S. When the members of S are groups, XS is 
the direct product of the members of S. When the members of S are real 
numbers, CS is the sum of the members of S. 

(2) A section of a group G is a quotient group K/L of a subgroup K 
of G by a normal subgroup L of K. 

(3) A simple group G is outer p-cyclic means that the outer 
automorphism group of G, Out(G), has cyclic Sylow p-subgroups. 

(4) The group G is near p-solvable means that G is a p/-group, and 
any simple section of G is isomorphic to A ,(q), A ,(3”), *B,(q), or *A,(q*), 
where q = 2p. 

(5) A localized subgroup of a group G is any subgroup which 
normalizes a nonidentity solvable subgroup of G. 

(6) Hypothesis A (applied to a pair (G,p)). 

(A. 1) p is a prime and G is a simple p/-group. 
(A.2) G is outer p-cyclic. 
(A.3) G is near p-solvable, or the following three conditions apply to 

any automorphism f of G of order p. 

(A.3.1) Let C = C,(f). Then C is not a localized subgroup of G. 
(A.3.2) F*(C) is simple. 
(A.3.3) Any p’-automorphism of G which centralizes C is trivial. 

(7) Hypothesis B (applied to a pair (G,p)). p is a prime. G is a p’- 
group. Hypothesis A applies to (K,p) for all simple sections K of G. 

(8) The group G is near A-solvable means that A is an elementary p- 
group, (G,p) satisfies Hypothesis B, and C,(A) is solvable. 

(9) The statement “8 is an A-signalizerjiinctor on G” means that A is 
an Abelian p-subgroup of the group G for some prime p, and that for each 
a E A” there is defined an A-invariant p’-subgroup t3(C,(a)) of C,(a) such 
that 

&C,(a)) n C,(b) G W,(b)) for alla,bEA#. (“1 

The property (*) is called balance. 
In definitions (10) through (18), let I!?, G, A, and p be as in Definition 9. 
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(10) Hypothesis (C) (applied to 0). The pairs (O(C,(a)),p) satisfy 
Hypothesis B for all a E A#. 

(11) The associated set of A-signalizers is the set of all A-invariant p’- 
subgroups X of G such that C,(a) < 0(C,(a)) for all a E A#, and such that 
(X,p) satisfies Hypothesis B. It is denoted M,(A). The set of all maximal 
elements of Pie(A) under inclusion is denoted by M,*(A). 

(12) We say that B is complete if G contains a unique maximal 
element of M,(A) under inclusion. This element is then denoted by B(G). 

(13) We say that 19 is locally complete if, for every nonidentity element 
X of &,(A), N&Q contains a group &V,(X)) which is the unique maximal 
element among all elements of W,(A) contained in N&X). In this case, we 
Put w3-0 = wum n cm. 

(14) For every nonidentity subgroup B of A, let 

@C,(B)) = n w,w I b E B#l. 

(15) The set of all elements of 13,(A) which are B(C,(A))-invariant is 
denoted &,(A). 

(16) The set of all elements of M,(A) which contain 8(C,(A)) is 
denoted &,(A). 

(17) w) = U ww,w)b E A+‘1 and lel= CaeA# ie(ww. 
(18) For any r E n(e), let kI,(A; r) be the set of all r-groups in M,(A), 

and let I/I,*(A; r) be the set of maximal elements of W,(A; r). The elements of 
&!(A; r) are called S,(A)-subgroups of G. 

(19) The solvable radical of a group G is the maximal solvable 
normal subgroup of G. It is denoted Sol(G). 

(20) The set of subnormal simple subgroups of a group G is denoted 
P(G). Let G= G/Sol(G). Then J(G) is the set of all subgroups X of G, 
which contain Sol(G), and which satisfy xe P(G). 

(21) A group is semi-simple means that it is the direct product of its 
normal simple subgroups. This use is not in accord with [8, p. 5011. A group 
is perfect if it is its own derived group. A group is an E-group if it is perfect, 
and modulo its center is semi-simple. A group is a K-group if modulo its 
solvable radical it is semi-simple. Let G be a group. The Fitting subgroup of 
G is denoted F(G). The unique maximal normal E-subgroup of G is denoted 
E(G). The generalized Fitting subgroup of G equals E(G) F(G). It is denoted 
F*(G). The unique maximal normal K-subgroup of G is denoted K(G). We 
define k(G) = (fi (N,(M) IM E M(G)}) Sol(G). 

(22) Suppose A is an Abelian p-group acting on the p’-group G. For 
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each subgroup X of G, the smear of X by A is the subgroup (X”) f’? C,(A). It 
denoted X ** A. 

.‘k’(G)= {MEM(G),M 
YPA(G) = (L E 9’(G)lL **A is nonsolvable}. 
** A is nonsolvable}. KA(G) = (HA(G)). Finally, 

K,(G) = CG(KA (G)/Sol(G)). 

(23) We are interested in structures which are like wreathed 
structures. Suppose G is a group. The expression G = H!(A, N, C) means: A 
is an Abelian subgroup of G, H is a subgroup of G, G = (H, A), (Ho) = 
x HG, N = N4(H), and C = C,(H). 

(24) Suppose the group G is the direct product of its subgroups 
G, , G, ,..., G,. A diagonal subgroup of G, with respect to (G,, G, ,..., G,}, is 
any subgroup X such that Proj,, : X + Gi is an isomorphism. 

(25) A direct factor of the group G is any subgroup K of G such that 
K x L = G for some subgroup L of G. We say G is indecomposable if its 
only direct factors are G and 1. We denote the set of all indecomposable 
direct factors of G by Ind(G). 

3. STATEMENT OF MAIN RESULTS 

THEOREM A. Suppose p is a prime, A is an Abelian subgroup of a group 
G, m(A) > 3, and t9 is an A-signalizer finctor on G which satisfies 
Hypothesis C. Then 0 is complete. 

THEOREM B. Suppose p is a prime, G is a simple PI-group, and at least 
one of the following conditions apply to G: 

(a) Out(G) is prime top, 
(b) G is a Chevalley or a twisted Chevalley group, or 
(c) G has an Abelian Sylow 2-subgroup. 

Then it follows that (G,p) satisfies Hypothesis A. 

COROLLARY C. Suppose p = 2 or 3, A is an Abelian p-subgroup of the 
finite group G, m(A) > 3, and 0 is an A-signalizer functor on G. Then 0 is 
complete. 

4. PROOF OF THEOREM B AND COROLLARY C 

We list the Lie notation used in this section. For greater detail see [2]. 

DEFINITION. Let K be a finite field. We write A(K) for any of the groups 
A,,(K), B,(K), C,,(K), D,(K), G,(K), F,(K), or E,(K). In this section we 
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shall reserve G(K) to mean /i(K) or some twisted version iA of A(K). 
The root system and fundamental root system corresponding to li are given 
respectively by @ and IZ. 

Let 2 be the integers. Then I? is the set of automorphisms of /i(K) of the 
form IQ), x E Hom(Z@, K), defined by Irk): x&) --t x&x(r)) for r E @. The 
group of field automorphisms of A(K) is denoted ST. Let A, be the inner 
automorphism group of G(K), A, the automorphism group induced by 
Ng(G(K)) on G(K), A, =F, and A, = the automorphism group generated 
by the graph automorphism of G(K). BY [14, 1% 171, 
Aut(G(K))=A,A,A,A,, A, ZIV~(G(K)), and A,gNdG(K)). Hence we 
shall identify A, and A, with Ng(G(K)) and NAG(K)), respectively. Also 
when convenient we may identify Aut(‘/i(K)) with a subgroup of Aut(/i(K)) 
and G(K) with A,. 

Let U (resp. V) be the positive (resp. negative) unipotent subgroups of 
A WI. 

LEMMA 4.1. Suppose G(K) is a p’-group. Then A, contains a Sylow p- 
subgroup P of Aut(G). Moreover P is cyclic. 

Proof z(A,) = x(G), z(A,) = K(K#) E n(G), and z(Aq) c n(G). Hence by 
Sylow’s theorems, A, contains a Sylow p-subgroup of Aut(G). Since A, is 
cyclic, the result follows. 

LEMMA 4.2. Let K have characteristic r. Suppose T is a subgroup of U, 
such that for all s E IT, T contains an element n,,*+ x,(b,), for which b, # 0. 
Then U is the unique Sylow r-subgroup of A(K) which contains T. 

Proof: The proof of [ 1, Lemma 1.11 is based on these conditions and 
shows N(T) < N(U). Since the conditions are inherited by N”(q, the result 
follows by induction on 1 U: TI. 

LEMMA 4.3. Suppose G(K) is a PI-group and f is an automorphism of 
G(K) of order p. Let C = C,,,,(f) and D = C,,,,,,,,,(C). Then D = (f). 

Proof Let r be the characteristic of K. By Lemma 4.1 we may suppose f 
is a field automorphism. Then by Lemma 4.2, U is the unique Sylow r- 
subgroup of A(K) containing U n C. Since U n C and Vn C are conjugate, 
it follows that V is the unique Sylow r-subgroup of A(K) containing Vn C. 
Hence D G N(U) n N(V) n Aut(G(K)) = A,A,A,. Since A,A, normalizes 
each root group it follows that D c A,A,. Now straightforward calculations 
assisted by [2, Theorem 5.3.3(ii), Proposition 13.6.11 yield the result. 

LEMMA 4.4. Suppose G E’ A,(q), A,(3P), ‘A,(q), or 2B2(q), where q = 2”. 
Suppose in addition that G is a PI-group. Then G is near p-solvable. 
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Proof: When GE ‘B,(q), the result is given by [ 17, Theorem 91. 
Otherwise the result follows from [4, Sects. 8.4 and 8.51. 

Proof of Theorem B. (a) In this case all the conditions are vacuously 
satisfied. 

(b) Suppose G(K) is a @-group. We must show (G(K),p) satisfies 
Hypothesis A. By (a), we may suppose that p E x(Aut(G(K)). By 
Lemma 4.1, G(K) is outer p-cyclic. Let f be an automorphism of G(K) of 
order p and let C = C,(,, (f). By Lemma 4.3, any p’-automorphism of G(K) 
which centralizes C is trivial. 

By Lemma 4.4, we may suppose G &A,(q), A ,(39, ‘Az(q2), or ‘B2(q) for 
q = 2p. By [ 11, C is a maximal subgroup of G(K). Hence it suffices to show 
F*(C) is simple, By [2, Theorems 21.1.2, 14.4.1, comments on p. 17.5, and 
the note on p. 2681 it suffices to show ‘G,(3) and ‘F,(2) have trivial center. 
The argument on [2, p. 1731 carries over to the above two situations. This 
completes (b). 

(c) Let G be a p/-simple group with Abelian Sylow 2-subgroup. We 
must show (G,p) satisfies Hypothesis A. By parts (a), (b), and [ 10, 201, we 
may suppose G has an elementary Abelian Sylow 2subgroup P of order 8, 
that C,(j) g Z, x A 1(q) where q = 3” for some odd integer n at least 3, and 
that G has an automorphism of order p. Such groups have been studied 
extensively [ 11, 15, 19, 211. Let N = N,(P), A, be the group of inner 
automorphisms of G, and B, the group of automorphisms centralizing N. By 
[20, p. 3351, there follows 

Aut(N) = Inn(N) E N. 

So by the Frattini argument 

(4.1) 

Aut(G) = A, B,. (4.2) 

G does not have a strongly embedded subgroup, and N is transitive on P”, 
whence G = (N, C,(j)) for any j E P#. Hence 

B, acts faithfully on (C,(j))’ r A ,(3”) for any j E P#. (4.3) 

Now suppose f is an automorphism of G of order p. By (4.2), we may 
suppose f E B,. Hence by (4.3), G is outer p-cyclic. Let C = C,u). Any 
automorphism k of G which centralizes C must centralize N. Hence k E B,. 
By (4.3) and (b), it follows that k E (f ). 

Let j E P#. Then C,(j) normalizes no nontrivial subgroup of odd order of 
C,(j). Hence N normalizes no nontrivial subgroup of odd order. Since N is 
transitive on P# we obtain 

Suppose N < H ,< G. Then H = N or F*(H) is simple. (4.4 ) 



NONSOLVABLE SIGNALIZERFUNCTORS 221 

To complete the proof it suffices by (4.4) to show that N# C. The order 
of N is 168. Let e be an element of N of order 3, and t an involution of N 
centralizing e. By [ 11,211, e is contained in a unique Sylow 3-subgroup R of 
G. So t and f normalize R. Now e E C,(t) <R’. Hence it suffkes to show 
c RpcRj(f) Z 1. However, No(R) is transitive on (R/@(R))# whence 
(e) < C,(f). Hence N # C. This completes the proof of Theorem B. 

Proof of Corollary C (assuming Theorem A). 0 satisfies Hypothesis B by 
[3] ifp=2, or by Theorem B part (b) and [6] or [18] ifp=3. Theorem A 
then yields the corollary. 

5. PRELIMINARY LEMMAS 

LEMMA 5.1. Suppose the Abelian p-group A acts on the PI-group X. 
Then X = (C,(A,) ( A/A0 is cyclic). 

Proof: See [ 7, Lemma 2.11. 

LEMMA 5.2 (Glauberman). Suppose the x-group A acts on the x’-group K. 
Suppose K is generated by A-invdriant pairwise permuting subgroups 
K, , K, ,..., K,. Then C,(A) = C,,(A) C,,(A) ... C,JA). 

Proof See [ 9, Lemma 2.11. 

LEMMA 5.3. Suppose 0 is an A-signalizer functor on a group G, 
P E cI,(A; r) and B is a noncyclic subgroup of A. Then the following 
statements are equivalent: 

(1) P E M,*(A; r) 
(2) C,(b) is an S,(A)-subgroup of &C,(b)) for all b E B#. 

Proof: See [7, Lemma 3.21. 

LEMMA 5.4. Let G be a group and G = G/Sol(G). Then the functors F*, 
K, E, and Sol satisfy: 

(a) Sol(c) = i, 
(b) C@*(G))& F*(G), and 
(c) K(G) = K(G) = E(G) = F*(G) is semi-simple. 

Proof. See [ 13, Lemma 2.41. 

LEMMA 5.5. Suppose the Abelian group A acts on the group 
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G=G,xG,x..- x G, . Suppose A acts on (G, , G, ,..., G, } via the induced 
action of A on subgroups. Then 

Projo&( = Coi(N,(Gi)) 

where projections are taken with respect to {G,, G, ,..., G,}. 

Proof See [ 13, Lemma 2.91. 

LEMMA 5.6. Suppose the group A acts on the group G, G is a direct 
product of a set S of subgroups of G on which A acts semi-regularly. Suppose 
W is a subgroup of C,(A), and T < K E S satisfies T ** A < W. Then 
T < Proj,( W) when projections are taken with respect to S. 

Proof: Let tETandy=n,,, P. The elements of r4 commute pairwise; 
so y is well defined and centralized by A. So t = Proj,( y) E Proj,( W) as 
required. 

LEMMA 5.1. Suppose the group G acts faithfully on the set a, G has a 
Sylow p-subgroup S acting transitively on Q, and OP(G) = O,,(G). Then 
G = S. 

Proof: [See 13, Lemma 2.61. 

LEMMA 5.8. Suppose M is a group of operators of the semi-simple group 
K. Then [K, M] = the product of components of K not centralized by M. 

Proof. Suppose that K has a component L centralized by M. Then 
[K, M] = [C,(L) x L, M] < C,(L) < K. 

Now let K, = [K, M] and K, = C,(K,). Then both K, and K, are normal 
inKM,andK=K,XK*.Hence [K,,M]<K,fIK,=l.SoK,=[K,M]= 
[K, x K,,M] = [K,,M]. The previous paragraph implies that K, has no 
component centralized by M. 

LEMMA 5.9. Suppose G is a group and K(G) Q X < G. Then 
K(G) = K(X). 

Proof. See [ 13, Lemma 2.151. 

LEMMA 5.10. Suppose the group G is semisimple. Let Y = Y(G). 
Suppose H is a subgroup of G such that Proj,(H) = L for all L E 9. For 
each nonempty subset T of 4a let G, = (T) and H, = H n G,. Then 

(a) 9 is the disjoint union of subsets pi, 1 Q i < k, 
(b) H is the direct product of HYi, 1 Q i < k, and 
(c) Hyi is a diagonal subgroup of GYi. 
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ProoJ: Let T be a nonempty subset of 9 of least possible order subject 
to G, n H # 1. If T = 9, then H is already a diagonal subgroup of G and 
we are done. Suppose then that T is a proper subset of ip. Let 
H* = Proj+(H). Now H,> [H, HT] = [H*, HT]. So H, u H*. Let L E T. 
Then 1 # Proj,(H,) (1 Proj,(H) = L. Hence H, is a diagonal of G,. So 
H, < H* < NGr(HT) = H,. Hence H = H, x C,(G,). The result now 
follows by induction on lipI. 

LEMMA 5.11. Suppose the elementary Abelian p-group A acts on the p’- 
group G, m(A) > 2, and each member of F(G/Sol(G)) is outer p-cyclic. Let 
L = @(Co(a))] a E A#). Then K(L) = K(G). 

Proof: By Lemma 5.9, it suffices to show that L > K(G). We may now 
make the following sequence of reductions; first G = K(G), then Sol(G) = 1, 
then A is of order p’, then C,(G) = 1, and finally A acts transitively on 
Y(G). By the outer p-cyclic property and Lemma 5.1, we may suppose 
B = A n k(GA) zz Z,. Let K E Y(G). Then I# K(C,(B)) = K(C,(B)) f7 
K < L. So L n K # 1. Let B # E E gI(A). Then C,(E) <L. By Lemma 5.10, 
L = G. 

LEMMA 5.12. Suppose H is a group of operators on the group G = x R. 
Suppose the action of H on G induces a semiregular action of H on 0. Then 
Z(C,W)) = cz,,,w. 

Proof. Let C = Co(H). Take projections in G with respect to a. Since H 
acts semiregularly on 8, it follows that Proj,(C) = K for all K E R. Hence 

C,(C) = X (C,(C)IK E 0) = X (C,(Proj,(C))IKE 0) 

x {C,(K)IKEQ}=Z(G). 

Hence Z(C) = C f7 Z(G) as required. 

LEMMA 5.13. Suppose A is a p-group and G is near A-solvable. Then G 
is near p-solvable. 

Proof: A simple section of G is isomorphic to a simple section of some 
chief factor of GA in G. Hence we may assume G is nonsolvable and is 
minimal normal in GA. Then G is near (A ng(GA))-solvable. Hence we 
may suppose that G is simple. Since C,(A) is a localized subgroup of G and 
A/C,(G) z Z,, it follows by Hypothesis A.3. that G is near p-solvable. 

LEMMA 5.14. Suppose A is an elementary Abelian p-group of operators 
on the group G. Suppose (G,p) satisfies Hypothesis B. Let D = C,(A). 
Suppose X is a DA-invariant subgroup of G, and Sol(G) = 1. Let 
J E g*(G). Then F*(J ** A) Q X or J is centralized by X. 

481/78/l-15 
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Proof: Let L = (JA), X, = XnK(G), and X, = Proj,(X,), where 
projections are being taken in K(G). Then X, is C,(A)-invariant. First 
suppose X, n (J ** A) = 1. Thus Cx2(,4) = 1. By [ 121, X, is solvable. By 
Lemma 5.5 and Hypothesis A, Proj,(J ** A) = C,(N,(J)) is not localized. 
Hence, Proj,(X,) = 1. Hence X, = 1. Hence [J ** A, X] <X, Q C,(L). By 
the 3-subgroup lemma, [F*(J** A), X] = [F*(J ** A), F*(J ** A), X] = 1. 
Since L = the product of components of G not centralized by F*(J **A), it 
follows that L admits X. In particular [J ** A, X] <X, f? L = 1. By 
Lemma 5.7, X normalizes J. Hence by Lemma 5.5, X centralizes 
Proj,(J ** A) = C,(N,(J)). By Hypothesis A.3.3, X centralizes J. 

Next suppose X, n (J ** A) # 1. By Lemma 5.5, J** A g C,(N,(J)). 
Hence by Hypothesis A.3.2, F*(J ** A) is simple and is the unique minimal 
normal subgroup of J ** A. In particular, F*(J ** A) < X,. So 

F”(J ** A) = [F*(J **A),F”(J**A)] < [J**A,X,] = [J**A,X,] 

< [0,X] <Xx. 

This completes the proof of the lemma. 

THEOREM 5.15. Suppose A is an elementary Abelian p-group of 
operators of the group G. Suppose (G,p) satisfies Hypothesis B. Let 
D = Co(A). Suppose X is a DA-invariant subgroup of G. Then all of the 
following hold. 

(a) X < K,(G) if X is near A-solvable. 
(b) Suppose J E MA(G) and X = d(X). Then J admits X. 
(c) Suppose X = K(X). Then X normalizes KA(G) and induces inner 

automorphisms on KA(G)/Sol(G). 
(d) Suppose X = K(X). Then X < KA(G) KA(G). 
(e) Suppose K,(G) = 1 and X = K(X). Then X < K(G). 
(f) Suppose K,(G) = 1 and B <A. Then K(C,(B)) = K(C,,,,(B)). 

Moreover Y(C,(B)) = {P*(J ** B)]JE Y(G)}. 
(g) Suppose K,(G) = 1 and B <A. Then K(Co(B)) = CR&B). 

Proof. (a) Without loss of generality assume Sol(G) = 1. If KA(G) = 1, 
there is nothing to prove. Suppose KA(G) # 1. Let J E Y’(G). Then 
F*(J*a A) 4 X. Hence by Lemma 5.14, [J, X] = 1. So X < KA(G). 

(b) We may suppose Sol(G) = 1. Let J E PA(G). If F*(J ** A) 4 X, 
then [X, J] = 1 by Lemma 5.14. Suppose then F*(J ** A) <X. Let L = (JA) 
and X, = K(X n L). By Lemma 5.14, F*(J** A) < X,. By (a), 
Sol(X,) <K,(L) = 1. Also by (a), Sol(X) Q K,(G) < C,(L). Hence 
X, = (X, x SOI(X))~ admits X. Since L is the product of components of G 
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not centralized by X,, it follows that L admits X. By Lemma 5.7, J admits 
X. 

(c) By (b), X normalizes K”(G). Hence we may suppose G = KA(G) X 
and Sol(G) = 1. By (a), Sol(X) a G. Hence Sol(X) = 1. Let X, = Xn K(G), 
and X, = C,(X,). Then X = X, x X,. Since X and X, are DA-invariant, it 
follows that X, is DA-invariant. By Lemma 5.14, X, < K,(G). 

(d) This is equivalent to (c). 
(e) This is immediate from (b). 
(f) By (c), K(C,(B)) = K(C,,,,(B)). Certainly, K,(G) = 1. 

So to complete (f) we may suppose by induction that G = K(G), that A = B, 
and that A is transitive on P(G). Let J E Y(G). Then C,(A) = J ** A. By 
Lemma 5.5, C,(A) 2 C,(N,(J)). S o we may suppose that G is simple. The 
conclusion now follows from Hypothesis A. 

k) BY (b), @G(B) <f(G). BY @I CR&V =~(CE~~,(B)). This 
proves (g) and the theorem. 

THEOREM 5.16. Suppose A is an elementary Abelian p-group of 
operators of the group G. Suppose (G,p) satisfies Hypothesis B. Let 
D = C,(A). Let NS(G) be the set of all subgroups of G which are DA- 
invariant and near A-solvable. Let G,, = (NS(G)). Then 

(a) G,, ENS(G), and 

(b) G,, admits all DA-invariant K-subgroups of G. 

Proof: (a) DA permutes NS(G,,) and therefore normalizes (G,,),,. 
Hence we may suppose G = G,,. We may also suppose G has no near A- 
solvable normal subgroups. Theorem 5.15(a) implies that G = K,(G). Hence 
K(G), being near A-solvable, is trivial. Hence G = 1. 

(b) By Theorem 5.15(a, d) we may suppose that G = KA(G) KA(G). 
We may also suppose that G has no nontrivial near A-solvable normal 
subgroup. Hence K(K,(G)) = 1. Hence K,(G) = 1. So G,, <K,(G) = 1, 
proving (b). 

THEOREM 5.17. Suppose H is a group, Sol(H) = 1, and H has a 
subgroup B z Z, x Zp acting regularly on Y(H). Suppose B is a B-signalizer 
functor on H which satisfies: 

C,(,,(b) < &C,(b)) for all b E B# 

and 

@(C,(b)) 2 p(@(C,(B))) for all b E B#. 
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Let I’?= C,(C,,,,(N)) for each N 4 K(H). Then 6’ is complete. Moreover, 

B(HB)= x {B(HB)n~~JE~(H)} 

where projections in (IIJ E Y(H)) are taken with respect to (31JE Y(H)]. 

ProoJ: By Lemma 5.7, (I&,(B)) < t(H). Hence we may suppose that 
Hz Aut(J)lB for any JE Y(H). Let H, = J?(H). Then H = H,B, 
HO = {J”IJ E g(H)}, and B acts regularly on {J\JE 9(H)}. In particular, 
we can take projections in H, with respect to (J/JE Y(H)}. 

Let W= B(C,(B)) and W, = (ProjAqIJE 9(H)). Then Cwl(b) zpWs 
B(C,(b)) for all b E B’. So it suffices to show B(C,(b)) < W, for all b E B#. 

Fix EEB,(B). Let S={(.JE)JJEY(H)}, T= {PILES}, and 
V= O(C,(E)). By hypothesis, V = V, x V2 x m-0 x V,, where each Vi r W 
and C,&E) < V. Thus 

Suppose C,(E) = Vi n K(G). Then 

vi= n {C,VjnK(G))V# i) = n {C,(C,(E))lL #ME S} 

=n IC,(M)IL~~MESJ 

G n {c,(M)IL’#ME S) =LI. 

So V=x {VnLILET}. Let ExF=B. Then for ZET, (VnL)**F= 
C,(F) = W. Since F acts regularly on T, Lemma 5.6 yields that 
Vnz<Proj,(W)< W, forallL&T. Hence V< W,.SinceEE&Yi(B)was 
arbitrarily chosen, the theorem is complete. 

6. THE MINIMAL COUNTEREXAMPLE 

Henceforth we shall assume that Theorem A is false and that G is a coun- 
terexample of least possible order. Subject to this restriction we assume that 
101 is minimal. When convenient we shall write H, for B(C,(B)) for each 
nonidentity subgroup B of A, and H, for H(,, for each a E A#. We shall also 
write D for HA. 

Following Theorem 5.16, for each XE &&4), we define NS(X) to be the 
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set of DA-invariant near A-solvable subgroups of X, and X,, = (KS(X)). 
Now define 0,,(C,(a)) = (13(C,(a))),, for each a E AX. 

The goal of this section is to obtain suffkient structure of 0 to determine 
the structure of G. For the convenience of the reader, we capsule this infor- 
mation in our first theorem. 

THEOREM 6.1. The following hold. 

(a) A is elementary Abelian of order p3. 
(b) One of the following sets of conditions hold. Either (bl) or (b2) 

holds. 

(bl) The following three conditions hold. 
(bl.1) D is simple 
(b1.2) Let FE &(A). Then H,A = Kw(A, F, F) for some K z D. 
(b1.3) H, E kl,*(A)for all a E A#. 
W The following Jve conditions hold. 
(b2.1) There is a distinguished E E &(A) and a simple group K. 
(b2.2) F*(D) is simple. 
(b2.3) H,A = L1y(A, E, E) for some L z D. 
(b2.4) Let E # FE g*(A). Then HF= Lw(A, EF, F) for some 

LzK. 
(b2.5) H, E M;(A) if a E A - E. 

(cl G = W,tA))A. 
td) ztW,(A))) = 1. 

LEMMA 6.2. (a) A is elementary abelian of order p3. 
(b) There is an a E A#for which t9(C,(a)) is not near A-solvable. 
(c) 8 is locally complete. 
(4 G = A W,(A)). 

Proof: (a), (d). These follow from the conditions of the counterexample. 
(c) See [ 7, Lemma 5.11. 
(b) This follows from Lemma 5.13 and [ 13, Main Theorem]. 

LEMMA 6.3. Let XE M,(A). Then 

(a) There is an a E A# such that K(H,) 4 X. 
(b) There is a B E g’,(A) such that K(H,) 4 X. 

Proof: Let a E A#. By Lemma 5.11, 

KWJ = K((KW.d I a E B 6 &(A 1)) Q (KW) IF E G(A 1). 

Hence it suffices to show that (a) is true. 
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Suppose that (a) is false. Choose XE M,(A) such that K(H,) Q X for all 
a E AX. Let B E &(A). By Lemmas 5.9 and 5.11, 

W3 = K((K(Cx@))I b E B#‘)) = K((@%) I b E B#)) 

admits H,. This is contrary to Theorem 6.2(c), which proves the lemma. 

LEMMA 6.4. Z((M,(A)))= 1. 

Proo$ See [ 13, Theorem 5.1(d)]. 

THEOREM 6.5. (a) B,,, is a complete A-signalizer functor on G. 
(b) O,,(C,(a)) admits any DA-invariant K-subgroup of &C,(a)). 

Proo$ (a) This follows from Theorem 5.16(a) and Lemma 6.2(b). 
(b) This follows from Theorem 5.16(b). 

THEOREM 6;6. B,,(G) = 1. In particular, K”(X) = 1 whenever XE 

&h-O 

Proof: Let W = 8,,(G). Choose a B E Z&A). By Lemma 5.1 and 
Theorem 6.5, 

KWd Q ~,((~,,(G(b))l b E B#)) = ~o((C,(b)I b E B#)) = I,. 

Now Lemmas 6.2(c) and 6.3(b) imply that W= 1. 
Suppose X E fi[,(A). Then K,(X) n K(X) < B,,(G) = 1. So Sol(X) = 1 and 

K(X) = K”(X). Hence K”(X) = C,(K(G)) = 1, as required. 

LEMMA 6.7. ifo 8= 8. 

Proof: Theorem 5.15(g) and Theorem 6.6 imply that d 0 13 is an A- 
signalizer functor on G. Lemma 6.3 implies that 19 = I? 0 8 as required. 

LEMMA 6.8. F*(D) is simple. 

Proof: By Lemma 6.2(b), D # 1. So Theorem 6.6 implies that Y(D) is 
nonempty. Let J E Y(D). Define 0,(&(a)) = 0(&(a)) n C,(J). Clearly 0, 
is an A-signalizer functor of order less than 8. Hence 0, is complete. Let 
W = 8,(G). Suppose 

Whenever B E &(A), L E .Y(H,,,), and L < W, it follows that [ W, L] = 1. 

(6.1) 

Then by Lemmas 6.2(c), 6.3(b), and Theorem 6.6 it follows that W = 1. So 
F*(D) is simple. 
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We shall prove (6.1). Let B E g&4) and L E Y(HB). Suppose [ W, L] # 1. 
Then by Lemma 5.1, there is a b E B” for which [C,(b), L] # 1. Let H = H6 
and H,= 8,(&(b)). Thus [H,, L] # 1. By Theorem 5.15(f), 
L = F*(M ** B) for some ME Y(H). Since HJ is B-invariant and 
L < (MB), it follows that [H,, M] # 1. Since H, is DA-invariant, Lemma 
5.14 implies that L = F*(M ** A) < HJ < W. This proves (6.1) and 
completes the lemma. 

DEFINITIONS. For each nonidentity subgroup B of A define B, = 
C,(K(H,)), and B,=A nR(H,A). Let x = {FE 8;(A)]]Y(H,)] =p’}. 

LEMMA 6.9. Let B be a nonidentity subgroup of A. Let E, F E Z,(A). 
Then all of the following hold. 

B, = C,., (HB) = C,(L) for any L E Y(HB). 
B, = N,(L) for any L E p(HB). 

IWHdI = IAPNI. 
A/B, acts regularly on Y(HB). 
Suppose FQ E, and E Q FN. Then ]58(HE)] = ]4p(H,)]. 
Suppose F 4 EN and E Q FN. Then ]Y(H,)] =p ]Y’(H,) 1. 
Suppose F < EN and E < FN. Then 1 Y(H,) I= ] Y(H,) I. 
B,/B, is cyclic. 

Proof. (a), (b), (c), (d). Clearly B, = C,(H,). By Lemma 6.8, A acts 
transitively on Y(Ht,). Let V be any subgroup of A. Since A is Abelian, the 
members of Y(H,) centralized by V is a union of A orbits. Similarly, the 
members of Y(H,) normalized by V is a union of A orbits. Hence (a), (b), 
(c), (d) easily follow. 

(h) This follows from (a), (b) and the outer p-cyclic property of 
members of Y(H,). 

(e), (f), (g). Let k = Ig(HEF)I, rk = Ig(H,) I, and Sk = Ig(HF)I. BY 
Theorem 6.6 and Theorem 5.15(g), s= 1 if E <F,,,, and s = ]E] =p if 
E Q F,,,. The symmetric statements for r obtained by interchanging E and F 
yield (e>, (0, and W. 

LEMMA 6.10. Y2 # 0. 

Proof. Suppose YZ = 0. Then g;(A) = Y0 U 9,. Suppose in addition 
that Sq = 0. Choose a E A” with HO of maximal possible order. Let 
B = (a)c. By Lemma 6.9(a), H,, < H,, for all b E B’. Hence H, = H, for all 
b E B’. By Lemma 6.9(h), m(B) > 2. Hence (k&(A)) = H,. This is false; so 
9, # 0. 

Let FE Sq and B = F,,,. By Lemma 6.9(d), m(B) = 2. Let F # E E 8;(B). 
Since .Y* = 0, Lemma 6.9(f), implies that F < E,. By Lemma 6.9(g), 
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E E Y1. Hence 8,(B) c 9, , and B = E, for all E E ZI(B). Let L E 9, and 
E E 8,(L, f? B). Then L, = EN = B. Hence g,(B) = 9,. 

Next choose t E A -B subject to Ht having maximal possible order. Let 
R = (t& By Lemma 6.9(h), A/R is cyclic. Choose t E TE Z’*(R). Let 
E=TnB. By Lemma 6.9(a), H,=H, for all rET-E, and H,<H,. 
Hence (M,(A)) = (H,.lr E r”) = HE, a contradiction. 

LEMMA 6.11. One of the following hold. 

(a) 3 = gl(A), or 
(b) 1-14 1 = 1, 9, U Y2 = gI(A), and FN = F(Y*) for all F E gI(A). 

Proof. Since A has order p3, and YZ # 0 by Lemma 6.10, it follows from 
Lemma 6.9(d, e, f) that Y1 U Y2 = ZI(A). We may suppose Y1 # g,(A). Let 
B = (Y*). We must show that B is cyclic. Choose E E 9, with E < B if 
possible. For each FE YZ, FN = F; so by Lemma 6.9(e), F < E,. Hence 
BE < E, E gz(A). In particular, B < A; so E 4 B and B is cyclic. 

LEMMA 6.12. Suppose X is a subgroup of G generated by some elements 
of M,(A). Then either 

(a) X contains every element of H,(A) and X & Me(A), or 
(b) X E U,(A) and for any B E k?*(A) there is an a E B# such that 

H&X. 

Proof This is an easy variation of [5, Lemma 5.41. 

THEOREM 6.13. Suppose 9, = 0. Then Theorem 6. i holds. 

Proof. By Lemma 6.2(a, d), and Lemma 6.4, it suffices to show 
conclusion (b. 1) holds. 

Let E, F E 8’,(A) be distinct. E, = E; so F acts regularly on 9(HE). 
Hence K(H,) n C(F) = K(K(H,) n C(F)). Hence by Theorem 5.15(f), 
K(H,) n C(F) = K(H, n C(F)) = K(HEF). By symmetry, K(H,) n C(F) = 
K(HEF) = C(E) n K(H,). Hence K 0 19 is an A-signalizer functor on G. By 
Lemma 6.3(a), K(H,) = H, for all a E A#. Let a E A# and L E 9(HJ. 
Since A/(a) acts regularly on Y(H,), it follows that D = L **A z L. Hence 
(bl.1) and (b1.2) hold. 

Suppose H, < X E W,(A). By Lemma 5.1, there is a b E A# such that 
C,(b) # CHo(b) = Hca,bj. By Lemma 5.10, H(n,bk is a maximal A-invariant 
subgroup of Hb. Hence Hb = C,(b). Choose B E 8*(A) with b E B but u & B. 
Then Hd = (Hd n H,, Hd n H,) Q X for any d E B#. This is false. Hence 
conclusion (b1.3) holds and the theorem is complete. 
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THEOREM 6.14. Suppose 9, # 0. Then p2 = {E} for a unique 
E E ~7, (A). Moreover the following conditions hold: 

(a) For each a E A -E, 

H,A = D@, E(a), (a)) 

for some simple group X whose isomorphic class is independent of a. 

(b) H,A = Yy(A, E, E), Y z D, and F*(D) is simple. 

Proof: The first statement holds by Lemma 6.11. For each complement 
B of E in A define 

%W&)) = W&J if aEA-E 

= (K(H,) n HE 1 b E B#) if a E EY 

The gist of the proof is to show 192 is an A-signalizer functor on G with 
additional suitable properties. 

Again for B a complement of E in A, define B,(C,(b)) = K(H,) for 
b E B#. By Lemma 6.1 l(b), (e) acts regularly on Ip(H,) whenever 
(e,f)=B. By Lemma 5.15(f) and Theorem 6.6, K(H,)n C,u) = 
JWG((e9f >)). I.4 ence t7, is a B-signalizer functor on G. Now detine 
&(CBH,(b)) = O,(C,(b)) n HE. Then 8, is clearly a B-signalizer functor on 
BH,. Since E,,, = E, it follows that B acts regularly on y(HE). Hence by 
Theorem 5.15(f) and Theorem 6.6, C,,,,(b) < &(CHEB(b)) for all b E B#. 
Also 

f%G~Etb)) = G(&E) = x {G(E)IL E PWJl 

g p(((WH,) n C,(B)) n C(E)) 

= PWH,) n C(E)) 

= P&&I,(B)). 

We have established all the conditions of Theorem 5.17 with (H, 0, B) 
replaced by (BH,, &, B). For each L E 4p(H,), let 2 = C,,E(CK(HB,(L)). By 
Theorem 5.17, we obtain 

6&%) = x FWkWW,) n HEIlL E QV,)l (6.2) 

and 

4XWE)) n C,(b) = MC,(b)) n C,(E) for b E B’. (6.3) 

The functor 192 is independent of the complement B of E in A on the 
subgroups C,(b) for b E A -E. We next want to show that it is also 
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independent on C,(E). Suppose then that T is a complement for E in A 
distinct from B. Let F = T~I B. Then FE gl(A). By (6.2), 

&WE) = x PwMWB) n HEW E QWE)l 

= X (Proj,-(K(H,) n D)(L E Y(H,)} 

= X { Proj#(H,) n HE) 1 L E 9(HE)} 

= &(TH,). 

Hence 0,* is independent of the complement B of E in A. Therefore by (6.3) 
there follows 

B,YC,(E)) n C,(a) = C,(E) n Q(C,(a)) for all a E A - E. (6.4) 

Next we show 0* = 19: is balanced. Let a, b E A# and T = (a, b). We have 
already shown f!?*(C,(a)) n C,(b) < 8*(C,(b)) if E & T. Certainly 
O*(C,(u)) n C,(b) < 0*(&(b)) if T is cyclic. Suppose then E < T and 
u, b E A -E. By (6.4) 

e*(c,w n c,(b) = e*(w)) n C,(T) 

= e*(w)) f-7 w9 

= cm n e*wb)) G e*ww. 

Hence 8* is an A-signalizer functor on G. By Lemma 6.3, 8* = 8. 
Clearly A is transitive on @IL E Y(H,)}. Hence by (6.2), 

H,A = Yp(A, E, E) for some Y g D. By Lemma 6.8, F*(D) is simple. This 
proves (b). Certainly, H,A = X, ?(A, (a) E, (a)) for some simple group X,, 
whenever a E A -E. It remains to show that the isomorphic type of X, is 
independent of a E A - E. Define an equivalence relation - on 9, by T - F 
if and only if X, z X,. Certainly the elements of ifI are equivalent if B is 
any complement for E in A. All hyperplanes of A have a nontrivial 
intersection. Hence 9i is an equivalence class, as required. 

Proof of Theorem 6.1. By Theorem 6.13 we may suppose 9, # 0. By 
Lemma 6.2(a, d) and Lemma 6.4, it suffices to show conclusion (b2) holds. 
By Theorem 6.14 it remains to show H, E MI,*(A) whenever a E A -E. 
Suppose a E A - E and Ha < X E W,(A). Extend (a) to a complement B of 
E in A. By Lemma 5.1, H, < C,(b) for some b E B - (a). By Lemma 5.10, 
C,(b) = H,. Hence K(H,) = (K(H,) n C(u), K(H,) n C(b)) < X. Hence for 
anyfE B#, H,= (HB, K(H,) n H,) Q X, a contradiction. This completes the 
proof of Theorem 6.1. 
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7. S,(A)-SUBGROUPS 

We say t3 is type (A) if 6’ satisfies conclusion (bl) of Theorem 6.1. We say 
B is type (B) if 19 satisfies conclusion (b2) of Theorem 6.1. When B is type B 
we reserve E for the unique element of 9,. For the remainder of the paper 
we will fix the following notation. Suppose B is a nonidentity subgroup of A 
and S is an S,(A)-subgroup of G. Then 

Ind(S,B)= {SnLILEInd(H,)]. 

We shall also reserve S for some S,(A)-subgroup of G, and Z for Z(S). 

LEMMA 7.1. Suppose B e &(A) and E 4 B if 0 is type (B). Then 

(a) Z(C,(a)) n C(B) = Z(C,(B))for a E B#, and 
(b) Z(Cs@)) = G,,,(B). 

Proof: (a) B/(a) acts semi-regularly on Ind(S, B), whence (a) follows by 
Lemma 5.12. 

(b) By (a), Z(C,(B)) Q Cs((C,(a)la E B#)) = Z(S). This proves (b), 
and the lemma. 

THEOREM 7.2. Suppose 0 is type (A). Then 

Z(Cs(a)) = C,,,,(a) for all a E A? 

Proof: By Lemma 7.1, 

Z(C&>> = (Z(C&>> n C(B)la E B E 4(A )) < Z(S), 

as required. 

THEOREM 7.3. Suppose 8 is type (B). Then 

ZG(a)) = G&a) forallaEA-E. 

Proof: Let Z = Z(S) and Z, = Z(C,(B)) for all subgroups B of A. Let 
E#FE~~(A). Let 

Z~=(Z,flC,(B)IExB=A andF<B) 

and 

Z:=n{[ZF,B]IExB=A andF<B}. 
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By Lemma 7.1, ZF < Z. By [8, Theorem 5.2.31, Za < C,,(E) < Z(C,(F)), 
where T = C,(E). However, F acts semi-regularly on Ind(S, E). Hence 
Z(C,(F)) < Z(T) = Z,. So 

z, = (Z, f-l ZP, c-7 ZE) for all FE k?,(A). (7.1) 

Let V= C,(A) and W= x (Proj,(V)IL E Ind(S,E)}. Let F,KE 8,(A) 
satisfy E x F x K =A. By Lemma 7.1 and (7.1), 

tz, nz,) n CstW = tz, n C,(E)) n CsW) 

= tz, n c,(K)) n c,(E) 

= C,(FK) n C,(E) = V. 

Since E normalizes each member of Ind(S, F), it follows from (7.1) that 
Z, n Z, = x {Czc,,(E)IR E Ind(S, F)). Since K acts regularly on Ind(S, F), 
and (Z, n Z,) A C,(K) = V, there follows from Lemma 5.6 

z, nz, = x {Proj,(V)IR E Ind(S, F)} rpV. (7.2) 

Since Ind(S, EF) = { C,(E)IR E Ind(S, F)}, (7.2) implies that 

Z,nz,= x {Proj,(V)ITE Ind(S,EF)} < W. (7.3) 

Since A/E acts regularly on Ind(S, E), it follows that p*V= W ?p(C,(F)). 
Hence by (7.2) and (7.3) we obtain 

z, n z, = C,(F) = C,(EF) whenever E # FE 8,(A). (7.4) 

In particular, (7.4) implies 

z,nz,=z,nz, whenever EF = ET and F, T E gl(A). (7.5) 

By (7.5), Z, n Z, < Z whenever E # F E g,(A). Now (7.1) completes the 
theorem. 

LEMMA 7.4. Let S be an S,(A)-subgroup of G. Let Z = Z(S). Let 
a E A#. Suppose (a) #E if0 is type (B). Assume r E n(e). Then 

(a> r E 4H,)p 
(b) Z n L # 1 for any L E Ind(H,), and 
(c) ZnH, = x {ZnLIL E Ind(H,)}. 

Proof: Choose a subgroup B of A which contains a but not E. By 
Theorem 6.1, x(Hb) = n(H,) for all b, c E B? Hence by Lemmas 5.1 and 5.3, 
1 # C,(a) is an S,(A)-subgroup of H,. In particular, (a) holds. The structure 
of Sylow r-subgroups of H, and Theorems 7.2 and 7.3 yield (b) and (c). 
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8. CONCLUSION OF PROOF. 

We continue the conventions introduced at the beginning of part 7. In 
particular, r E z(e), S E M,*(A: r), and 2 = Z(S). 

THEOREM 8.1. 19 is type (B). 

Proof: Suppose false. Then by Theorem 6.1, 8 is type (A). In particular, 
D is simple, and for each nonidentity subgroup T of A, AH, = Lw(A, T, T) 
for some L E D. 

Fix a hyperplane B of A. For each L E Y(HB), let Z, = n {C,(K)] L # 
K E gWB)J, ML = (L Z,), and M = (ML ] L E F(H,)). By Lemma 7.4(c), 
Z n H, < M for all a E Bzf By Lemma 7.4(b), H, = (HB, Z n HO) < M for 
all a E B#. Hence by Theorem 6.1 (b1.3) and (c) there follows 

~4 = W,(A)). (8.1) 

Since Z is Abelian, [ML, MK] = 1 whenever L # K. Hence Theorem 6.1(d) 
yields 

M= x {M,IL E Y’(HB)}. Q-34 

Since A acts transitively on Y(H,) there follows, 

A acts transitively on {ML ] L E Y(H,)} and B = NA (ML) for L E Y(H,). 

(8.3) 

By definition we also have 

HB= x (H,nM,(L EY(H,)}. (8.4) 

NowletB,,B,,B,be3hyperplanesofAsuchthat {B,nB,ll<i<j<3} 
are cyclic subgroups of A which generate A. Let {#I 1 <j<p} = 
{ML 1 L E .Y(HB,)} for i = 1, 2, or 3. Let MiJ,k = Mf f? A4: n Mi. Since M is 
generated by perfect subgroups, (8.2) yields that 

M= [M,M,M] = 
[ 
xMf,XMf,XM: 
i i k 1 ~([Mi’,Mi2,M:]l19i,j,kgp) < (Mi,j,kl 1 < i,j, k <P>. 

By (8.2), [Mi,j,k, MU,,,,] = 1 if (i,j, k) # (u, U, w). Hence Theorem 6.1(d) 
yields 



236 PATlUCKP.MC BBIDE 

The choice of B,, B,, B,, together with (8.2) yields 

A acts regularly on {Mi,j,k) 1 Q i, j, k <p}. (8.6) 

Now let Wij,k = ProjMIJ,,(D), and W = (Wij,kI 1 < i, j, k <p). By (8.6), we 
obtain 

W rp3D. (8.7) 

By (8.4), we obtain 

By Lemma 5.10 and (8.8), HB1, = (H,,, HB ) < W. Hence by (8.8) and 
Theorem 6.l(b1.3), W= M. By (8.6), (8.7), p’d z H, < C,(a) rp2D for all 
aEAT Hence C,(a) = H, for all Q E A#. However (W,p) satisfies 
Hypothesis B. This contradiction yields the result. 

LEMMA 8.2. P*(H,) < (D, 2). 

Proof. Let W= (D, 2) and W,= WnH, for each b E A#. Let 
bEA--, and JEY(H,). By Lemma 7.4(b), l#ZnJ< W,nJa 
Proj,( W,) where projections are being taken in Hb with respect to Y’(H,). 
By Lemma 5.5, C,(E) = Proj,(D) < Proj,( W,). Hence by Hypothesis 
(A.3.1), W, n J is nonsolvable. By [8, Theorem 10.2.11, CWb ,(E) # 1. By 
Hypothesis (A.3.2), F*(C,(E)) is the unique minimal normal subgroup of 
C,(E), whence F*(C,(E)) < W,. So F*(H,) n Co(b) = F*(H(,,,,) Q (D, Z) 
for all b E A -E. Now Lemma 5.1 yields the lemma. 

LEMMA 8.3. Suppose B is a hyperplane of A which contains E. Let 
L E Ind(H,). Define L^ to be the product of components of HE not centralized 
by L. Then i ( (Z, L). 

Proo$ Let Z, = Z(C,(E)), V = ZZ,, V, = f) (C,(K) 1 L # K E Ind(H,)}, 
W, = (V,, L), and W = (W,(L E Ind(H,)). Since V is Abelian, it follows 
that [ W,, W,] = 1 if L #K. In particular, 

W, a W for any L E Ind(H,). (8.9) 

By Lemma 7.4(c), C,(a) < (V, ] L E Ind(H,)) < W if a E A - E. By Lemma 
5.3, C,(E) < Z, < W. Hence by Lemma 5.1, Z Q W. Lemma 8.2 yields 

F*(H,) < (D, Z> < (HB, Z> < W. (8.10) 

Let L = (L, Z)‘. By (8.9), L’< (W,, Z)’ < W,. Since [z, K] < 
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[ W,, W,] = 1 for distinct L., K E Ind(H,), and f admits (L, Z), there 
follows 

La (Z,H,). (8.11) 

By (8.10) and (8.1 l), L = (F*(L)F’(“~‘) < (F*(L)‘HB*Z’) < L’Q (L, Z) as 
required. 

LEMMA 8.4. Suppose E #I; E gi(A), L E Ind(H,,), and K E Ind(H,). 
Suppose in addition that C,(E) # L. Let i be ,the product of components of 
HE not centralized by L. Then [L, K] = 1. 

Proof: Let L, E Ind(H,) satisfy C,,(E) = L. Then [L, S nK] < 
[L,, K] = 1. Clearly, [Z, S n K] = 1. Hence [(L, Z), S n K] = 1. By 
Lemma 8.3, [i, S nK] = 1. Since K = (Kn S] S is some S,(A)-subgroup, 
r E n(Q), it follows that [i, K] = 1. 

THEOREM 8.5. Let W = (M,(A)). Suppose E # FE gl(A). Then for each 
K E Ind(H,), W has direct factors W, which contain K and satisfy 
W = x { WJK E Ind(H,)}. Moreover, A acts transitively on { W,}. 

Proof: For each K E Ind(H,), let K, = C,(E), and g be the product of 
components of HE not centralized by K,. Now let W, = (K, $?). By Lemma 
8.4, [i, K] = 1 whenever L, K, are distinct members of Ind(H,). More- 
over, { Tf7 HE ] T E Y(HF)} = Ind(H,,) = {R ** F ] R E Ind(H,)}, whence 
[JQ?] = 1 if L # K. Hence [W,,W,] = 1 if L # K. Now 
(F*(HE), HF) Q ( W, ] L E Ind(H,)). Hence Theorem 6.1 (b2.5) and Lemma 
6.12, yields W = x { W, ] K E Ind(H,)}. Since A acts transitively on Ind(H,) 
and EF = N”(K) for each K E Ind(H,) the remaining statements also hold. 

Proof of Theorem A. Let F,, F, E gl(A) satisfy EF,F, = A. Let 
g = 4p(HFi) for i = 1 or 2. Let W = (M,(A)). Following Theorem 8.5, for 
each K E 9$ let W, be direct factors of W which contain K and which 
satisfy 

(a) W=X {W,lKEq} for i= 1 or 2. 
(b) A is transitive on { W,lK E g} and 

EI;,=N,(W,) for any KEg. 
Let 0 = { W, n W, 1K E gr, L E rt7,}. As in Theorem 8.1 we obtain 

W= ~0, and (8.12) 

A acts transitively on a, and NA (x) = E for any X E 0. (8.13) 

tit n-f = %,F,, M,=Proj,(M) for XE~, and A?=x {M,]XER}. Let 
K E Yz. When (A, G, S, T, K, IV) is replaced by (F,F2, W, q, K, W,), 
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Lemma 5.6 implies that K&. Hence (HF, , H,,)<k. By Theorem 
6.1(b.2.5) and Lemma 6.12, i@= W. By (8.12) and (8.13), Wzpzi14. Let 
a E A - E. By (8.13) and Theorem 6.l(b2.4), C,(a) gpit4 s Ha. Hence 
Ha = C,(a) for all a E A -E. Since W is a p’-group, HE < C,(E) = 
(C,(E)nC,(u)luEA-E)=(C,(E)nH,IuEA-E)<H,. Hence 
C,(b)= Hb for all b E A *. Since (k&p) satisfies Hypothesis B, it follows 
that (W,p) satisfies Hypothesis B. Hence WE MI,(A), a contradiction. This 
completes the proof of Theorem A. Hence Corollary C also holds, thus 
completing the proof of all parts. 
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