
ADVANCES IN APPLIED MATHEMATICS 3, 288-334 (1982) 

Stability and Bifurcation of Steady-State 
Solutions for Predator-Prey Equations 

E. CONWAY,* R. GARDNER, t AND J. SMOLLER* 

Department of Mathematics, Tulane University, New Orleans, Louisiana 70118, 
University of Massachusetts, Amherst, Massachusetts 01003, 
and University of Michigan, Ann Arbor, Michigan 48109 

INTRODUCTION 

In this paper we study the nonnegative time-independent ( ~  equilibrium 
-- steady-state) solutions of the parabolic system 

u , =  uxx + f ( u )  - up, 

v, 

for - L  < x < L, t > 0, with homogeneous Dirichlet boundary conditions 

u ( ± L ,  t) = v ( ± L ,  t)  = 0, t > 0, for d > 0, (0.2) 
u(+-L ,  t)  = 0, t > 0, for d = 0. 

We assume that d _> 0, m > 0 and that 0 < 7 < 1. We shall take f to be a 
quadratic or cubic polynomial and give most attention to the cases, f ( u )  = 

au(1 - u) ("logistic") and f ( u )  = au(u - b)(1 - u), 0 < b < 1 ("asocial"). 
In these cases the system models a two-species predator-prey interaction in 
which both species undergo simple diffusion in a one-dimensional medium 
(u = density of prey, v = density of predator). We will discuss this aspect 
of the equations at the end of this section. 

The above system is an example of a reaction-diffusion system. Such 
equations have received a great deal of attention in the past few years (see 
the recent review by Fife [9]), motivated in part by their widespread 
occurrence in models of chemical and biological phenomena and m part by 
the richness of the structure of their solution sets. The combination of 
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diffusion with nonlinear interaction produces features that are at first glance 
completely unexpected from the vantage point of either mechanism alone. 
Therefore, before these equations can be fully exploited in scientific models 
it seems necessary to establish a new "intuition" based upon a few simple 
guiding principles. As a first step in this process we think it necessary that 
some well-chosen examples be thoroughly understood, and it is in this spirit 
that the present work was undertaken. 

Our goal was to find all equilibrium solutions for the system and to 
determine their stability. In pursuing this goal we have found solutions with 
novel features, and have uncovered nonstandard bifurcation phenomena. 
All of this depends in an essential way upon the parameters d, the relative 
rate of diffusion of u and v, and L, the length of the spatial region. We are 
able to give a complete analysis for most values of d _> 0, L > 0 but only a 
partial analysis when (L, d)  is in a certain subset of the parameter space. 
For these exceptional values of (L, d)  we have made a large number of 
computer simulations, on the basis of which, we conjecture the number of 
solutions and their stability. 

Outline of Results 

Part I of this paper, which consists of Sections 1, 2, and 3, is devoted to 
the case o f f ( u )  = au(1 - u). Our results are best described while referring 
to Fig. 0. This shows the positive quadrant of the L - d  parameter space 
divided into three regions defined by two critical values, Lf (depending only 
upon f )  and L v (depending only upon f and "~), and by a certain monotone 
increasing function, d(L). In region A the only equilibrium solution is the 
constant (u, v) --= (0, 0), which is asymptotically stable and, in fact, is the 
uniform limit, as t ~ ~z, of all nonnegative solutions of (0.1)d-(0.2) (i.e., it 
is an attractor for all nonnegative solutions). As L increases across L/, a 
new, nonconstant equilibrium solution, (u0(x),0), bifurcates from (0,0). 
For all values of (d, L)  in region B the solution (0,0) is unstable while 
(u 0, 0) is stable and attracts all nonnegative solutions. There are no other 
steady-state solutions in this region. If we cross into region C at a point 
(L, d)  with d =  d(L) > 0, then a third solution (ul, vl) bifurcates from 
(u o, 0) (i.e., secondary bifurcation occurs). In the intersection of a neighbor- 
hood of the graph of d = d(L)  with C there are only three equilibria: 
(u t, vl) is stable while (uo, 0) and (0, 0) are both unstable. If we cross into 
region C along the L-axis with d = 0 then the situation is much more 
complex. As L increases across L v an interval of the (continuous) residual 
spectrum of the linearization becomes positive. This is reflected in the 
appearance of a continuum of new steady states bifurcating from (Uo, 0). 
One of these new equilibria, (Ul, v~), is continuous but v I has compact 
support in the interior of Ix I< L. The other equilibria are steady-state 
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solutions in a generalized sense and in fact their second derivatives are 
discontinuous. We were unable to obtain rigorous results for (L,  d)  far 
away from the boundary of C. It is here that we conjecture that there are no 
equilibria other than the three which are present near the curve d = d(L) .  
This is supported by extensive computer simulation. 

In Section 4 we discuss the case where f (u )  = a u ( u  - b)(1 - u), 0 < b < 
y < 1. This case differs from the previous case in two respects. First, the 
solution (0, 0) remains stable for all values of (L,  d)  but  is a global attractor 
only in a region analogous to A (Fig. 0 can still be used in this case but of 
course the values of L f  and Lr  are not the same as in the quadratic case). 
Second, as L increases across L / the re  is the sudden appearance of two new 
solutions, (ul, 0) and (u2,0), with opposite stabilities, and in this case the 
new solutions do not bifurcate from (0, 0). We are able to give a comparison 
argument showing that the larger of the two, (u2,0), is an attractor and that 
the smaller (u 1, 0) is unstable, for values of (L,  d)  in region B. As we cross 
into region C the same situation prevails as in the quadratic case. 

In Section 5 we very briefly indicate the situation in the case where 
f ( u )  = (u  - a ) ( u  - b)(1 - u), a < b < 0 < 1. Our purpose here is only to 
indicate the remarkable richness of the set of solutions. For example, if we 
hold d = 0 and let L increase from 0 to m then we obtain a succession of 
bifurcations which can yield the following sequences of numbers of solu- 
tions: (1, 2, 4, 6, 4, 2) or (1, 3, 5, 6, 4, 2) or (1, 3, 1, 2), among others. Which 
sequence we obtain depends only upon the position of ,/. 

In Section 6 we indicate how some of our results can be extended to more 
than one space variable. 

A word about methods. Although we use spectral analysis and standard 
bifurcation theorems, the bulk of our results are obtained using phase-plane 
analysis and comparison theorems. In doing this we rely heavily on the very 
complete results concerning a single semilinear parabolic equation found in 
[19, 20]. This is especially true in our use of comparison theorems, where we 
employ comparison functions that are themselves solutions of scalar equa- 
tions. In this way we have succeeded in giving direct comparison proofs of 
convergence to nonconstant equilibrium solutions of the above sys tem.  

L r L~ L 

FIGURE 0 
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Predator-Prey Systems 

In an earlier publication, [7], which contains di rect  references to the 
literature of mathematical ecology, we introduced the generalized 
Rosenzweig-MacArthur equations 

u, = d,Uxx + / ( u )  -- ~ (u ,  v),  v t = dav~x + g ( v )  + md~(u, v ) .  

If q~, > 0 and q~ > 0 then this describes a predator-prey interaction, where 
both the predator, whose spatial density is v, and the prey, whose density is 
u, undergo simple diffusion in a one-dimensional medium. We assume that 
f(0) = g ( 0 ) =  ~ ( u , 0 ) =  4(0, v ) =  0 and that, even in the absence of the 
predator, there is a limitation to the growth of prey, indicated by the fact 
that f is negative for sufficiently large u. We choose units of u to force 
f(1) = 0. The most common choice for ~(u, v) is simply cuv while for g(v )  
it is - / t v .  For reasons outlined in [7] we choose g(v )  = - i ~ v  - ev 2. Thus, 
we have the equation 

U t = d l U x x  + f ( u )  - c u r ,  

V t = d 2 v x x  - I * v  - e l )  2 or- m u v .  

At the expense of changing c we can choose units for v that have the effect 
of setting c = 1. If we also change the length scale, x --, x ~  ~-dT, and let 
3' = I~/m we obtain 

u, = Uxx + f ( u )  - cur ,  

v,--  

Now the qualitative picture is found to be largely insensitive to the value of 
c so we have set c = 1 and denoted d 2 / d  I by d to obtain our Eqs. (0.1)d. 

The funct ion/determines  the population growth of the prey when there is 
no predator. Except for Section 5, our discussion is confined to f ( u ) =  
au(1 - u )  which gives use to "logistic" growth and to f ( u ) =  a u ( u -  b) 
(1 - u), 0 < b < 1, which describes populations which have been termed 
"asocial" in [2]. 

We imagine our one-dimensional medium to be of finite length and, at 
each end, to be in contact, through a permeable membrane, with hostile 
reservoirs in which neither prey nor predator can survive, i.e., u = v = 0. 
We treat the limiting case of infinite permeability by imposing Dirichlet 
conditions (0.2). However, our methods yield essentially the same (qualita- 
tive) results for the more general assumption that the flux out from the 
region is proportional to the amount by which the concentration exceeds 
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that of the reservoir, i.e., 

,.,(+--L, t)  t)  : o. 

Related Work 

Dirichlet conditions for a class of predator-prey equations were consid- 
ered in [12] but there the interest is uPon positive concentrations of predator 
or prey at the boundary. There is very little overlap with our results and the 
methods are quite different. Solutions which have compact support in the 
interior of the spatial region were also obtained in [14] but this paper is 
devoted to the case of Neuman boundary conditions and to the case where 
the d~ >> d 2. Again, our methods are quite different. 

I. Quadratic Nonlinearity 

1. CONSTRUCTION OF THE STEADY-STATE SOLUTIONS 

In this part, we shall consider Eqs. (0.1)d, (0.2), where f is a quadratic 
function of the f o r m f ( u )  = au(1 - u), and a is a positive constant. Here m 
and 7 denote constants satisfying only the conditions m > 0, 1 > 3' > 0. It is 
straightforward to check that with these conditions, there are arbitrarily 
large "invariant rectangles" in the region u ~> 0, v ___ 0, and thus, from the 
results in [3], nonnegative solutions of (0.1)d, (0.2) exist for all t > 0, 
provided that the initial data are uniformly bounded; we shall always 
assume this to be the case. 

From Theorem 3.1 of [7] it follows that the region 

= ( (u ,  v)" 0 --< u --< 1, 0 --< v --< m ( 1 - -  7)} (1.1) 

attracts all nonnegative solutions of (0.1)d, (0.2); hence in particular, it must 
contain all of the steady-state solutions, i.e., all solutions of the equations 

u" + f ( u )  - uv = O, dv" + v [ - v  + m ( u  - y)]  = 0, (1.2)d 

on the interval - L  < x < L, satisfying the boundary conditions 

u ( ±  L)  = 0 and v (+-L) = 0. (If d = 0 we omit the condition on v.) 

(13) 

This yields a-priori bounds on all solutions of (1.2)d , (1.3). We shall find this 
useful in what follows. 
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N o w  it is obvious that  any funct ion of the fo rm (u, v)  = (u o, 0), where u o 
satisfies 

u " + f ( u ) = O ,  - L < x < L ;  u ( ± L ) = O ,  (1.4) 

is a s teady-state  solution. The phase  plane por t ra i t  of  (1.4) is depicted in 
Fig. 1, where the noncons tan t  solutions are curves in u ->  0 lying in the 
" t e a r d r o p , "  which "beg in"  and " e n d "  on the line u = 0, and take " t i m e "  
2 L  to make  the journey.  

We call a t tent ion to two distinguished values of L which we denote  by  Lf  
and L v. We define Ly to be the smallest  L > 0 for which a noncons tan t  
solution of (1.4) exists. More  precisely, we have the following simple lemma.  

LEMMa 1.1. Let L! = r r / 2 V ~ ; ~  = ~r/2C-ff. 

(i) L < Lf implies u ~ 0 ts the only nonnegative solution of (1.4). 

(ii) a < A iff L < L!; here A = ~r2/4L 2, the first eigenvalue of - d 2 / d x  2 
on - L  < x < L, with homogeneous Dirichlet boundary conditions. 

Proof The  second s ta tement  is a trivial consequence of the definitions; 
thus, to show (i) we can assume a < ~,. N o w  0 = uu" + uf(u) < uu" + au 2, 
and integrat ing f rom x = - L  to x = L, we get 

O<----L(U'):+o[Lu2<----X[Lu2+fLau2=(a--~--L ~--r --L A) f~  

where we have used a s tandard  inequali ty (cf. [13]). This shows that  u = 0, 
if L < L!. 

F r o m  the results in [201, it follows that  for  each L >~ Lf,  there is precisely 
one noncons tan t  (nonnegative)  solution u 0 of  (1.4), and it is "nondegener -  
ate." By this we mean  that  the opera to r  d 2 / d x  2 + f '(Uo(X)) on - L  < x < L, 
with homogeneous  Dirichlet  bounda ry  conditions,  is invertible; i.e., 0 is not  
in its spectrum. 

The  second distinguished value of L, Lr, is defined to be  the interval 
length L associated with the unique solution of (1.4) satisfying u(0) = 3'. In 

/ 
\ 

Fmul~ l 
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other words, it is the L associated with the unique orbit which passes 
through the point (u, u') = (-f, O) (refer to Fig. 1). We recall that 0 < 3' < 1 
so that 

L I < c , .  (1.5) 

In the next sections we shall study the stability of, and bifurcation from, 
the solution (u 0, 0); in preparation for this we define a new function, 

h(u )  = f ( u )  if u --< 

= f ( u )  - mu(u - "f) if u -->- "l. 

It  is clear that h is Lipschitz-continuous so that the problem 

u" + h (u )  = O, - L  < x < L; u(+-L) = 0 (1.6) 

admits C z solutions. In fact, we see that h ( u ) <  0 for u < 0, h ( 0 ) - - 0 ,  
h ( b ) = O ,  w h e r e 3 ~ < b = ( a + m T ) / ( a + m ) < l ,  h ( u ) > O  for 0 < u < b  
and h(u) < 0 for u > b. From this we see that the phase plane for (1.6) 
(Fig. 2) is qualitatively similar to that for (1.4) (Fig. 1). If  we define L h in a 
manner analogous to that used to define Lj  then because h = f for u ~< y we 
see that L h : L/. 

LEMMA 1.2. For 0 < L <-- Lf, the only nonnegative solution of (1.6) is 
u ~-- O. For each L > Lf there is a unique nonconstant, nonnegative solution of 
(1.6). 

Proof. Except for the uniqueness statement, this is a consequence of the 
fact that h(u) = f ( u )  for u < "y and that Lf < L v. The uniqueness is proved 
in the Appendix by extending the results of [20] to nonsmooth functions. 

We are now ready to construct a new solution of (l.2)d, (1.3) when d = 0 
and L > L v. Rewriting these steady-state equations we have 

u " + f ( u ) - - u v = O ,  v [ - - v + m ( u - ' [ ) ] - - - O  f o r - L < x < L  

(1.7) 

u h 

FIGURE 2 
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with the boundary conditions 

u(~-L) = 0. (1.8) 

For  L > Lf  let u](x ) be the unique nonnegative, nonconstant solution of 
(1.6). Define v](x ) by 

v , ( x )  = 0 if u,(x)  < y 
(1.9) 

~--- m(/./l(X) -- y)  if u l (x )  --> y. 

It is then clear that (1.7) is satisfied by (u~(x), vt(x))  at each x in 
( - -L ,  + L )  and of course (1.8) is also satisfied. Note that (ul, v 0 is distinct 
from (uo,0) only when L > L  v. In fact,  as L increases through Lv the 
solution (ul, vl)  bifurcates out of (u0,0). In this case the structure of 
(u~,v~) is quite interesting since v I has suppor t  [ - a ( L ) ,  a(L)]  C C 
( - L ,  + L ) ,  where c~(L) is defined by ul(x ) > y if and only if [x {_< a ( L )  
(Fig. 3). 

Remarks. It is interesting that as L ~ oo, the quantity L - a(L)  tends, 
in a monotone decreasing fashion, to a nonzero limit. To see this, note that 
L - a(L)  is the " t ime" an orbit of (1.6) takes to go from the line u -- 0 to 
the line u -- Y (see Fig. 2). Analytically, 

L - a (L )  = fo ~' du 
{ p 2  2 H ( u )  

where p = u ' ( - L )  and H'(u) = h(u). The right-hand side is a decreasing 
function of p and p is an increasing function of L. This shows that 
L - a ( L )  is a decreasing function of L. The positive lower bound, 6, is the 
value when p = U ' ( - L ) ,  where U is the separatrix, i.e., the solution such 
that U(x) -~ b as x -~ + oo. Note that u ~ ( - L )  < U ' ( - L )  and u'l(--L ) 
U'(- -L)  as L ~ oo. 

- L  - a ( L )  

Ul(X) 

- - - -  u= ) , "  

. , v 7  

(z(L) +L  

FIGURE 3 
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If we interpret the quantities u and v as concentrations of prey and 
predator, then the solution (u~, v l )  corresponds to a situation in which the 
predator survives only in the interior of the spatial domain, and its "dead 
zone" is at least of thickness 8, 

From an examination of the phase portrait in Fig. 2, it is clear that as 
L -0 oo, (ul(x) ,  v l (x) )  -o (b, c), c = m(b - "t), for every x. The point (b, c) 
is the unique critical point of the ordinary differential equations 

f~ = f ( u )  - uv, 

: v [ - v  + rn(u - ~)],  (1.10) 

which describe the "kinetics" of the interaction. It is easy to check that this 
critical point is the only attractor for the system (1.10), which fact dovetails 
nicely with the observation that for very long intervals the quantities (u, v) 
tend to (b, c) in the interior. 

We summarize the constructions of this section in the following theorem. 

THEOREM 1.3. Under the assumption that 0 < "l < 1 and d = O, the 
following statements concerning the solutions of (1.7)-(1.8) are valid: 

(i) I f  L <_ Lf  then (0, O) is the only solution. 
(ii) I f  Ly < L <- Lr then there are two nonnegative solutions: (0, O) and 

(Uo, 0). 
(in) I f  Lv < L then there are three nonnegative solutions: (0,0), ( Uo, O) 

and (u 1, vl). 

Remarks. (1) If d = 0 then there are no other solutions such that u is C 2 
and v is continuous. 

(2) The functions (0, 0) and (u o, 0) are also solutions of (1.2) for all d > 0. 

2. STABILITY OF STEADY-STATE SOLUTIONS 

In this section we shall be concerned with the stability and instability of 
the solutions we constructed in Section 1. We shall be particularly con- 
cerned with obtaining information on the domains of attraction of our 
steady-state solutions; in other words, we will identify solutions which lie in 
the "stable manifold" of our rest points. To this end, we first study the case 
of a single equation. Some of the results we obtain could be obtained by 
suitably modifying the techniques in [0], but we prefer to give alternate 
simple proofs using the gradient-like nature of the equations. 

A. Stability via Comparison Theorems 

Consider the scalar equation 

Ut= U ~ + f ( U ) ,  - - L < x < L , t > O ,  (2.1) 
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with boundary conditions 

U( +-L, t)  = O, t > O. (2.2) 

Here, as above, f ( U )  = aU(1 - U), a > 0. Let L!  be as in Section I, i.e., 
(2.1), (2.2) admit a nonconstant steady-state solution Uo(X), if and only if 

L >--Lf. 

PROPOSITION 2.1. Let  U(x,  t)  be the solution of  (2.1), (2.2) with initial 
data U( x, 0), where U( x,  O) >-- O, - L < x < L,  and U( x, O) ~ O. 

A.  I l L  < L !  then U( x,  t)  --, O, uniformly in x,  as t -~ oo. 

B. I l L  >-- L f ,  then U(x,  t)  -4 Uo(x), uniformly in x as t ~ oo. 

Proof  Using standard comparison theorems [16] we see that U(x,  t) >_ 0 
for all x, - L  < x < L and for all t--> 0. Moreover, an easy calculation 
shows that the equation is gradient-like with respect to the functional 

~II(t) = Si%[½ U] - F(U)]dx, 
where F '  = f.  This means that ~ ' ( t )  _< 0 when U is a solution and that 
• ' ( t)  = 0 only when U is a rest point of (2.1), (2.2), i.e., a steady-state 
solution.' Therefore (cf. [15]), all solutions of (2.1) converge (uniformly in x)  
to a rest point. Thus, if L < L / t he  solution must converge to zero since that 
is the only available rest point. On the other hand, if L > L / then  the strong 
maximum principle ([11] or [16])shows that U(x,  t ) >  0 for (x, t ) E  
( - -L ,  + L )  × (0, oo) and that (-+ 1)Ux(-+L, t) < 0 for t > 0. Now let w(x) 
denote a principal eigenfunction defined by 

--to" = ),to, - -L  < x < + L ,  )` -- 
,/r 2 

4L 2 ' 

= 0 .  

It is well known ([8] or [13]) that we may choose ~o(x) > 0 for - L  < x < L. 
Fix t o and choose 8 > 0 so that 

-  to(x) < v ( x ,  t o ) ,  - L  < x < L .  

According to Lemma 1.1, we can choose lowercase 8 so that 

and thus 

a - )` >_ aq~(x) 

- -~"  - -  f ( 0 )  = ) ` ~  - -  a 0 ( 1  - -  q~)  

- - - - t h ( ) ` - - a + a 0 ) _ < 0  -- U t -  U x x - f ( U  ). 
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Since qff-+L) = U(+-L, t) = 0 it follows from the maximum principle that 
¢~(x) ~ U(x, t) for (x, t) in ( - - L ,  L)  × (to, m), (This comparison result 
can be found in [0].) Since e~(x)> 0, this shows that U(x, t) cannot 
converge to zero and therefore must converge to U0, the only other rest 
point. This completes the proof. 

We now apply this proposition to obtain stability results for steady-state 
solutions of the system (0.1)d, (0.2), i.e., for solutions of (1.2)d, (1.3). Our 
first result is a simple consequence of Proposition 2.1 and the comparison 
technique of [0]. 

THEOREM 2.2. I f  L < Lj  then every nonnegative solution of (0.1)o, (0.2) 
converges to (0, O) as t ~ oo. The convergence is uniform in x. 

Proof. Let u(x, O) = Uo(X ) >-- 0 and let U be the solution of (2.1), (2.2) 
with U(x, O) = Uo(X ). Then 

u , -  u ~ - -  f (u)  = --uv <--0 = U~- Ux~- f (U) .  

Since u = U for t = 0 and for x = -+L, it follows again from the compari-  
son principle that u(x, t) ~ U(x, t). From Proposition 2.1 we obtain that 
u(t, x)  --, 0 as t ~ oo uniformly in x. Therefore, there is a T > 0 such that 
t >_ T implies u(x, t) < , / for  Ix [_< L. Consider first the case when d = 0. If  
t _> T, we have 

V,= --v 2 Jr mv( u - -  v ) < - -v  2, 

f rom which it follows that v(t,  x)  ~ 0 as t -~ oQ uniformly in x. Now 
consider the case of d > 0. Let V be the solution of 

V t = d V x x - - V  2, - L < x < L , t > T ,  

with boundary condition V(+-L, t ) =  0 and initial condition V(x, T ) =  
v(x,  T). We have 

v , -  dvxx + V z =  v m ( u -  v)  < 0 =  V~- dV, x + V 2 

so that v(x,  t) <- V(x, t) for t _> T and Ix I -  < L. The proof  will be complete 
if we show that V --, 0 as t --, oo. To see this, note that since V _> 0 we have, 

so that 

VV t = dVV~x -- V 3 <-- dVV, x 

d c+a 2 < 2 d f L  V V x x d x =  ~+L 2 +a _ 2 d j _ r  V;dx - LL v e x -  _ 

c + L  2 
<_ --2d2tJ_ z V dx, 
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where )~ is as in Lemma 1.1 and we have used the classical variational 
property of the first eigenvahie ([13]). It therefore follows that 

f + L  O(e_2aat ) - L  I v ( x ,  t)12dx : 

From this we obtain ([6] or [17]) that V -~ 0 uniformly in x as t --, oe. 
Now in the case of L > L!  we have seen that (l.2)d, (1.3) admits the 

solution (Uo(X), 0), where u o is the solution of (2.1)-(2.2). We now show 
that this solution attracts all solutions of the original system (0.1)d, (0.2) 
with non-negative initial values (except (0, 0) of course). As a consequence it 
follows that (0,0) becomes unstable as L crosses L/; i.e., we have an 
"exchange of stability" between (0, 0) and (u o, 0). 

TftEOREM 2.3. Let (u(x ,  t), v(x ,  t)) be any nonnegative solution of(0.1)d-- 
(0.2) with u(x,O) _:/z 0 on ( - L ,  L). I f  L y <  L < L~ then (u( . ,  t), v ( . , t ) )  
converges uniformly to ( Uo, O) as t -~ oe. 

Proof. Let U(x, t) be the solution of 

= + f ( v ) ,  - L  < x < L;  u ( - + L ,  t )  -- 0, 

such that U(x, O) = u(x, 0). Then, as in the proof of Theorem 2.2, 

u t -- Uxx - - f ( u )  = --uv <-- 0 ---- U t - Uxx - f ( U )  

so that u(x, t) <_ U(x, t) for t --> 0 and Ix [< L. From Proposition 2.1 it 
then follows that 

l imsupu(x ,  t)  <_ Uo(X ) < y (2.3) 

uniformly in ( - L ,  L), where the second inequality holds since L < Lr. 
From (2.3) we see that there is a T > 0 such that u(x, t) <_ y for t _> T 

and [xF_< L. We now show 

lira v (x ,  t) = 0, uniformly in - L  -< x _< L. (2.4) 
t ~ o c 3  

First consider the case where d - 0. For t -> T we have 

v , =  --v 2 + m y ( u - Y )  <__ - v  2 

so that v(x,  t) <-- v(x,  T )  [1 + tv(x, T)] -1 for t --> T. Thus (2.4) is valid in 
this case. Now assume d > 0. Then, 

v t - d v x x + v  2 = m y ( u - y )  < _ 0 :  V t t - d V x x +  V 2, t>--T, 
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where we assume V(x,  T )  = v (x ,  T )  and that  V(+--L, t) = 0, t ___ 0. As in 
the proof  of Theo rem 2.2 we obta in  that  V(x,  t)  --, 0 uni formly  and thus 
(2.4) is verified in this case also. 

N o w  for 0 < c < 1, consider the p rob l em 

w" + f ( w )  - taw : O, - L  < x < L; w ( + - L )  = 0. (2.5) 

Since f , (w )  =-- f ( w )  - caw = aw(1 - c - w)  we see tha t  the phase  por t ra i t  
of  the differential  equat ion in (2.5) is exact ly that  p ic tured  in Fig. 1 except  
tha t  the critical poin t  (1,0) must  be  changed to (1 - e, 0). We thus see that  
analogous to Lr,  there is a well-defined Ly, which converges to L r as c ~ 0, 
so that  for sufficiently small  e we have Lf, < L.  On our interval, - - L  < x < 
L,  we have a unique posit ive solut ion of (2.5),  we, and we see that  w c ~ u 0 
uni formly  on ( - L ,  L )  as E -~ 0. Thus  for any small 8 > 0, there is an c > 0 
such that  

w,(x) >__ Uo(X) - for Ix I -< L. 

For  this value of c we see f rom (2.4) that  there is a T, > 0 such that  
v ( x ,  t) <_ ca for t --> T~ and Ix  I_< L. N o w  define W '  to be  the solution of 

W t = W x ~ + f ( W ) - E a W ,  t > T , , l x l < Z ,  

w(-+L,  t) -- 0, 

W(xoT,) = u ( x , T , ) ,  Ixl<-L. 

For t _> T, we have 

u t -- U~x - - f ( u )  + ,au ---- u ( a ,  -- v )  >--0 -~ We'--  W;~ -- f ( W ' )  + , a W "  

so that,  as before,  W ' ( x ,  t) <- u(x ,  t) for t >-- T,. Since u(x ,  T,) ~ 0 we m a y  
app ly  Proposi t ion 2.1 (or, to be  precise, its analog for  f replaced b y  f~) to 
conclude tha t  W ' ( x ,  t) ~ w~(x) uni formly  as t ~ oo and hence tha t  

l i m i n f u ( x ,  t )  -> w, (x )  >_ Uo(X ) - 8 
t--o OO 

uni formly  for I x I--  < L. Since 8 was arbi trary,  this result, together with (2.3), 
shows that  u(- ,  t)  converges uni formly  to u 0 and thus the p roof  of Theo rem 
2.3 is complete.  

An  examina t ion  of the proof  shows that  it yields the following corollary. 

COROLLARY 2.4. Let  u and v be as in Theorem 2.3. For all L > L f  we 

have 

(i) l im sup u ( x ,  t)  <-- Uo(X ) uni formly  on [ - L ,  L ] .  
t ~ o o  
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In the case d = 0 we also have 

(ii) l i m v ( t , x ) : O  uni formlyon{x:Uo(X)<~} .  
l ~ ct3 
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B. Stability via Spectral Analysis 

Theorem 2.3 shows that all nontrivial, nonnegative solutions of our 
system are in the domain of attraction of (u o, 0). Since we considered only 
nonnegative solutions, this does not, strictly speaking, prove the asymptotic 
stability of (uo, O ). The following discussion, which is based upon an 
analysis of the spectrum of the linearization of our problem, will provide a 
complete proof of stability. The two approaches are complementary, how- 
ever, since this second approach yields no information concerning the 
domain of attraction. 

W e  linearize our problem by considering the operator 

(w)  ~ dz" + m ( u o -  3/)z 
A (d ,L ) "  (2.6) 

from Co2+"(-L, +L)  X C2+~(-L, +L)  into C a X C ~ for some a > 0. The 
subscript zero on the domain spaces indicates that the functions z and w 
vanish at x = -+L. (When d = 0, A operates from C 2+~ × C a into C" × 
Ca.) Our work will be based upon the following theorem: 

THEORVM 2.5. Let v be the supremum of the real part of the spectrum of 
A(d, L). I f  v < 0 then (Uo,0) is asymptotically stable in the topology of 
C~(-  L, + L ). l f  v > 0 then (u0,0) is unstable. 

This theorem, which asserts the validity of the "principle of linearized 
stability" in this context, is a special case of a result in [15] to which we refer 
for the prooL 

In order to apply this theorem we must have more information concern- 
ing the spectrum of A(d, L). It turns out that we are able to calculate it 
exactly. In preparation for this we recall the disjoint decomposition of the 
spectrum, 

~ : ~ p U ~ c U 2  r, 

where ]~p denotes the point spectrum, Y'c denotes the continuous spectrum 
and Yr denotes the residual spectrum. (For these notions we refer to [21]). 
We also need the following lemma. 

LEM~4A 2.6. A. For all L > L/, the operator 

G ( L ) :  w ~ w" + f'(Uo)W 
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defined on C~+~(--L ,  + L )  has pure point spectrum ~1 > if2 > . . . .  i.e., the 
continuous and residual spectra are empty. The eigenvalues, if j,  are real, 
negative, and have no finite point of  accumulation. 

B. For all L > L !  and d > O, the operator 

H ( d ,  L):  z ~ dz"  + m ( u  o - y ) z  

defined on Co2+~(-L,  + L ) has pure point spectrum, v 1 > v 2 > v 3 > . . . .  The 
eigenvaIues vj are real, have no finite point of  accumulation and 

vl <- m(uo(O) - V).  (2.7) 

I f  L > L v then v 1 > 0 for all sufficiently small values of  d > O. 

Proof. That these operators have pure point spectra is classical, (see [13] 
for the L 2 theory; [11] for the Schauder theory), as is the fact that the 
eigenvalues are real and have no finite point of accumulation. From 
Proposition 2.1 it follows that u 0 is an attractor for Eq. (2.1) so that ffl -< 0. 
But from [19] it follows that zero i sno t  in the spectrum of G so that ffl < 0 
and the proof of Part A is complete. 

Inequality (2.7) follows from the classical theory ([13]) since m(uo(O ) - ~) 
is the maximum value of m(Uo(X ) - ~'). To see that v I > 0 for L > L v and d 
small we use the following variational characterization (of. [13, Chap. IV]) 

v 1 = sup  
¢~H~(--L, +L) 

(2.8) 

where we have denoted m(Uo(X ) - ,/) by q(x) .  For L > Ly we know that 
uo(O), the maximum value of u o, is greater than 3' so that q ( x )  > 0 for x in 
some interval, - f f - <  x _</~. If we choose a fixed function ¢ which is 
supported in ( - /~ ,  +/~), then it is clear that the numerator in (2.8) will be 
positive for all sufficiently small d > 0. This completes the proof of the 
lemma. 

We can now determine the spectrum of A ( d ,  L) .  

THEOREM 2.7. A. I f  L > L / a n d  d > 0 then Y'c and ~r are empty and 

X = :2p = {~,, t,~,--.~} u {,',, "2,.-.}- 
B. I f  L > L!  and d = 0 then Yc is empty, and 

~ = (Ul, U : , . - - ) ,  

m ( u o ( O )  - 
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Remark. If  we were considering A as an operator in L 2 rather than C ° 
then the roles of Ec and Y'r in Part B would be reversed. That  is, Zr would be 
empty while Y'c would be [ - r o T ,  m(uo(O) - 3')]\3~p. This will be shown in 
the remark following the proof. 

Proof. First consider the case d > 0. If  2t is an eigenvalue of A ~ A(d, L )  
then 

0)  (2.9) 

From the second component  of this equation we see that if z ~ 0 then ~ is 
an eigenvalue of H(d, L), i.e., ~ = vj for s o m e j  --> 1. On the other hand if 
z --= 0 then w" +f'(Uo)W -- ~w so that ~ = #j for some j _  > 1. Thus, Y'e is 
contained in {/~1, ~2,- . -}  tO {vl, v 1 . . . .  }. Conversely, if X =/~j  for any j 
then (w, 0) is an eigenfunction of A associated with ~. But if ~ = v s for some 
j while ~ @/~i for any i, then, choosing z to be an eigenfunetion of H(d, L), 
we can clearly solve 

w" + f'(Uo)W - )tw = UoZ, w(+-L) = 0 

for w. The element (w, z) is then seen to be an eigenfunction of A. Thus 

Z~ = (~1, t- ,~,---}  u (~,,, ~,~ . . . .  }. 
To show that Y'c and Er are empty we will show that the resolvent set is 

C \ Y,p. Thus, for a complex X ~ Ep we must be able to solve 

( A -  X I ) (  w)z = h 

in C ~. But since Xv ~ v j , j =  1 ,2 , . . . ,  the second for arbitrary g and h 
component,  

dz"  + m(Uo - V ) z  = h,  

can be solved uniquely for z with ]l z II 2+~ = 0(ll h II ,). In the same way, 
since X v s #j, j -> 1, we can solve the first component,  

w"  + f ' ( U o ) W  - Xw = g + UoZ, 

for w. Moreover, 

Ilwl12+~ = O(llg + u0zl l , )  = O(llgll~ + llhll~) 

since u 0 is bounded. This shows that )t is in the resolvent set of A. 
We now turn to the case d - -  0. First, let )t be an eigenvalue of A = 

A(O, L). From the second component  of (2.9), 

m(Uo(X) -- ~ ) z ( x )  = ~ z ( x ) ,  
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it follows that  z ( x )  =-- 0 so that  the first component  becomes 

Thus, ?, = uj for some j 
associated with some/xj  
associated eigenfunction 

Now let I denote  the 
every complex number  

w "  + f ' ( U o ) W  = ?~w. 

_> 1. Conversely, if w is an eigenfunction of G ( L )  
then it is clear that /~j  is an eigenvalue of A with 
(w,O).  Thus, Y,p -- {~tl , /~2, . . . ) .  
interval [ - m y ,  m(uo(O ) - ~,)]. We first show that 
not  in Ep U I is an element of the resolvent set. To  

do this we must  again solve the resolvent equat ion (2.10). Because ! is 
precisely the range of m(Uo(X ) - y ) ,  [ x  I_<L, we may  solve the second 
componen t  of (2.10) for z in terms of h: 

z ( x )  = h ( x ) [ m ( U o ( X  ) -- y )  - ?t] -1 

F r o m  this we see that II z II ~ -- O(ll h II ~). But then the first component  of 
(2.10) is a single elliptic equation, 

w "  + f ' ( U o ) W  - ?~w = g + UoZ. 

Since ?~ 4:/~j this is uniquely solvable for w and 

Ilwll2÷~ = O(l lg + u0zll~) = O([[g[l~ + Ilhll~) 

Thus, the resolvent set contains C \ Ep U I, i.e., Y~ C Y.p U I. 
We complete  the proof  by  showing that every point  of 1, unless it 

happens to belong to Y,p, is a point  in the residual spectrum, Er. To  this end 
let ?, @ I. If ?~ ~ Ep then A - ?~1 is one- to-one but  it is easy to see that its 
range is not  dense. Namely,  there must  be a point  ~, I 1_< L, such that  
m ( U o ( ~ )  - 7) = ?, so that  if 

( A - ? ~ I ) ( W ) = ( g )  

then h must  vanish at ~. Such functions (g, h) are not  dense in C a × C ~ so 
~k ~ ~r and the proof  of the theorem is complete.  

Remark .  Note  that if we were considering A -~ A(0, L )  as an operator  in 
L 2 × L 2 (domain --- Ho 1 × L 2) then the set IXY~p would not  be residual 
spectrum because the range of (A - 2~I) is dense in this space. In this case 
I \ Y , p  = ~,c and Zr is empty. To  show this, we must  show (A - ?~I) -~ is 
unbounded  as an operator  in L 2 X L 2. (It is also unbounded  in C a × C%) 
To  this end let h be in 1 \ Ep and let :~ be such that  q(~)  --= m ( U o ( ~  ) - "/) - 

= 0. Then, for every sufficiently large M > 0, we can find z M in L 2 such 
that  

II z M II >-- c M  II ZMq II, 
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where c is some constant and the norms are those of L 2. (For example, let 
the graph of Z M be a triangle of height M supported on [ ~ -  l / M ,  :g + 1 / M ]  
and use the fact that I q (x )  I <- const. I x - Y [). Then consider the problem 

w" + f ' (Uo)W -- 2tw = UoZM, w(+---L) = O. 

Since )t v ~/~j, there is a unique solution w M in H 1. Therefore, 

IIWMII + IIZMII > IIZMII --> cMIIzMqll = cMIIzMQI ! 

+M[Iw~t + f ' ( u o ) w  M -- UoZ M -- 7tWMII. 

This shows that ( A - ) t I )  - l  is unbounded, i.e., )t is in the continuous 
spectrum of A. 

We can now prove the stability of (u 0, 0). 

THEOREM 2.8. I f  L f  < L < Ly, then (Uo, O) is asymptotically stable. 

Proof Since L < Lv it follows that u0(0 ) < ~,. From Theorem 2.7 and 
Lemma 2.6 it then follows that the spectrum of A(d ,  L )  is contained in 
( -  oe, 0). The result therefore follows from Theorem 2.5. 

3. Loss OF STABILITY AND SECONDARY BIFURCATION 

We turn now to the case where L > L r. In this regime the solution (Uo, O) 
becomes unstable for values of d less than a critical value J = d(L) .  As d 
decreases across this value there is a bifurcation to a solution (ul, v0 ,  where 
v 1 > 0. When d -- 0 the solution (u0, 0) becomes unstable as L increases 
across Ly and does so in a very interesting manner. Namely, the point 
spectrum of the linearized operator A (see (2.6)) remains negative while the 
residual (continuous) spectrum becomes positive. This should indicate that 
the unstable manifold about (u0, 0) is infinite dimensional, mad indeed, we 
are able to construct a cont inuum of (generalized) steady-state solutions 
bifurcating out of (Uo, 0) as L increases past L v- 

We begin by summarizing the instability results which follow directly 
from the spectral results of the preceeding section. 

THEOREM 3.1. I f  L > Lv, then for all sufficiently small d >-- 0 the function 
( u o, O) is unstable as an equilibrium solution of  (O.1)d , (0, 2). In fact, there are 
two possibilities; namely 

(A) I f  d > 0 is sufficiently small then the largest eigenvalue is positive. 

(B) I f  d = 0 then the residual spectrum contains an interval of  positive 
numbers. 
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Proof When  L > Lr  then u0(0 ) > 3' so that  this theorem is an im- 
media te  consequence of Theo rem 2.5, L e m m a  2.6, and  Theorem 2.7. 

The  following theorem also shows that  (Uo, 0) is uns table  but  it yields 
more  precise informat ion ,  namely,  that  the unstable  mani fo ld  contains  all 
nonnegat ive  solutions (u, v)  for  which v(0, 0) > 0. 

THEOREM 3.2. I f  L > L r then (u0,0)  is unstable as a solution of (0.1)d , 

(0.2) for all sufficiently small d >-- O. In particular, for no nonnegative solution 
(u(x ,  t), v (x ,  t)) can the function v stay uniformly close to zero as t --, oo. 

Proof We first consider the case d = 0. Fo r  all sufficiently small  c > 0 
let U" be the unique posit ive solution of 

Vx~ + f ( V )  - ¢U ~- O, U(+-L) --- O. 

Since f ( U )  - EU = aU(1 - e /a  - U), the existence and uniqueness of U ~ 
follow f rom an analog of L e m m a  1.2 just  as in the  p roof  of Theo rem 2.3. 
F r o m  continuity,  it is clear that  U ~ --, u o uni formly  as e ~ 0. Again, as we 
argued in the p roof  of  Theorem 2.3, an analog of Proposi t ion 2.1 shows that  
U ' is the un i fo rm limit, as t --, oc, of every nonnegat ive  solution of 

W t = Wxx + f ( W )  - eW, W(+-L,  t )  = 0 (3.1) 

provided W N 0. 
N o w  choose e so small  that  

U ' (0 )  - y > e(1 + a / m ) .  (3.2) 

This is possible since U'(0)  -~ Uo(0 ) as e ~ 0 and u0(0 ) > T because L > L v- 
I f  (u0, 0) were stable then all solutions which at t = 0 were sufficiently close 
to (u0, 0), would s tay within an e-neighborhood of (u0, 0). On the contrary,  
however,  we show that  the assumpt ions  

Ixl<-L,t> T, (3.3) 

and v(O, 0) > 0, leads to a contradict ion.  To  see this, let W '  be  the solution 
of (3.1) in t > T such that  W(x,  T )  = u(x,  T),  [x I< L. Then for  t > T we 
have  

u t - u ~ x - f ( u )  +eu=¢u--uv>--O= W t`-  W;x-f(W)+eW" 

so that  u(x, t) >- W~(x, t) for t --- T, I x [-< L. Since w "  ~ u '  un i formly  as 
t ~ m we see that  there is a T, > T such that  

u ( x , t ) > _ U ' ( x ) - e ,  t > _ Z , , l x l < _ Z .  (3.4) 

Since d = 0 we have 

v, = v [ - v  + m ( u  -- 
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so that, by the uniqueness theorem for ODE's if v(0, t) > 0 for t = 0 then 
v(0, t) > 0 for all t > 0. If we let V( t )  = v(O, t) then from (3.4) and (3.2) we 

have 

(1 = V [ - V +  m(u(O,  t)  - 7)] 

-- V [ - V + m ( U ' ( 0 ) - e - y ) ]  

>-- V [ - V +  4,]  

for all t -> T. But because of (3.3) this would imply that 

1 -< V ( 4 e -  V )  - 4 ,  + 4 , ~ - V V  ' 

from which we get 

v(0, t) >_ 4 , K  

K + e x p ( - 4 , ( t -  T , ) ) '  
t>_T, ,  

where K = V(T~) / (4 ,  -- V(T~)). Since the right-hand side approaches 4,  as 
t ~ oo, this clearly contradicts our assumption (3.3). 

Now we consider the case d > 0. From (3.2) we may choose 8 so small 
that 

>,(1 +2)., for Ix I -< 8. (3.5) 

We shall again show that the assumption (3.3) leads to a contradiction. We 
define W ~ as in the case d = 0, and we again have (3.4). 

Define V to be the solution of 

V t = d V x x +  V ( - V +  2 , )  = 0, t > T ~ , l x ] < - 8 ,  (3.6) 

satisfying 

V(-+6, t) = 0, V ( x , T ~ ) < - - v ( x , T ~ )  f o r [ x [ < &  

For t > T~ and [ x [< 8 we see from (3.4) and (3.5) that 

vt - dvxx - v ( - v  + 2¢) = m v ( u  -- y )  -- 2ev  

2e 
>--mv U ~ - y - e  - -  

m 

> 0 = V , -  dVxx = V ( - V +  2e). 

Because d > 0, the maximum principle assures us that v > 0 for all x, 
] x ]< L, and in particular for x = -+6. Thus by the basic comparison result 
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of [0] we have 

v ( x , t ) > V ( x , t ) ,  I x l ~ 8 ,  t >  T,. (3.7) 

We now examine the asymptotic behavior of V. The steady-state equation 
corresponding to (3.6) is 

dV" + V(2c - V) = 0, V(-+8) = O. (3.8) 
The phase plane for this equation is as portrayed in Fig. 4 and in fact the 
change of scales x ~ x/ f-d,  V ~ V/2c  transforms this equation into our 
original (1.4) with a = 2t. Thus we see that for all sufficiently small d > 0 
there is a unique solution V 0 of (3.8) such that Vo(x ) > 0 for [x [< 8. 
Moreover, V o is the uniform limit, as t -~ oo, of V(x, t). If  we further choose 
d small enough to force Vo(0 ) > e (cf. Fig. 4) then (3.7) yields v(0, t) > e for 
all sufficiently large t. This is the desired contradiction, which completes the 
proof  of Theorem 3.2. 

Corresponding to the loss of stability of (u 0, 0) we expect a bifurcation of 
new solutions from (u0, 0) and it is to this question that we now turn. We 
first discuss the case of d = 0. 

A. Bifurcation when d = 0 

We have shown in Section 1 that, if d = 0 and L > Lr,  there is a new 
equifibrium solution (ul, vl).  This new solution is a bifurcation from (u 0, 0) 
since u~ ~ u o and v~ ~ 0 as L -0 L r. However, f rom Theorem 3.1 we know 
that for all L > L v there is a continuum of spectral points that are positive. 
F rom this we might expect a continuum of new equilibrium solutions 
bifurcating from (u o, 0). This is indeed the case if we generalize the notion 
of solution of (1.2)d-(1.3) to allow discontinuous functions v when d = 0. 
This is reasonable since, when d = 0, the second equation of (0.1)~ is simply 
a family of ordinary differential equations parametrized by x. Thus, by a 
generalized solution of (1.2)0-(1.3) we shall mean a pair of functions (u, v)  
such that v is bounded and piecewise continuous while u is C 1 with a 

V 1 

V 

FIGURE 4 
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piecewise continuous second derivative, and (1.2)o-(1.3) is satisfied except 
at points of discontinuity. 

THEOREM 3.3. Let J be a finite union of open subintervals of ( - L ,  + L ). 
Then there exists a generalized solution (ug, vs) of (1.2)0, (1.3), with the 
following properties. 

(A) Ul(X ) ~ Us(X) ~ Uo(X ) for I x I -< L. 

(B) vs = mIsP(u s - 7), 

(C) J '  c J i n l p ] J e s u j , ( x ) > ~ u j ( x )  for Ixl<-L. 

Remarks. (1) I x is the indicator function of the set J, i.e., Is(x  ) = 1 if 
x E J and l s (x  ) : 0 otherwise. 

(2) P(y)  is the positive part of y, i.e., P(y )  = max(0, y) .  
(3) Since L > L v it follows that u s _> u I > y on the interval ( - a ,  + a )  cf. 

Fig. 3. Thus Vg(X) > 0 for x in J A ( - a ,  a). 
(4) If J is an  interval whose closure is contained in ( -  a, a) then it will be 

clear from (B) and the proof below that vj and u)' will suffer jump 
discontinuities at the end points of J but will be continuous elsewhere. This 
shows that we do indeed have a continuum of distinct steady-state solutions. 

(5) The solutions (us, vs) must be unstable in any reasonable norm, but a 
rigourous discussion of stability would be extremely complicated since these 
solutions are not isolated. Computer simulation indicates, however, that 
each such solution has a robust stable manifold. On the basis of these 
calculations we conjecture that (us, vs) is an attractor for every solution of 
the system (0.1)0-(0.2) with initial values (Uo, %) satisfying Uo(X ) ~ O, 
Vo(X ) = 0 for x ~ J, v0(x ) > 0 for x E J. 

(6) It will be clear from the construction that when J = ( - L ,  + L ) ,  

(us, vj) = ( u .  Vl). 

Proof of Theorem 3.3. The idea is to construct u as a solution of 

u"+f(u)-ulsmP(u-y)=O, Ixl<t;u(+-Z)=O. (3.9) 

We do this by solving the "regularized" equation 

u ' + f ( u ) - - u I ~ m P ( u - - y ) = O ,  [ x ] < t ; u ( + - t ) = O ,  (3.10) 

where I~ = % .  I x and % is the Gaussian averaging kernel (mollifier) of 
support Ix I_< c. Equation (3.10) is solved by the method of upper and lower 
solutions (cf. [18]), and we then pass to the limit as c +0, 

Let As(u)  denote the left-hand side of (3.10). Observe that 

As(uo) = -UoI~mP(u o - 7) <-- 0 
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so that u 0 is an upper solution of (3.10). If we let I denote the indicator 
function of ( - u ,  + a )  (cf. Fig. 3) then we see that u 1 satisfies 

u'; + f ( u l )  -- u , I m P ( u  1 -- y)  = 0 

and that P ( u  1 - y) -- I P ( u  I - 2/). Therefore, 

A j ( u , )  = I u , m e ( u  1 -- y)  -- I ~ u , m P ( u ,  -- "~) 

= (1 - I )Iulme(ul - y )  >- o 

so that u 1 is a lower solution of (3.10). It therefore follows from [18] that 
there is a C 2+~ solution, u,, of the regularized problem (3.10), which 
satisfies 

I x l < - L .  (3.11) u,(x) _< u,(x) _< u0(x), 

From (3.10) we see that 

u ' , ( x )  - u ~ ( - L )  = f~ '  [ - f ( u , )  + u , I ~ m P ( u , -  ,/)] dx  (3.12) 
L 

so that (u',, ~ > 0), as well as (u,, E > 0} are uniformly bounded on 
[ - L ,  +L] .  Finally, it also follows from (3.10) that the second derivatives, 
u',', are also uniformly bounded in ~. Thus, standard compactness arguments 
yield the existence of a sequence of values (tj ,  j = 1, 2 . . . .  ) converging to 
zero and a C 1 function, u j ,  having Lipschitz continuous second derivatives 
such that u ,  --, Ug and u~ ~ u~r uniformly in I x I_  < L. Passing to the limit in 
(3.12) we see that J " us satxsfies (3.10) at every point except, perhaps, the end 
points of the constituent intervals of J, where u j  may suffer jump discon- 
tinuities. 

If we now define vj by vj = m l j P ( u j -  "¢) then the pair (u  j ,  v j )  is a 
generalized solution of (1.2)0-(1.3) and (A) and (B) are clearly satisfied. 

To prove (C), let v, denote a solution of (3.10) with J replaced by J' .  We 
then have 

A s ( v  ) -- (I~, - I ~ ) m v ,  P ( v ,  - ¥) --< 0 

since J '  C J. Thus v, is an upper solution of (3.10) for u,.  Part (C) follows 
immediately from this fact and thus completes the proof of the theorem. 

B. Bifurcation Analysis  for  d > 0 

In the case of positive d we shall first make our result on the loss of 
stability more precise and then show bifurcation using the results of [8]. 

We begin by improving Lemma 2.6(B) concerning the operator H ( d ,  L): 
z --, dz"  + m ( u  o - ~,)z. Recall that this operator has a real spectrum con- 
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sisting only of eigenvalues. We let v(d, L )  denote the maximum eigenvalue. 

LEMMA 3.3. There is a smooth function, d, defined on [L r, oo) such that 
d( L r ) = O, d'  > 0 and v( d( L ), L )  = O for all L > L r. Furthermore, v( d, L )  
< 0 for d > d ( L )  and v(d, L )  > 0 for d < d(L) .  

Proof It  is well known (cf. [13]) that v is nondegenerate and, if v -- 
v(x;  d, L )  is the unique principal eigenfunction which is positive and has 
unit L 2 norm, that v and v are smoothly dependent upon the parameters d 
and L. It is also known that 

~-~--<0 (3.13) 

and, in fact, we show below that a somewhat stronger result is true. Now, if 
we let q(x)  denote m(Uo(X ) - 7) then since v satisfies the equation dv" + 
qv = vv it follows that 

~= -df?lL(v')2dx- f+~qv2dx 

<-- - d C  + max I q l , (3.14) 

where we have used the fact that IP v II Z~ ~ C II vql  t 2. Since q[ is bounded 
independently of d it follows that v < 0 for all sufficiently large values of d. 
On the other hand, from Lemma 2.6 we know that v > 0 for values of d 
sufficiently near zero. Thus there is a value d for which v(d, L )  : 0. If  we 
now let w : Ov/Od we have 

~p 
dw'" + v" + qw = vw + ~-~v. 

Since w(+-L) = 0, 

ov f+L - -  = (dw"v  + qwv -- vwv + v " v ) d x  
~d - L  

= C w { d v "  + qv-,v}dx-f+ (v')2dx 

Thus, there is only one value of d, d, for which u(d, L )  = 0 and from the 
implicit function theorem we obtain that d ( L )  is a smooth function of L. 
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However, an argument similar to the one above yields 

+ 

where we have used the fact that u 0 and thus v, is symmetric about x = 0. 
Now, an elementary analysis shows that OUo/OL is positive so that 3v/aL, 
and thus d ' ,  is positive since d'(Ov/ad) + (~v/~L) = 0. This completes the 
proof of the lemma. 

With the aid of this lemma we are able to prove the following theorem. 

THEOREM 3.4. I f  L >-- L v and d > d( L ) then (Uo, 0) is a global attractor 
for all non-negative solutions of (0.1)d, (0.2). I f  L >-- Ly and 0 < d < d( L ) 
then (Uo, O) is unstable as a steady-state solution of (0.1) d, (0.2). 

Proof. If 0 < d < d ( L )  it follows from Lemma 3.3 and Theorem 2.7(A) 
that the spectrum of the linearization A(d, L) has positive elements. The 
instability of (u o, 0) follows from Theorem 2.5. 

If  d > d ( L )  then from Corollary 2.4 we see that for c > 0 there is a T > 0 
such that u(x, t) <- Uo(X ) + e for Ix 1_ <. L and t >__ T. Now, if in the second 
equation of (0.1)d we multiply by v, integrate over (--L, +L), and use (2.8), 
we get 

( + L v 2 d x  
dt J -L  

< 

-df+L(v')Zdx + f +L[-v3 + m v 2 ( u -  y)]dx 
~--L  " - - Z  

f~L ¢+L Z" m,f+%2dx - d  ( v ' )  2 + v ( . o  -  )dx + 
V-- L " - -L 

(,,, + m,) fg v2dx 

for t _> T. Because d > d ( L )  we see that v 1 + mc < 0 for all sufficiently 
small c. Moreover, from Gronwall 's  inequality we obtain 

f +LL[ v( t, x )]2 dx <-- const, e (~ '+"0 ' ,  

f rom which it follows that v(t, .) --, 0 in L 2 as t ~ oo. From this, as was 
shown in [6] or [17], it follows that v(t, x) converges to zero uniformly in 
[ - L ,  + L ]  as t ~ oo. Thus, the argument used in the proof of Theorem 2.3 
can be applied to show that u(t, x) converges uniformly to u o in [ - L ,  + L ]  
as t --, oo. This completes the proof  of Theorem 3.4. 

The next theorem shows that the stability lost by (u o, 0) as d decreases 
across d is picked up by a new branch of nonnegative solutions bifurcating 
from (u 0, 0). 
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THEOREM 3.5. There is a 6 > 0 such that for all d E ( d( L ), d( L ) -- 8 ), 
there is a steady-state solution (ul, v l )  of (0.1)a, (0.2) having the following 
properties: 

(A) O < u  l < u  o a n d O < v  l o n ( - L , + L ) ,  

(B) (u 1, Vl) converges to (u0,0) as d ~ d=-- d(L),  

(C) (Ul, vl) is asymptotically stable, 

(D) (u 1, vl)  is the only other steady-state solution near (u o, 0). 

Proof Our proof is based upon Lemma 1.1 and Theorem 1.7 of [8]. We 
fix L and define the operator F: C 2 × Co z × ( d  - c, d + c) --, C by 

:[u,, ] 
r ( u ,  v; d )  [ d v "  - v ~ + m v ( u  - ~ )  " 

We then have F(uo, 0; d)  = 0 for all d > 0. To show bifurcation at d = d 
we consider the linearization of F about (uo, 0): 

[w , , + f , ( u o ) w - u o z  1 
w] -- J (3.15) 

U denotes the generic point (u, v). As we saw in Theorem 2.7 (where F U was 
referred to as A) the spectrum of F U is purely discrete and is {#1, t~2, . . .  } U 
(ul, v2 . . . .  }. For all positive values of d the/~j's are negative and vj < v r As 
shown in the preceding discussion (Lemma 3.3), the principal eigenvalue, vl, 
is a strictly monotone decreasing function of d and Vl(d ) --- 0. 

According to Lemma 1.1 of [8], to show bifurcation at d -- d we must 
demonstrate the following three claims: 

(a)  the null space of Fu(uo, 0; d)  has dimension one. 

(fl) the range of Fu(uo, 0; d)  has codimension one. 

(T) if [~, ~]t is the eigenfunction of Fu(uo, 0; d)  that corresponds to 
v l (d  ) = 0 then 

where Fud is the mixed second Fr6chet derivative with respect to U and d. 
To prove these claims note first that ~ and ~ satisfy 

~" + f ' (uo)~ = uo~ 
de" + m(Uo -- V)e = 0'  W(---+L) = e( -+L)  = 0. (3.16) 

We thus see that f is a principal eigenfunction of the scalar operator 
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dD 2 + m(u o - y). It is a classical result that this eigenspace is one dimen- 
sional and that we may choose f > 0 on ( - L ,  + L ) .  Again using the result 
of [19] that zero is not in the spectrum of O 2 + fr(u0) we see that for each Z 
there is a uniquely determined ~. This proves claim (a). 

If (g, h) is in the range of Fu(u0,0;  ~¢) then there must be a solution 
(w, z) of the following system: 

w" + f ' (Uo)W = UoZ + g 

d z "  + m ( u o  -- V)z  = h 
w ( + - L )  = = o. 

From classical results concerning one equation we see that there is a 
solution of the second equation if and only if (£, h ) =  0, where ( ) denotes 
the inner product in L 2 ( - L ,  +L) .  For each such solution, z, and for any g 
there is a uniquely determined solution w, where again we use the results of 
[19]. Thus the range consists of all pairs (g, h) which are orthogonal in L 2 to 
(0, ~), and therefore claim (/3) is true. 

Finally, note that 

But, 

FUd(Uo,O; d)[~] =[00 02]Izw-] = l o t  ]- 

([o,], io}) = s+?,,,dx_- +o. 
In view of the description of the range given in the preceding paragraph, 
this demonstrates the validity of (7)- 

We now can apply Lemma 1.1 of [8] to obtain functions ep(s), ~(s) and 
d(s),  defined for all real s such that I sl is sufficiently small, and these 
functions have the following properties: 

(i) d(O) = d. 

(ii) qS(s), ~(s) are in Co z and ~(0) ~ ~k(O) ~ 0 on ( - L ,  + L ) .  

(iii) F(ul(s ), vl(s); d(s)) =-- O, where 

UI(S ) = U 0 + S(W -[- ~(S)), I) I(S ) = ,£ + S~(S).  (3.17) 

(iv) (U l, Vl) is the only other solution of F(u, v; d(s)) = 0 in a neigh- 
borhood of (u0, 0). 

Since we have chosen ~ > 0 we see that vl(s ) > 0 for s > 0. It is also clear 
that u I _> 0 for all sufficiently small s. But from Corollary 2.4 we know that 
every nonnegative solution (u, v) of (0.1)d, (0.2) must satisfy 

lira supu(x ,  t) <-- Uo(X ). 
f~oO 



PREDATOR--PREY EQUATIONS 315 

We thus see that for s > 0 we have ut(x ) _< Uo(X ). Using (3.17), this in turn 
implies that ~ ( x ) - <  0. In fact, the following stronger statement is true; 
namely, 

~ ( x )  < 0  f o r l x l < L .  (3.18) 

This holds because if ~(Y) = 0, [ x 1~ L, then from (3.16) we have 

-- u0(Z)2( ) > 0, 

which contradicts the fact that zero is the maximum value of ~ on 
I - L ,  +L] .  The fact that ~ is negative will allow us to show that d(s) < d 
for s > 0 and therefore that (ul, vl) is stable. 

To this end let K denote the injection of C 2 into C. Then 

so that K(~ ,  £)t ~ Range_(Fv(uo, 0; d)}. Thus Pl(d)  = 0 is a "K-simple" 
eigenvalue of Fv(uo, O; d) (cf [8]). Thus, if 7r(s) denotes the principal 
eigenvalue of the linearization of F about (ul(s), vl(s)) with d = d(s), then 
7r(0) = vl(d ) = 0 and (Theorem 1.7 of [8]) ~r(s) has the same sign as 

t ~ P I  - -  
- s d  

But as we saw in the proof of Lemma 3.3, 0Vl/~d is negative so that ~r(s) 
has the same sign as sd'(s). Thus, if d'(0) < 0 then (ul(s), Vl(S)) is asymp- 
totically stable for s > 0, and we may choose d as the bifurcation parameter 
rather than s. We see then that the proof of Theorem 3.5 will be complete 
once we show that d'(0) < 0. We do this by directly computing d'(0). 

To this end let us consider the second equation satisfied by (ul, Vl): 

d(s)v ' - + m v , ( u ,  - : O. 

Substitute here the expressions for u 1 and v I given in (3.17), divide by s, 
differentiate with respect to s, and finally set s = 0. The result is 

d'(O)2" + d~/~' - 2 2 + m~, ( u o - y)  + m£~-= 0, 

where ~s is the derivative of ff with respect to s and all quantities are 
evaluated at s -- 0. If we now multiply by Z and then integrate we obtain, 
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FXGUR~ 5 

after several "integration-by-parts" and using (3.16), 

d'(o) f+L(e')2dx= f {d~;'e +m~s~(u o -- y)} -fe~+ fme2~ 

= f~,{s~, ,  + m e ( . o -  ~)} - f~3 + mfZ2~ 

=-fe3+,nfe3~, 

where all integrals are over the interval [ x I_  < L. Thus, 

d'(O) = (3.19) 

f(e'? 
Since ~ < 0, and ~ > 0, this shows that d'(0) < 0 and completes the proof 
of Theorem 3.5. 

We can now summarize our discussion of nonnegative steady-state solu- 
tions by the bifurcation diagram in Fig. 5. 

CONJECTURE. On the basic of extensive computer simulation we believe 
that (u~, v~) is defined throughout 0 < d < d(L);  that it is a global attractor 
for nonnegative solutions of (0.1)d, (0.2); that it is the only nonnegative 
steady-state solution other than (0,0) and (u0,0); and that as d $0, it 
converges to the compactly supported steady-state solution constructed in 
Section 1 (cf. Theorem 1.3 and Fig. 3). 

II. Cubic Nonlinearity 

In Sections 4 and 5 we shall consider our Eqs. (0.1)a, (0.2) under the 
assumption that f is a cubic polynomial. In 4 we assume that f(u)= 
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au(u - b)(1 - u) so that the prey species is an "asocial" population (cf. 
[2]). In Section 5 we briefly discuss other cubic polynomials in order to 
indicate the richness of the structure of  the bifurcations. The solution set in 
the cubic case differs from that in the quadratic case primarily in the 
presence of more than one stable equilibrium solution. We shall choose the 
parameters to satisfy certain general conditions, so as to contrast the 
differences between the cubic and quadratic cases. Moreover, in order that 
the paper does not become too lengthy, we shall go into detail only in the 
places where we consider the differences between the two types of nonlin- 
earities to be sharp. The reader who has come this far along should have no 
difficulty, using our outlines, in completing the arguments. 

4. EQUILIBRIUM SOLUTIONS IN THE CASE OF ASOCIAL PREY 

POPULATION 

We consider Eqs. (0.1)d, (0.2), where 

f ( u )  = au(u  - b)(1 - u), 0 < b < 1/2,  (4.1) 

and b < 7 < 1. It is easy to check that the equations admit arbitrarily large 
invariant rectangles and that all steady-state solutions again lie in the region 

defined by (1.1). If we set v --= 0 in (0.1)a , and seek steady-state solutions, 
we see that u must be a solution of the problem 

u" + f ( u )  = O, - - L  < x < L ,  u( +-L) = 0. (4.2) 

From the results in [20], we know that there is a positive number L / s u c h  
that if L < L/ ,  u =-- 0 is the only solution of (4.2). If L = L/, (4.2) admits a 
unique nonconstant solution, and if L > L/, (4.2) has precisely two non- 
constant solutions u I and u 2. These are depicted in Fig. 6, the phase plane 
portrait of (4.2), where we use the notation Pi -- u ~ ( - L ) ,  i = 1, 2. Observe 
that every solution of (4.2) must lie in the "fish" region of Fig. 6 and each 

LI 1 

FIGURE 6 
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solution is character ized by  its initial velocity p = u ' ( - L ) .  We fur ther  recall 
f rom [20], that  the b i furcat ion d iagram for noncons tan t  solutions of (4.2) 
takes the fo rm of Fig. 7; of course u --~ 0 is a solution of (4.2) for all L > 0. 

We  can also consider  solutions of (4.2) as s teady-sta te  solutions of the 
t ime dependent  p rob l em 

Ut= U ~ x + f ( U ) ,  - L < x < L , t > O , U ( ± L , t ) = O , t > O .  

(4.3) 

Concerning their stability, we have the following theorem,  whose p roof  was 
given in [4, 5]. 

TI-I~OREM 4.1. I f  L < LI,  then u = 0 is a global attractor for solutions of  
(4.3). I f  L > Ly, then u o ~ 0 and u 2 are stable solutions of  (4.3), and ul has a 
one-dimensional unstable manifold. In fact  there are (heteroclinic) solutions 
Vo(X, t) and v2(x,  t)  of(4.3)  which connect u I to the two attractors u o and ul, 
in the sense that l imt~_oovi (x  , t) = u l (x ) ,  and l imt~ ~v i (x ,  t) = u i (x ) ,  uni- 
formly on ] x [>- L,  for i = O, 2. (The fact  that the convergence is uniform 
follows, for example,  f rom the results in [15].) 

We  turn now to the s teady-state  solutions of (1.2)0, (1.3); i.e., to the 
solutions of (1.7), (1.8). F r o m  the second equat ion in (1.7), we see that  we 
mus t  always have v = 0 or v = m ( u  =- 7), (and of course, v >- 0!). In  order 
to study the s tructure of  these solutions, we define the n u m b e r  ~- by  

f o ' f ( u ) d u  = 0. (4.4) 

N o t e  that  b < "r < 1 since 0 < b < 1 /2 .  

L~MMA 4.2. Let  ,r be defined by (4.4) and assume that 

Define h by 

¢ < y < 1. (4.5) 

h ( u )  = f ( u ) ;  

: f ( u )  -- m u ( u  - y) ,  
if u < • (4.6) 
i f u  -->3'. 
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Then  h has exactly two posit ive roots, r 1 and r2, where r 1 = b < y < r 2 < 1. 
Moreover ,  h(0) = 0 and f~2h(u)du > O. 

Proof. Let  

@(u) = f ( u )  - mu(u - "f). (4.7) 

Obvious ly  h(0) = 0 and h(b) = f i b )  = 0. Since ~ (7 )  = f ( 7 )  > 0 > qffl), ~, 
and thus, h, has a root  r2, ~, < r 2 < 1. We show that  h has no other root  in 
u > 7- It  obviously suffices to assume q¢(0) 4= (0). Since qff0) = 0, 4~'(0) < 0 
implies 4~ has a root  theorem between 0 and 7, while if q / ( 0 ) >  0, has a 
negat ive root.  Finally, since "y > ~-, 

The  p roof  of  the l e m m a  is complete.  
I t  follows f rom this l e m m a  that  the phase  p lane  for the p rob lem 

u" + h(u)  = O, - L  < x < L,  u(+-L) = 0, (4.8) 

has the same quali tat ive features as that  of (4.2). The point  here is that  h '  
being discont inuous at u = 7 plays no role whatsoever  in the orbit  s tructure 
of  the phase  plane, and classical (i.e., C 2) solutions of  (4.8), as well as of  the 
p rob lem 

G = U~x ÷ h ( U ) ,  [ x ] < L , t > O ; U ( + L , t ) ~ O f o r t > O ,  (4.9) 

exist as usual. In  par t icular  we will show in the Append ix  that  the bifur-  
cat ion d iagram for  the solutions of  (4.8) is quali tat ively similar to Fig. 7. 
Therefore,  there is a number  L h > 0 such that  if L < L h then the only 
solution of (4.8) is identically zero, while if L > L h there are precisely two 
noncons tan t  solutions. For  L = L h we define Ph in the same way that  we 
earlier defined p/. 

In  p repara t ion  for  the construct ion of solutions of  (1.7), (1:8) we define 
the number  Lv > 0 by  

fo 
'r du 

L v = (4.10) 
( 2 r ( y )  - 2 r ( u ) )  1/2' 

where F'(u) ~ f ( u )  and F(0) = 0. Thus,  referring t o  Fig. 8, if uy is the 
unique solution of (4.2) satisfying u v ( 0 ) =  y, then 2L~ is length of the 
interval  on which it resides i.e. Ly is the " t i m e "  the orbit  takes to travel 
f rom the line u = 0 to u = ~,. N o t e  that  it is because we assume • > "y that  
L v and u v are well defined. Note  also that  L v _< Lf.  Finally, if we denote  by  
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uf the unique nonconstant solution of (4.2) when L --- Lf and if we set 

= ' L pf u ' f ( - L / )  and Pr = u r ( -  r) '  

then we have Ly = Lf iff Pi = Pv while Lv > L!  otherwise. 
In order to simplify the analysis, we make the additional assumption that 

- / >  o = (1 + b ) / 2 ,  (4.11) 

where o is the solution of the equation f (u )  = uf'(u), (cf. [19, 20]). Con- 
cerning solutions of (4.8) and (4.9), we have the following proposition. 
(Recall u~, i = 1, 2, was defined earlier, cf. Fig. 6.) 

PROPOSITION 4.4. (A) I f  p v >-- & then L h = Lf <~ L v. In this case (4.8) has 
• precisely two nonconstant solutions, f l  and u2, with f ~ ( - L )  > fi'l(-- 1) > 0. 

Moreover, fq = u 1 while u2 = u2 only if L! < L < L v- 
(B) I f  pr < pf, then Lf < L h <-- Lv, and f l  = Ul if L >-- L v. 
(C) The solutions Uo ~ 0 and f2 are stable solutions of (4.9), while fq has a 

one-dimensional unstable manifold. In fact, there are heteroclinic orbits of (4.9) 
which connect fit to the two attractors rio and f2- 

Proof. Part (C) follows exactly as in Theorem 4.1. Also, a moment's 
reflection will show that part (A) is true. We thus confine our attention to 
part (B). 

First note that the orbit for u" + f (u)  = 0, such that (u(0), u'(0)) = (a, 0), 
where a is any number satisfying r < a < 1, yields a solution of (4.2) on an 
interval Ix I< L(a),  where 

L ( a )  = f0'~(2F(a) -- 2F(u) ) - l /Zdu ,  F' = f .  

In the same way we see that there is a solution of (4.8) on the interval 
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[ x l <  £ ( a ) ,  where 

= - 

and H'(u)  -- h(u) and H(0) = 0. Since h(u) <-flu) and h(u) < f l u )  for 
u > 3' we see that  L ( a )  ~> L(a)  and £ ( a )  > L (a )  for a > 3'. When  pr < p f  
then it is clear f rom Fig. 8 that  uf(O) > 3' so that  

L,,, = m i n ( £ ( a ) :  r < a < 1} - - £ ( ~ i )  > L ( 8 )  

--> m i n { L ( a ) :  'r < a < 1} = L / .  

To see that  L h <- L v note  that  uv(x ) <_ 3" for all x, Ix  [--< L,  so that  u v is a 
solution of (4.8), as well as (4.2). This shows that  L" v >_ L h. We also notice 
that  O~(x) <- 3' so that  Ul is a solution of (4.2) as well as (4.8), and thus must  
be  the same as u 1. This completes  the proof  of  Proposi t ion 4.4. 

Now,  just  as in Part  I, we construct  solutions of (1.2)d, (1.3), for  d = 0, 
using the solutions of  (4.2) and (4.8). I f  u is a solution of (4.2) then (u, 0) is a 
solution of (1.2) 0, (1.3); if u is a solution of (4.8) then (u, v)  is a solution of 
(1.2)0, (1.3) if v = ~3(u) --= mP(u - 3'), where P(z )  = max(0 ,  z}. The  fol- 
lowing theorem summarizes  our  results for the system. 

THEOREM 4.5. Let f be defined by (4.1) and (4.5) and let (4.11) be 
satisfied. Then the following statements concerning (1 .2) , / (d  = 0), (1.3) are 
valid. 

(A) If  L < L !  then U 0 = (0, 0) is the o n l y  solution. 
(B) Suppose  Pr --- & '  Then  if L[ < L <_ L r there are precisely two nonzero 

solutions, U 1 = (ul ,  0 ) a n d  U 2 --- (u2, 0), where u 1 and u 2 are the solutions of 
(4.2) discussed in Theo rem 4.1. I l L  r < L then in addi t ion to U 1 and  U 2 
there is a third nonzero  solution: U z = (u2, 13~), where ~2 is as in Proposi-  
t ion 4.4 and v2 = ~3(uz)- U2 bifurcates  f rom U 2 in the sense that  0 2 
converges uni formly  to U z as L J, Lr .  

(C) Suppose pv < py. I f  Lf  < L < Z h then U 1 and U 2 are the only nonzero  
solutions. I f  L h < L <- L r there are two addit ional  nonzero  solutions, 01 = 
(a l, e(al)  ) and 0 2 = (a2, ~3(ti2) ). For  L > L~ we have U 1 =-- 01 so that  there 
are three nonzero  solutions: UI, U 2 and U 2. 

The  si tuation descr ibed  in this theorem is nicely il lustrated in the two 
bi furcat ion diagrams of Fig. 9. 

As in the Ease of quadrat ic  case there is a degeneracy when L crosses L r. 
There  is again a con t inuum of generalized solutions but  because the situa- 
tion is so similar to that  described in Part  I, we shall not  discuss it further. 

We turn now to a discussion of the stabili ty of  the equil ibrium solutions 
which we have constructed.  The  first step is taken in the following proposi-  
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tion which yields information concerning the "domains of attraction" of the 
stable steady-state solutions of the single equations (4.3) and (4.9). A 
novelty of our discussion is the use of heteroclinic orbits as comparison 
functions. 

PROPOSITION 4.6. Let U(x, t) be the solution of(4.3) with U(x, O) >-- O for 
Ix [<- L. I f  L < L[ then U( x, t) ~ O uniformly in x as t ~ oo. l f  L > Lf and 
U(x, O) >- ul(x ) (resp. U(x, O) <- ul(x)) but U(x, O) 7~ ul(x ) then U(x, t) 
u2(x ) (resp. U(x, t) ~ O) umformly in x as t ~ oo. An analogous statement is 
valid for solutions of (4.9). 

Proof. The case of L < Lf is proved just as in Proposition 2.1. If L > Lf 
and U(x,O)>--ul(x ), Ixl-<L, then from U t - U , x - f ( U ) = O =  - u ~ ' -  
f (u l )  it follows that U(x, t) > ul(x ) for all t >__ 0 and Ix I_  < L. In fact, since 
U(x, 0) ~ ul(x) we can conclude that U(x, t) > ul(x ) for t > 0, Ix i< L, 
and that W[Ux(+-L , t ) -  u'l(+L)] > 0. Thus, if t o > 0 is arbitrary and 
v2(x, t) is the (heteroclinic) solution connecting u 1 to u 2 (cf. Proposition 4.1) 
then we can find t-< 0 such that vl(x, ~) < U(x, to) for ix i<  L. If we let 
w ( x , t ) =  v l ( x , t -  t o + i) then w(x, to )<  U(x, to) so that w ( x , t ) <  
U(x, t) for all t >_ to, I x 1< L. It thus follows that 

l imsup U(x, t) >-- Uz(X ), Ix [<- L. 
t ~ Qt~ 

Since u I and u: are the only positive equilibria it follows from the gradient- 
like nature of the equation, as in the proof of Proposition 2.1, that 
U(x, t) --, u:(x)  uniformly in x as t ~ oo. The proofs of the other state- 
ments of Proposition 4.6 proceed in similar fashion. 

The following theorem deals with the stability properties of the solutions 
of the system (for d = 0) which were constructed in Theorem 4.5. 

THEOREM 4.7. Under the assumptions of Theorem 4.5, the following state- 
ments concerning nonnegative solutions of (1.2)0 , (1.3) are valid. 
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(A) For all L > 0, Uo is asymptotically stable (i.e., is an attractor); if 
L < L f  then U 0 is a global attractor (i.e., is the uniform limit of all positive 
solutions). 

(B) If L > L t then U 1 is unstable while U 2 is stable when u2(0 ) < y (i.e., 
when p! <Pv  and Lf < L < Lv) but unstable when u2(0 ) > Y (i.e., when 

P f > P v  or L > Lv)- 

Proof Let (u, v)  be a nonnegative solution of (1.2) o, (1.3). If U is the 
solution of (4.3) such that U(x, O) = u(x ,  O) then from (4.12) 

u , -  U~x-- f ( u )  = - -uv  <--0 = U t - Uxx - f ( U )  

it follows from the comparison theorem ([0]) that u(x,  t) <_ U(x, t). Thus, 
from Proposition 4.6 it follows that u(x,  t) converges uniformly to zero as 
t ~ oo if L < Ly or if u(x,  O) < u l (x  ). From this we conclude, as in the 
proof of Theorem 2.2, that v also converges uniformly to zero and thus part 
(A) is seen to be true. This also shows that U t is unstable for all L > L I. 

Now let us consider the case L > L/,  where uz(O ) < V. This occurs when 
p i < p ~  and L f < L < L  v. Note that u 2 ( x ) <  T for all x, Ix[<_L.  If we 
assume that U(x, O) > u l (x  ) for - L  < x < + L  then we know from Pro- 
position 4.6 that U(x, t) ~ u2(x ). It therefore follows from (4.12) that 

l imsupu(x ,  t) _< u2(x ) (4.13) 

uniformly on I x I-< L. Since u2(x ) < 3" it follows as in the proof of Theorem 
2.3 that v(t ,  x )  --, 0 and that u(x,  t) ~ u2(x) as t -~ oo. This shows that U2 
is an attractor if u2(0 ) < 3'. That U 2 is unstable when u2(0 ) > 3' is proved 
just as in the proof of Theorem 3.2. This completes the proof of Theorem 
4.7. 

Remark. It is easy to see that when L > L!  and U2(0 ) > 3' there is a 
continuum of generalized equilibria just as in the quadratic case (Theorem 
3.3). For the sake of brevity we shall omit a discussion of this situation. 

Let us now turn to the case where d > 0. Note that U 0, U 1 and U 2 are 
equilibrium solutions of (0.1)d, (0.2) in this case as well. The following 
theorem summarizes their stability properties. 

THEOREM 4.8. For all L > O, d >-- O, U o = (0, O) is an attractor for non- 
negative solutions of (0.1)~, (0.2). I f  L < L f  then U o is a global attractor. I f  
L > Lf ,  U 1 is an unstable equilibrium solution while U 2 is an attractor for 
d > d ( L )  and is unstable for d < d ( L ) .  d ( L )  =-- 0 for L f  < L < L v while 
d ( L )  > O, d ' ( L )  > O for L > L v. 

The situation described in this theorem is illustrated in Fig. 10. The proof of 
Theorem 4.8 is similar to those of Theorems 2.2, 2.3, and 3.4 and, therefore, 
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we omit the details. Just as in the case of quadratic f it would seem to us 
that there is precisely one stable nonzero solution when d < d ( L )  and this 
solution converges to U 2 as d "f d ( L )  while it converges to U 2 as d $0. This 
conjecture is supported by extensive computer simulations. For d near d (L )  
it is further supported by a bifurcation analysis similar to that in Section 3. 

5. SOME INTERESTING BIFURCATION DIAGRAMS 

In this section, we shall discuss, rather briefly, the Eqs. (0.1)d, (0.2) where 
f ( u )  is of the form 

f ( u )  = (u  -- a ) ( u  -- b)(1 - u), a < b < 0 < 1, (5.1) 

where a and b are close to zero, and 0 < y < 1. If we consider the problem 
(4.2), for this f ,  we know, from the results in [20], that the global bifurcation 
diagram for the number of nonconstant solutions is given by Fig. 11. That 
is, if Lf < L </-~h there are three solutions u0, u l, u 2 while if L > /~!  or 
L < L!, there is only one; u 0 or u 2, respectively. We shall see below that this 
yields some quite different and interesting bifurcation diagrams for solu- 
tions of the steady-state equations (1.2)0, (1.3). 

Before we consider the steady-state solutions, it is first necessary to show 
that the problem (0.1)a, (0.2) admits globally defined solutions whenever the 

L 
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FIGURE 11 
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y 1 \  
f ( u ) =  uv 

F I O U ~  12 

• u 

initial data functions u(x ,  0), and v ( x ,  0) are bounded smooth, nonnegative 
functions. To this end, we consider the isoclines of the vector field V - -  
( f ( u )  - uv, v [ - v  + m ( u  - 3')]), in the quarter plane u _> 0, v -> 0. Along 
the curve uv = f ( u ) ,  if u ~ 0, we have v = f ( u ) / u ;  hence v '  = 0 whenever 
u f ' ( u )  = f (u) .  But since a and b are close to zero, we have, from the results 
in [20], that v '  -- 0 exactly twice in u > 0. I t  follows that the flow of the 
orbits of V can be described by Fig. 12. We see at once from this picture 
that Eqs. (0.1) d admit arbitrarily large bounded invariant rectangles in 
u--> 0, v _> 0 so from the results in [3], solutions exist globally in time. 
Furthermore, the region Y~ given by (1.1) contains all the steady-state 
Solutions. 

Next, we define the function h by (4.6), where f is given by (5,1). I f  
~b(u) = f ( u )  -- m u ( u  -- "f), then since ~(0) > 0, ~(b)  > 0 and ~ > 0 if 
u << - 1, ff has two roots in u < 0. Since ~(3') > 0 and ~(1) < 0, ~, and 
hence h, has precisely one root r in the interval 3' < u < 1; in fact this is the 
only positive root of h. It  follows that h has the same qualitative form as f.  
We can assume that a and b are chosen so close to zero that whenever r -> 3', 
Eq. (4.7), for this h, has the qualitative form of Fig. 13, if m is sufficiently 
small (see the Appendix). 
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We shall discuss only the steady-state solutions of (0.1)o, (0.2), and leave 
the case d > 0 to the reader. Thus, we seek solutions of (1.2)0, (1.3), where f 
is defined by (5.1). There are several cases to consider, each one being 
qualitatively distinct from the others. Recalling the definition of L v in 
(4.10), and the definitions of L 1 and/7, I in Fig. 1 1, we see that there are three 
different cases to consider; namely 

(i) Lv < Lf,  (ii) L I < L v </77,  (iii) L v > / 7  I.  (5.2) 

Now rather than give a complete and exhaustive study of all these cases, we 
shall content ourselves to first describe the solutions, then to give the 
bifurcation diagrams, and finally to state the stability results; the reader 
should have little difficulty in verifying our statements. In what follows we 
shall denote by u fand  ~s the solutions of (4.2) which correspond to interval 
lengths L I and Lf, respectively, and which satisfy u } ( - L I ) = P l  and 

Observe first that h has the same basic qualitative properties as f;  namely 
that h(a) = h(b) = 0, and h(r) = 0 for some r, 0 < r < 1. Thus it is easy to 
see, using elementary phase-plane considerations, that problem (4.8), admits 
nonconstant solutions for all L > 0. Thus, if Pv is defined as in Section 4 (cf. 
Fig. 10), we have that whenever p > Pv, there are solutions of (1.2)0 of the 
form (u, v), where u satisfies (4.8), u ' ( - L )  = p ,  and v (x )  = m(u(x )  - 7) if 
u( x ) >_ y, while v(x)  = 0 if u( x ) < "l. 

We now find all the solutions of (1.2)o, (1.3) by considering successively 
the cases (5.2) above. In the interest of brevity, we shall not give a complete 
classification; rather, we shall merely show some of the interesting new 
phenomenon. We begin first with some general remarks. Referring to Fig. 
1 4, the phase plane for (4.2), (with f given by (5.1)!), we have marked off the 
points Po, flU and Pl on the line u = 0, and the corresponding L intervals 
between, them which we obtain from Fig. 13. In addition we have marked 
off points P, Q, R, S and T on the line u' = 0; these points will be needed 
to distinguish the different cases in (5.2) and will represent the various 
possible positions of the line u = 3'. Finally, we recall once again that p~ 
denotes the unique point on the line u = 0 with the property that the orbit 
of the flow (4.2) which passes through P0, is tangent to the line u = y, (pv 
will vary of course, depending on whether the line u = ~, is in one of the 
four positions P, Q, R, S or T.).These correspond, respectively, to the cases 

Pv <P o ,  Po <Pv  <f i r ,  f i i<P-c<Pf,  P i<P~,<Pt ,  Pl <P~,  

(5.3) 

where we recall P l is defined in Fig. 11. In what follows, u denotes a 
solution of (4.2) and ti denotes a solution of (4.8). 
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Observe that solutions of (4.8) can differ from solutions of (4.2) only 
when u ' ( - L ) < p  v; for smaller initial derivatives, the two equations yield 
identical solutions (cf. Fig. 14). Moreover, by the argument in the proof of 
Proposition 4.4 B, ifpv < p ,  T(p) < T(p), where T and T denote, respec- 
tively, the " t ime maps" corresponding to (4.2) and (4.8), respectively. With 
these two observations, we can construct the bifurcation diagram for small 
m > 0 .  

We begin with the casepv <Po (i.e., y = P in Fig. 14). If L < Ly, then the 
only solution of (1.2)o, (1.3) is U 0 = (u0, v). If Lv < L < Lf, then we have 
the two solutions U 0 and 0 o = (rio, t~0), Uo bifurcating out of U o. If 
L f <  L < Lf, we first get the two additional solutions U I = (ul,0) and 
U2= (u2,0), ( L f < L h ) ,  and then when L crosses Lh, we obtain two 
additional solutionsU l --_(Ul, Vl) and 0 2 -- (~2, Va) - N ° w  since m is small, 
we have Lf < L h < Lf < L h so that when L exceeds Lf, the solutions U 1 and 
U 0 cancel each other, and then when L >/~h, the solutions 0 o and 01 
cancel. Hence, for L > Lh, we are left only with the two solutions U 2 and 
0 2. We depict this case in Fig. 15, where we have also denoted the number 
of solutions in the various regions of the L axis. Moreover, a superscript s or 
u on a term U~ indicates whether the function is a stable or unstable solution 
of (1.2)0, (1.3), respectively. We shall briefly discuss this at the end of this 
section. 

Next, consider successively the cases P0 < Pv <f i f  (i.e., 7 = Q in Fig. 14), 
f i i<py < p l  (cf. Fig. 14 with 7 = R ) , p f < p y  <p~, a n d p l  <p~ (c.f. Fig. 14 
with y = S). The bifurcation pictures are in Figs. 16-19, respectively. (Note 
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that since m is small, we have, by continuity that Ly > L h in Fig. 16; similar 
things hold in the other pictures.) 

Finally,  we  say a few words  on  the stability of  the so lut ions  U~ = (ui, 0) in 
the various cases (5.2); the reader should have  no  difficulty in verifying our 
statements. In fact, the stability statements follow from the corresponding 
stability of the ui considered as a solution of the scalar equation (4.2), while 
the instability statements could in addition, be due to a bifurcation, with a 
resulting loss of stability of U,.; we have already observed this phenomenon 
in Section 4. 
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6. MORE THAN O N E  SPACE VARIABLE 

In this final short section, we remark that certain of our results can be 
extended to the case of several space variables. In particular, we shall show 
how to obtain the bifurcations of the steady-state solutions in this case. 

We consider the steady-state equations 

V2u  + f ( u )  - uv = O, d v 2 v  + v [ - v  + m ( u  - "/)], (6.1) 

on a domain ~2 c R u, together with homogeneous Dirichlet boundary 
conditions 

(u,  v) = (0,0)  on aa. (6.2) 

We shall discuss only the quadratic case, f ( u )  = au(1 - u). From the results 
of [1], for example, we know that the problem 

V 2 u  + f ( u )  = O, u = 0 on 3f~ (6.3) 

has a nonzero solution ~(x), provided that f~ is sufficiently large. (We shall 
give an alternate simple proof of this fact.) From this, it follows that (6.1), 
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(6.2) admits (if, 0) as a solution. We are interested in the bifurcations of this 
solution, as ~ increases. To this end, we shall only consider the case d = 0, 
since the discussion when d > 0 follows exactly as before. 

We let h(u )  be defined as above in Eq. (4.6) and we consider the problem 

x72u + h ( u )  = 0, u = 0 on 0fL (6.4) 

Our goal is to show that (6.3) has a solution different from Uo(X ) provided 
that f~ is sufficiently large. This will follow from a lemma. 

LEMMA. I f  f~ is sufficiently large, there is a sotution Uo(X ) of (6.3) with 
Uo( X ) > Y for some x ~ f]. 

Proof  Let w --> 0 be a principal eigenfunction of - x72 on  ~~, together 
with homogeneous Dirichlet boundary conditions, and let X > 0 be the 
corresponding eigenvalue. We may assume w ( x )  _< 1, x E f~, and for some 

~ ~, ~ (x )  = 1. If  f~ is large and E > 0 is small, X + a(3' + e - 1) < 0. If u 
is the solution of the parabolic equation 

u , =  V 2 u + f ( u ) ,  u = 0 on 0f], (6.5) 

and. u(x,  O) > , /w(x) ,  x E f2, then 

u, -- V 2 u  - - f ( u )  = 0 --> (T + , )w[X + a(3" + ,  -- 1)] 

= --V2((~,  + , ) w )  - - f ( ( 3 '  + Qw) .  

Hence by the usual comparison theorem, u(x,  t) >_ (3' + Qw(x),  x ~ f~, 
t > 0. Since (6.5) is gradient-like with respect to the functional 

q,(u) : f [½1vul2 -- F(u)] dx, F"  : f ,  

and (6.5) admits arbitrarily large invariant regions in u -> 0, we obtain that 
l imt~®u(x,  t) = Uo(X ) exists, and u 0 i s a  solution of (6.3). Since Uo(X ) >_ (3" 
+ e)w(x) ,  we see that u0(~ ) > 3'. 

We turn our attention now to (6.3). To obtain a solution, we shall 
construct upper and lower solutions. Thus, with w as in the lemma, and 
8 > 0 sufficiently small, 8w is an upper solution, and, the function u0, 
obtained in the lemma is a lower solution. Hence (6.3) has a solution ul(x  ) 
different f rom Uo(X ). As in the one-dimensional case, we can easily show 
that the solution (u0,0) bifurcates into (u0,0) and (ul, vl)  , where again 
Vl(X ) = 0 if Ul(X ) ~ 3' and v l ( x  ) = m ( u l ( x  ) - "y) otherwise, so that again 
v ---- 0 in a neighborhood of the boundary. Although we will not give the 
details, it is easily seen that we again have a continuum of (generalized) 
steady-state solutions which reflects the fact that part  of the residual 
spectrum is positive. 
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APPENDIX 

We shall show that for the functions h ( u ) ,  defined by h ( u ) =  f l u ) -  
m I ( u ) u ( u  - y ) ,  (where I is the characteristic function of the interval u -> 7), 
their " t ime" maps (i.e., bifurcation diagrams for solutions of u"  + h ( u )  = O, 

- L  < x < L ,  u (+-L)  = 0), have the same qualitative features as the corre- 
sponding " t ime" maps for solutions of u" + f ( u ) = 0 ,  - L < x < L ,  

u ( + - L )  = 0. Here f can be any of the three functions we have previously 
considered in Sections 2, 4, and 5, viz., f l u )  = au(1 - u) ,  f l u )  = au (u  - 

b)(1 - u ), f l u )  = ( u - a )( u - b)(1 - u), respectively~ 
In all three cases, if H '  = h, H(0) = 0, then (see [20]), the bifurcation 

diagrams are given by counting the number of critical points of the " t i m e  

map" 

fo ~ du S ( a )  = ~ / H ( a ) -  H ( u )  = T ( a ( p ) ) ,  

where p2 = 2H(a (p ) ) .  We also have ([20]) the following formula: 

= f0 ° - 0 ( u )  d u .  ( 2 ( H - ~  --  H--~uu))) 3/2 ~ - '  
(A,) 

where 

O(u)  = 2 H ( u )  - u h ( u ) .  (A2) 

Furthermore, an easy calculation shows 

O ' ( u )  = f ( u )  --  u f ' ( u ) ,  u < y 

= f ( u )  -- u f ' ( u )  + m u  2, u > y 
(A3) 

Now if f l u )  = au(1 - u), then 

O'(U) = au 2, u G y 

= ( u  q- m ) u  2, u ) ' y '  

and we see from writing the integral in (A j) as the sum of two integrals, 
S ' ( a )  = J~ + f~,  that (A3) implies that S ' ( a )  > 0. Hence in this case, there 
is a unique nonconstant solution of u"  + h ( u )  = 0, - L  < x < L, u ( + - L )  
= 0, for each L > L h, (see [19]). This proves the last statement in Theorem 
1.2. 
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Suppose next that f ( u )  = a u ( u  - b)(l  - u), 0 < b < 1/2 .  Then if T ' ( p )  

= 0, we have S ' ( a )  = 0 and conversely so if S ' (a)  = 0 we have (see [20]) 

Y - u O ' ( u )  o - u O ' ( u )  

( A 4 )  

where 0 is again defined by (A2). N o w  if a _< o, then S' < 0 while (A4) 
shows that if o < a, then S"(a)  > 0 when S ' (a )  = 0. Hence it follows that 
T(p )  has precisely one critical point, and thus the statement in Proposition 
4.4, concerning the number of solutions of (4.7) is valid. 

Finally, we consider the case w h e r e f ( u )  = ( u  - a ) ( u  - b)(1 - u), where 
a, b < 0, and a and b are near zero. If rn is sufficiently small, one can Check 
that the results of  [20] apply. This follows since the bifurcation diagrams 
depend smoothly on the parameters, see (Al).  Thus Fig. 13 gives the 
qualitative picture of the solutions of (4.8). 

ACKNOWLEDGMENTS 

J. Smoller would like to thank the faculty of the Mathematics Institute of the University of 
Warwick for their kind and generous hospitality. 

REFERENCES 

0. D. G. ARONSON AND H. F_ WEINBERGER, 1975, Nonlinear diffusion in population 
genetics, combustion and nerve propagation, in "Proceedings of the Tulane Program in 
Partial Differential Equations and Related Topics," Lecture Notes in Mathematics No. 
446, pp. 5-49, Springer-Verlag, Berlin. 

1. n. BERESTYCKI AND P. t .  LIONS, Une methode locale pour l'existence de solutions 
positives de problemes semi-lineares elliptiques dans R N, J. Anal. Math,, 1981. 

2. E_ BRADFORD AND J. R. PHILIP, Stability of steady distributions of asocial populations 
dispersing in one dimension, J. Theor. Biol. 29 (1974), 13-26. 

3. K.N. CHUEH, C. C. CONLEY, AND J. A. SMOLLER, Positively inval-iant regions for systems 
of nonlinear diffusion equations, Indiana Univ. Math. J. 26 (1977), 373-391. 

4. C. CONLEY AND J. SMOLLER, Topological techniques in reaction-diffusion equations, in 
"'Biological Growth and Spread" (W_ Jager, H. Rost and P. Tautu Eds.), Lecture Notes in 
Biological Mathematics, No. 38, Springer-Verlag, Berlin/New York, 1980. 

5. C. CONLEY AND J. SMOLLER, Remarks on the stability of steady-state solutions of 
reaction-diffusion equations, in "Bifurcation Phenomena in Mathematical Physics and 
Related Topics" (C. Bardos and D. Bessis, Eds.), Reidel, Dordrecht, 1980. 

6. E. CONWAY, D. HOFF, AND J. SMOLLER, Large time behavior of solutions of systems of 
nonlinear reaction-diffusion equations, S I A M  J. Appl. Math. 35 (1978), 1 - 16. 

7. E. CONWAY AND J. SMOLLER, Diffusion and predator-prey interaction, S I A M  J. Appl. 
Math. 33 (1977), 673-686. 



334 CONWAY~ GARDNER, AND SMOLLER 

8. M. CRANDALL AND P. RABINOWITZ, Bifurcation, perturbation of simple eigenvalues, and 
linearized stability, Arch Rat. Mech. Anal. 52 (1973), 161-180. 

9. P.C. FIFE, "Mathematical Aspects of Reacting and Diffusing Systems," Lecture Notes in 
Biomathematies, No. 28, Springer-Ver]ag, New York, 1979. 

10. A, FRIEDMAN, "Partial Differential Equations of Parabolic Type," Prentice-Hall, En- 
glewood Cliffs, N.J., 1964. 

11. D. GILBARG AND N. S. TRUDINGER, "Elliptic Partial Differential Equations of Second 
Order," Springer-Verlag, New York, 1977. 

12. A. LEUNG AND D. CLARK, Bifurcations and large-time asymptotic behavior for prey-pre- 
dator reaction-diffusion equations with Dirichlet boundary data, J. Differential Equations 
35 (1980), 113-127. 

13. V.P.  MIKI-IAILOV, "Partial Differential Equations," MIR Publishers, Moscow, 1978. 
14. M. MIMURA, Y. NISHIURA, AND M. YKMAGUTI, Some diffusion prey and predator systems 

and their bifurcation problems, Ann. Y.Y. Acad. Sci. 316 (1979), 490-510. 
15. X. MoP, A, Trans. Amer. Math. Soc., in press. 
16. M.H. PROTTER AND H. E. WEINBERGER, "Maximum Principles in Differential Equations," 

Prentice-Hall, Englewood Cliffs, N.J., 1967. 
17. J. RANCH AND J. A. S~OLLER, Qualitative theory of the Fitzbugh-Nagumo equations, 

Advances in Math. 27 (1978), 12-44. 
l g. D. I-L SATTINGER, Monotone methods in nonlinear elliptic and parabolic boundary value 

problems, Indiana Univ. Math. J. 21 (1972), 979-1000. 
19. J. SMOLLER, A_ TROMBA, AND A. WASSERMAN, Non-degenerate solutions of boundary 

value problems, J. Nonlinear Anal. 4 (1980), 207-216. 
20. J. SMOLLER AND H. WASSERMAN, Global bifurcation of steady-state solutions, J. Differen- 

tial Equations 39 (1981), 269-290. 
21. K. YOSIDA, "Functional Analysis," Academic Press, New York, 1965. 


