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INTRODUCTION 

Some simple equations representing the dynamics of a single population 
over time are known to be capable of generating extremely complicated 
behavior. This complicated behavior has been termed chaotic (Li and Yorke, 
1975; May, 1974, 1975; May and Oster, 1976; Guckenheimer et al., 1976). 
The practical consequence of chaotic behavior is a certain inability to 
describe particular population trajectories with any degree of accuracy. The 
purpose of this communication is to demonstrate that for certain models, 
when properly viewed, extremely chaotic populations can behave in very 
regular and predictable ways, similar to that noted by May (1975). 
Furthermore, it appears that, in a sense, the more chaotic a population, the 
more predictable its behavior, at least for a certain class of models. 

REGULAR PATTERNS IN CHAOTIC BEHAVIOR 

In all that follows we shall be working with the equation 

X(f + 1) = F(X(l)) (1) 

where X(t) is population density at time t, and we suppose that F has only 
one local maximum. If we symbolize F” as the nth composition of F (i.e., 
F”(X) = F(F”- l(X)), we can define several important regions of X space. Let 
k, be a value of X(t) for which F is the maximum. We now define k, = 
F-‘(k,). Let k, be the value of X(t) for which X(t) = F(X(t)) (i.e., the point 
at which the function crosses the 45” line). Define k, = F-‘(k,). Finally, let 
k, be the value of X that generates k,, i.e., k, = F(k,). Thus we have the 
following sets : a= {X(O<X< k,}, P= {XIk<X<k,l, Yl = 
(XIk,<X<kk,}, yz=(XIk,<X<k,}, y3=(X(k3<X<ks}, and A= 
{X ( X > kS}. An example of an F along with the boundaries of the various 
sets is shown in Fig. la, and a diagram of the necessary dynamics of that 
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b 

FIG. 1. (a) An example of a function for Eq. (1) in which the various sets refered to in 
the text have been illustrated. (b) The necessary dynamical behavior of the function from (a). 

function is presented in Fig. lb. From Fig. lb we can construct a transition 
matrix (Guckenheimer et al., 1976) as 

a P YI Y2 Y3 A 

;f 

Yl 
Y2 

Y3 

A 

PI, PI2 PI3 0 0 0 

0 0 0 1 0 0 

0 0 0 0 P,, P,, 
0 0 0 0 P,, P,, 

0 p52 p53 p54 0 0 

1 0 0 0 0 0 

The conditions of this matrix dictate what sorts of qualitative behavior the 
model will exhibit. Specifically, if P,, = P,, = 0, chaotic behavior is not 
possible (this fact follows elementarily from the Li-Yorke theorem). But the 
most important thing to note about the above matrix is that the only region 
that can be mapped onto itself is the set a. If P,, is very large, the population 
could stay in this region for a relatively long period of time before going on 
to /3 or y,. For all other regions in X(t), exit is mandatory after a single time 
period. 

Relatively speaking, the set of points a represents population densities that 
can be called rare. At the other extreme, points in A represent population 
densities that can be called abundant. It is evident from the above matrix 
that any population in A at time t must return to a at time t + 1, and 
furthermore, no population can ever enter A unless it is a chaotic population. 
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Finally we note that access to a is limited to those populations that are 
already in a, or are in A. Thus, once a non-chaotic population leaves a, it 
never returns. Non-chaotic populations will never be rare (in the sense that 
rare is defined by the set a). 

The above qualitative observations lead to an obvious consequence and an 
interesting speculation. The obvious consequence is that in a chaotic 
population every population flush must be followed by a period of rarity. 
The interesting speculation is that the population flushes and the periods of 
rarity may be somehow related in a regular way. If such a speculation is 
true, it will point to a certain regularity in chaotic populations. 

We examine this speculation first by assuming specific forms for F in the 
two regions, a and A. Assume that for all XE a, X(t + 1) = ax(t) (i.e., at 
low population densities the population grows exponentially), and for all 
X E a, X(t + 1) = e-bxcf) (i.e., at very high densities the population overex- 
ploits its resources at an exponentially decreasing rate). Beginning with some 
value of X(t), (X0), we can compute how many time periods it will take for 
the population to reach the upper boundary of a, k,. That value is given as 

n = (ln k, - In X,)/in (I 

The value that would have generated X, from the set A is given as 

x0 = e-bX, 

where X, symbolizes the size of the population at its flush. The above two 
equations combine to., give 

n = ln(k, - a) + (b/in a) X,. 

Thus we see that the length of time the population will be rare, following a 
population flush is expected to be linearly related to the size of the 
population flush, under the specific hypotheses of exponential increase in a 
and exponential decay in A. 

More generally, we apply simple linear approximations in both a and A 
sets. Thus 

n=C _ ‘n(C*-C,X,) 
1 In a 

and 

an c, 
iii’ (C,-C,X,)lna 

Thus we see that over the range of interest (C, - C, X > 0), the time spent 
being rare (n) is positively related to the size of the population flush. 
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This result suggests a sort of qualitative conservation law. The mean 
population density will be constrained within certain narrow limits since a 
large population flush will be followed by a relatively lengthy period of 
rarity and a smaller population flush will be followed by a relatively short 
period of rarity. 

A BIOLOGICAL EXAMPLE 

In an earlier paper (Vandermeer, 1975) I outlined a descrite equation 
approach to the description of seed predation by insects, in which a 
recruitment function f(x) stipulated next season’s number of individual 
insects attacking seeds as a function of x, the number attacking the seeds this 
year. This recruitment function was linked to an attack function g(x) and the 
boundary conditions aflax > 0 for x small, aflax $ x for x large, and 
as/ax > 0, and a2g/3x2 > 0. Subsequent work on chaos has made it obvious 
that according to my model, the insect population will be chaotic if aflax is 
small enough for large x (i.e., large absolute value with negative sign) or 
ag/ax is large enough for large x-specifically for the non-zero value of .Y at 
which f and g are equal. 

The attack rate function can easily be incorporated into the recruitment 
function so as to express the model in the more usual form of Eq. (1). 

There are particular biological features of insect seed predation that make 
it possible to stipulate F directly in terms of certain probabilities. Let b 
symbolize the average number of eggs laid by an individual insect. 
Supposing that the eggs are laid at random, the fraction of seeds that are 
attacked by a single larvae is given by the second term of a Poisson series, 
or 

P( 1) = @x/m) e -- hx’m 

where m is the total number of seeds (thus bx/m is the mean number of eggs 
per seed). We now presume that any seed attacked by more than one larvae 
will not offer enough resource to provide sustenance for both larvae and thus 
neither will reach the pupation stage. Obviously this assumption could easily 
be relaxed by taking more terms in the Poisson series. I here utilize only the 
single term for ease of exposition, 

Thus, the number of individual insects expected in the next generation can 
be written as 

X(t + 1) = F(X(f)) = abX(t) e - b,Y(‘)‘m (2) 

where a is the survivorship rate. This form corresponds to May’s form B 
(May, 1976) where the carrying capacity K is m(ln ab)/b and growth rate r 
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SIZE of POPULATION FLUSH 

FIG. 2. The relationship between peak population density and subsequent years of rarity 
for various parameter values of Eq. (2) (0, a6 = 125; X, a6 = 250; 0, ab = 500). 

is In ab. Thus we can catalogue the population behavior as asymptotic 
equilibrium if ab < 7.39, as oscillatory (with various periods) if 7.39 < 
ab < 14.73, and as chaotic if ab > 14.73 (May, 1976; May and Oster, 1976). 

In Fig. 2 is plotted the relationship of n versus peak population density for 
increasing values of r for Eq. (2). Note that the slope decreases as Y is 
increased; that is, as the population becomes more and more chaotic, less 
time is spent in rarity as a function of particular population flushes. 
Furthermore, as the population becomes excessively chaotic (r becomes very 
large), the change in the slope of the relationship between it and X, 
decreases. At very large parameter values of r (“super” chaos), the 
relationship between n and X, changes only slightly with a change in r. This 
is an interesting result because along with the regular behavior of n versus 
X, it implies a certain resolution of chaotic behavior. To recapitulate we first 
noted that the number of years of rarity is tightly correlated with the size of 
the preceeding population flush. We now see that under conditions of 
extreme chaos the correlation itself becomes almost invariable. Thus, from a 
practical point of view the number of years of rarity of a population can be 
generally predicted from a knowledge of the size of a population flush. If the 
population is only “mildly” chaotic (e.g., the functions toward the left of 
Fig. 2), slight changes in I, as might happen as a result of typical stochastic 
forces, will cause a dramatic drop in the accuracy of such predictions. But in 
a superchaotic population (e.g., the functions toward the right of Fig. 2) 
small changes in r, for whatever reason, will have little effect on the ability 
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to predict n from X,. The chaos has been, in a sense, resolved. This resolved 
behavior is reminiscent of patterns obtained by May in his study of 
differential-delay equations (May, personal communication), where regular 
oscillations are replaced by seemingly chaotic behavior which is subse- 
quently replaced by regular oscillations again, in response to a single varying 
parameter. 

RESOLVED CHAOS 

We now consider a restricted class of functions for F; namely, we are 
concerned with that class of which dF/i?X(t) < 0 for large values of X(t). 
Biologically, the concern is with those situations in which overexploitation is 
a possibility. 

Given such functions, the population can be pulsed artificially, whether or 
not the parameters dictate chaotic behavior. That is, for a non-chaotic 
population it is impossible for the population ever to reach the region d. But 
it is possible to begin a trajectory in A simply by starting the population 
there. If we assume, as before, that F is approximately linear in both II and 
A, with positive slope in CI and negative slope in A, the analysis as presented 
earlier applies directly. There will be a regular and positive relationship 
between the size of the artificially induced flush and the number of the time 
units of rarity to follow. This means that a heretofore unrecognized 
regularity exists for non-chaotic and chaotic populations alike; that is, the 
size of a population flush (naturally occurring in a chaotic population, 
artificially induced in a non-chaotic population) predicts the length of time 
the population will subsequently remain in a condition of rarity. 
Furthermore, as will be suggested in the following example, that regularity 
itself shows predictable behavior, sometimes transforming the typically 
unpredictable behavior of a chaotic population into a highly predictable form 
but retaining its underlying chaotic form. It is this region of high predic- 
tability that I call resolved chaos. 

Recall the seed predator example given earlier. Pulsing the population 
artificially we obtain the data plotted in Fig. 3. It is obvious that the same 
positive relationship exists between peak population density and subsequent 
time being rare, as existed in chaotic populations. The difference, of course, 
is that the relationship cannot in principle be observed in nature for non- 
chaotic populations whereas it can for chaotic ones. 

We can summarize the information in Figs 2 and 3 by plotting a graph of 
the slope of the line (in Figs. 2 and 3) against the parameter of the equation. 
Such a graph is presented in Fig. 4. It is interesting that the various forms of 
population behavior from asymptotic stability, to damped oscillations, to 
permanent oscillations to chaos, can be visualized on this single graph. It 
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FIG. 3. The relationship between peak population density and subsequence years of rarity 
for various parameter values of Eq. (2). All examples are artificially pulsed non-chaotic or 
midly chaotic populations (0, ab = 14.73; 0, ab = IO; X, ab = 2.5). 

,n(ob) 

FIG. 4. The relationship between the slope of the “population flush versus time of rarity” 
function and the parameter of Eq. (2). 
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should be recalled, however, that the only potentially observable points are 
those in the chaotic regime. 

Figure 4 represents a compact summary of possible qualitative population 
behaviors. But the relation in Fig. 4 is derived from a particular equation. 
Whether or not the same sort of relationship will exists for other equations is 
not known. It is clear that the descending limb of F must at least have a 
positive second derivative (J*F/ZJX* > 0) for the relationship pictured in 
Fig. 4 even to hold approximately. 

As a counterexample consider the triangular function (as in Guckenheimer 
et al., 1976) 

X(t + 1) = ax(t) for XEa 

X(t+ l)=b-cX(t) for XEd 

As before. we have 

n = (ln k, - In X,)/in a 

and X, is given as 

x, = b - cx, 

so 

In k, 
n=In- 

ln(b - cX,) 
In a 

and, as before, 

an 
Z = (b - %,) In a 

In this particular case, c is the parameter that determines chaos-as c gets 
larger the population is pushed further and further into the chaotic regime. 
We are interested in the rate of change of this slope as a function of the 
parameter c, namely, 

f3*n b 
%$ = (b - cX,)* In a 

which will always be positive. Such a result is in direct contradiction to the 
general pattern described earlier for the specific equation (2). 

But it is also obvious from Eq. (3) that &z/ax will be negatively related to 
chaos. In Fig. 5 I have illustrated the general form of this relationship with 
piecewise linear forms of f, for an/ax positive and negative (we note in 
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FIG. 5. Illustration of the general form of F and the possibility of resolving chaotic 
patterns. Examples where chaos (a) will be resolved and (b) will not be resolved. 

passing that a3n/ax ac2 = bX,(b - cX,))” (In a)-’ which is negative only 
when cX > b, a situation out of the realm of interest for this paper). In Fig. 5 
we see an interesting limitation on the resolution of chaos. Apparently some 
functions (e.g., Fig. 5b) will not generate resolved chaos, while others (e.g., 
Fig. 5a) will generate resolved chaos. Furthermore, it appears that if the 
descending limb of F has an inflection point (i.e., a2F/aX2 = 0 for some X 
on the descending limb), resolution of chaos is possible, whereas if F has no 
inflection point in its descending limb, resolution of chaos is impossible. 

DISCUSSION 

Three mathematical considerations have been presented: (1) the number of 
time units a population will remain rare is a monotonically increasing 
function of the size of the previous population flush, (2) the slope of that 
function follows a regular pattern as propensity for chaotic behavior is 
increased, sometimes leading to a region in which further changes in 
propensity for chaos result in very small changes in the slope-this region is 
called the region of resolved chaos, and (3) the resolution of chaos is 
possible only if a2F/aX2 = 0 for some X E (y2 U y3 U d). Each of these three 
considerations suggests biological consequences that need to be discussed. 

The relationship between time of rarity and size of previous population 
flush is an important consequence of chaos. It is especially interesting in 
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light of the fact that only in the chaotic regime does the relationship hold. 
We might then suggest that observing such a relationship under natural 
conditions would be evidence that the population of concern was in fact 
exhibiting chaotic behavior. 

The general pattern further suggests that chaotic populations are likely to 
be usually rare. While population flushes occur occasionally, the time 
between flushes is time in which the population is rare. Since rare 
populations are not popular subjects for biological study, it is perhaps not 
surprising that the detection of chaos in nature. has been thus far rather 
elusive (Hassel et al. (1976). 

The second consideration relates to the changes to be expected in the 
pattern described above, as a population becomes more and more chaotic. 
For chaotic populations the number of time units of rarity is closely related 
to the size of the previous population flush. But the nature of that 
relationship changes as the population becomes more and more chaotic. 
And, for a broad class of models, when the population approaches extreme 
chaos, the degree to which that relationship changes becomes very small. 
Thus, for example, for a “mildly” chaotic population one could theoretically 
predict how many years the population will remain rare after a population 
flush of a particular size. But if there is any sort of variation in the 
environment (e.g., stochastic variation), the accuracy of the prediction will 
be dramatically affected. Yet, if a similar population were “very” chaotic, 
similar variation would not affect the accuracy of the prediction. In a sense 
the chaos has been resolved. The population, properly viewed, is highly 
predictable and that predictability is relatively resistant to outside pertur- 
bation. 

Not all models which can exhibit chaos can also exhibit resolved chaos. 
Apparently it is the details of the region of overexploitation that determines 
whether or not chaos will be resolved as chaotic behavior is increased. 
Unfortunately those details defy a nice intuitive summary. If the descending 
limb of F has an inflection point, chaos is resolvable. If the descending limb 
of F does not have an inflection point, chaos is not resolvable. But exactly 
what does that mean in biological terms? While a clearcut intuitive 
description does not seem possible, a sort of law of diminishing returns 
seems appropriate. If the addition of more and more individuals into an 
already overcrowded population reaches a limiting value in terms of the 
negative-density-dependent effects it induces, that is, if the addition of one 
more individual to an extremely overcrowded situation would add less 
negative feedback than if that same individual had been added to a mildly 
overcrowded situation, the chaos of the model can be resolved. 

While not diminishing the potential importance of chaotic behavior in 
nature. the notions of regular patterns and resolved chaos may provide a new 
technique for dealing with empirical data. For those populations whose 
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behavior over time defies regular description, looking at the relationship 
between peak population density and period of rarity may provide insight as 
to the underlying dynamics of the population, particularly with regard to the 
refinements of chaos theory presented herein. 
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