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Two evaluative criteria for probabilistic forecasting performance, consis- 
tency with the axioms of probability theory and external correspondence with 
the events that ultimately occur, are distinguished. The mean probability, or 
Brier score (PS), is the scoring rule most commonly used to quantify external 
correspondence. A review is made of methods for decomposing PS into com- 
ponents that represent distinct and important aspects of external corre- 
spondence. Data from an empirical study of forecasting performance are used 
to illustrate the interpretation of the components of the most recent decompo- 
sition of PS (J. F. Yates, Forecasting performance: A covariance decomposi- 
tion of the mean probability score. Paper presented at 22nd Annual Meeting of 
the Psychonomic Society, Philadelphia, November 1981; also an unpublished 
manuscript). Substantively, the most important finding of the study was a 
"collapsing" tendency in forecasting behavior, whereby subjects were in- 
clined to report forecasts of .5 when they felt they knew little about the event 
in question. This finding is problematic because self-reported knowledge was 
only minimally related to the actual external correspondence of the subjects' 
forecasts. A survey of uses of PS decompositions suggests, among other 
things, that current research typically emphasizes calibration, perhaps to the 
neglect of other, more important dimensions of external correspondence. 

The purposes of this paper are twofold. First, a review is made of 
methods for analyzing various aspects of a particular quality of prob- 
abilistic forecasts--how well they actually anticipate what does and does 
not occur. The review focuses on the algebraic features of these tech- 
niques as well as how the procedures can be and are used in psychology 
and judgment analyses. The second purpose of the paper is to report the 
results of an empirical study of forecasting performance. The data of the 
study are examined in detail to provide a concrete illustration of one of the 
analytic techniques, that due to Yates (Note 1). The substantive aim of the 
study was to discover the relationship between forecasting behavior and 
self-judged knowledge of events. 

INTERNAL CONSISTENCY VS EXTERNAL CORRESPONDENCE 
Probabilistic forecasts are essentially statements by the forecaster of 

the degree to which he or she is certain that a particular event will occur 
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some time in the future. Such forecasts are subject to the minimal con- 
straint placed on probabilities that they be bounded by 0 and 1. Also, it is 
understood that the larger the reported probabilistic forecast is, the more 
certain the forecaster is that the event will indeed occur. 

There is no guarantee that probabilistic forecasts will exhibit any of the 
other properties which are required to legitimately call them "prob- 
abilities." A collection of such judgments are appropriately considered to 
be probabilities when they do not violate commonly accepted axioms of 
probability theory, e.g., the Kolmogorov axioms (Apostol, 1962; Wood- 
roofe, 1975). Then the judgments are said to be internally consistent; they 
are consistent with the axioms. 

Internal consistency does not necessarily have anything whatsoever to 
do with what ultimately does or does not take place. It is entirely possible 
that a set of probabilistic forecasts will be perfectly internally consistent, 
yet be completely worthless in terms of anticipating what happens in the 
real world (Halmos, 1944). The extent to which probabilistic forecasts do 
anticipate the events at issue is called external correspondence (Yates, 
Note 1). While perfect internal consistency does not imply perfect exter- 
nal correspondence, perfect external correspondence trivially requires 
perfect internal consistency, of course. 

It can be demonstrated (Ramsey, 1950; Winkler, 1972) that, if a person 
makes decisions on the basis of internally inconsistent probabilistic fore- 
casts, that individual is vulnerable to cycles of transactions in which he or 
she is guaranteed to lose, regardless of which of the events being 
forecasted actually occurs. The extent to which internal inconsistency 
does lead to dysfunctional consequences in the real world is unknown. 
One does not have to stretch the imagination very far at all, however, to 
recognize the seriousness of deficiencies of forecast external corre- 
spondence. So, it is clear that the assessment, analysis, and understand- 
ing of external correspondence is a significant problem. 

THE MEAN PROBABILITY SCORE 

Conceptually, at least, the class of rules one might use to index the 
external correspondence of probabilistic forecasts is boundless. In prac- 
tice, however, only a small number of such scoring rules are commonly 
used. Most of these rules are "proper ,"  in that their structural properties 
are thought to discourage hedging when they are used as devices for 
rewarding the forecaster's performance, e.g., the logarithmic, spherical, 
and quadratic rules (Winkler & Murphy, 1968). Properness is not neces- 
sary, however, for a rule to be used for assessing the external corre- 
spondence of a collection of forecasts (Yates, Note 2). 

By far the most widely employed rule for summarizing external corre- 
spondence is the mean probability score (PS), also known as the Brier 
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score after  Glenn W. Brier (1950), the meteorologis t  who introduced it. 
The mean probabil i ty score is a variant  of  the quadratic scoring rule. It  
can be described as follows. 

Le t  the generic event  in question, e.g.,  " R a i n , "  " D o w  Jones average  
r i ses ,"  "Pa t ien t  su rv ives , "  be denoted by the letter A. Even t  A ' s  occur- 
rence or nonoccurrence  is to be forecast  on N different occasions.  Denote  
b y f  the probabilistic forecast  of  event  A ' s  occurrence  on the i th occa- 
sion, i = 1 . . . . .  N.  Also, define an outcome index for e v e n t A  on the i th 
occasion by  

d~ = 1, if event  A occurs ,  
= 0, if event  A does not occur.  

Then the probability score for occasion i is given by  

PS~(f,d) = ~ - di) 2. (1) 

Over  all N different occasions,  the mean probability score is then given by  

PS(f,d) = ~ @ - d,) 2. (2) 

Clearly, PS is 0 when external  cor respondence  is perfect.  PS is 1 when  
forecast ing per formance  is " coun te rpe r f ec t , "  i .e.,  f~ = 0 when event  A 
occurs  andf~ = 1 when event  A does not occur.  

THE SANDERS DECOMPOSITION OF PS 

Sanders (1963) was apparent ly  the first to offer a decomposi t ion  of  PS 
into c o m p o n e n t s  wh ich  index  d i f fe ren t  a s p e c t s  o f  ex t e rna l  co r re -  
spondence.  The Sanders decomposi t ion  applies to forecasts  that are re- 
stricted to a limited set o f  categories,  e.g.,  tenths. Alternatively,  the fore- 
casts might be  expressed  cont inuously by  the forecaster ,  but are then 
rounded or grouped in to  categories after the fact.  

Given that  forecasts  are considered to be  discrete,  the method of  com- 
puting PS is slightly different in the situation t reated by  the Sanders de- 
composi t ion as compared  to the more  general situation discussed previ-  
ously: 

i = 1  - -  d 2 
PS0C, d) = ~ @ ~ ) ,  (3) 

where  fj  is the j t h  allowable forecast ,  j = 1 . . . . .  J ,  e.g., f4 = .3 when  
forecasts  are in tenths;  d,j is the outcome index for the ith occasion on 
which forecast  fj  is offered; and Nj is the total number  of  occasions on 

d which the forecas t  isf~, N = ~ j  =INj. 
Sanders (1963) shows that  Eq. (3) can be expressed  as 
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() PS(f,d) = ~-  j~N~dj(1 - dj) + \ N / ~ : ~  (4) 

wheredj  = ( 1 /N j )~  ~=Jl dij is the relative f requency of  event  A ' s  occur- 
rence over  the Nj occasions when the forecaster  reports forecastf i .  Equa- 
tion (14) is what Yates (Note 1) calls the Sanders decomposition of  PS. 

Sanders (Note 3) referred to the first term on the right hand side of  Eq. 
(4) as the " reso lu t ion"  of  the N forecasts.  To avoid confusion with an- 
other  statistic to be described below, Yates (Note 1) calls that term the 
Sanders resolution of  the forecasts.  Given that the Sanders resolution 
contributes to PS positively, it is clear that the forecaster ' s  goal should 
be to minimize the term. On the face of it, it appears the statistic is not 
under  the forecaster ' s  control ,  since it involves only outcome indexes, 
which are determined by the events.  This is deceptive.  Recall that occa- 
sions are sorted into classes j = 1 . . . .  , J according to the forecaster's 
reported forecasts for those occasions. To take an extreme example,  if the 
forecaster  always made the same prediction, sayfi*, then N~* = N and Nj 
= 0, for j = 1 . . . . .  J and j # j*. This would mean that the Sanders 
resolution would be d(1 - d). 

How can the forecaster  minimize the Sanders resolution? The expres- 
sion (1/N)_~]=IN~@I - 4)  achieves its smallest possible value of 0 when 
Nflj(1 - d~) = 0 for each and e v e r y j  = 1, . . . , J. Now, N~4(1 - 4 )  = 0 
only ifN~ = 0, dj = 1, or ~/j_-- 0; Nj = 0 means that c lass j  is not used. So, if 
c lass j  is used, then either dj = 1 o r J j  = 0. Ifdj  = 1, this means that event  
A occurs on all of  the occasions for which forecastf i  is reported.  Ifdj  = 0, 
this means that event  A occurs  on none of  the occasions for which fore- 
cas t f i  is reported.  The upshot  of  all this is that the forecaster  minimizes 
the Sanders resolution if he or she never  assigns the same forecast  to two 
different occasions,  one of  which results in event  A ' s  occurrence,  the 
other  of  which does not. A concrete  example of ideal resolution, as absurd 
as it may seem, would be that in which all forecasting occasions that result 
in a rise in the Dow Jones average are assigned even-multiple forecasts by 
an analyst, e.g., .0, .2, . . .  , while all other  occasions are given odd- 
multiple forecasts.  

T he  s e c o n d  e x p r e s s i o n  on  the  r i gh t -han d  s ide o f  Eq .  (4), (1/ 
N) J d 2 ~ = I N ~  - ~) , was called by Sanders (Note 3) the "rel iabi l i ty"  of 
the set of  N forecasts.  Here ,  it is called the reliability-in-the-small to 
distinguish it from a similar, but different, component  in the covariance 
decomposi t ion of  Yates (Note 1). Clearly, the forecaster ' s  aim should be 
to minimize the reliability-in-the-small. This goal is achieved when, for 
each j,  j = 1, . . . , J, fi  = dj,' i.e., the forecaster  somehow manages to 
match individual discrete forecasts  with their respect ive category relative 
frequencies.  A given collection of  forecasts is said to be calibrated-in- 
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the-small to the extent that this ideal of perfect matching is approached: 
Thus, for instance, a weather forecaster would exhibit good calibration- 
in-the-small if on 60% of the days when he forecasts a .6 chance of rain, it 
actually rains, and if on 30% of the days he forecasts a .3 chance of rain, 
rain occurs, and so forth. 

THE MURPHY DECOMPOSITION OF PS 

M u r p h y  (1972a, 1972b, 1973) has described_ several decompositions of 
PS. His 1973 "new"  decomposition is the PS decomposition that seems to 
be most widely used, at least in psychological research. Specialized to the 
type of situation presently under discussion involving forecasts for a 
single event A, Murphy's decomposition follows directly from Sanders'. 
It can be shown rather easily that the Sanders resolution can be ex- 
pressed as 

~- N~d~(1 - dj) = d(1 - d) - ~- N~(~/j - ~)2, (5) 

where d = (l/N) ~]=1 EiSJ----" 1 dis, the grand mean of the outcome index, is 
also the overall relative frequency of event A's occurrence. Substituting 
Eq. (5) into the Sanders decomposition, Eq. (4), we arrive at what Yates 
(Note 1) calls the Murphy decomposition of PS: 

PSff, d) = 3(1 - d) + N~@ -d~)- z _ ~_ N~(d~ - J)=. (6) 

Murphy (1973) has called the expression (l/N) ~j'=iNj(dj - d) 2 simply the 
"resolution" of the collection of forecasts. To distinguish this term from 
the Sanders resolution, Yates (Note 1) describes it as the Murphy resolu- 
tion. 

Bear in mind that d(1 - d) is the variance of the outcome index. It is 
determined by "nature ,"  or whatever it is that is responsible for eventA's 
actual occurrence or nonoccurrence. So, effectively, what the Murphy 
decomposition does is divide the Sanders resolution into that part which is 
determined by outside forces (the outcome index variance) and that part 
which is controlled by the forecaster (the Murphy resolution). Given Eq. 
(5), however, it is apparent that the Murphy resolution is maximized 
under the same conditions that the Sanders resolution is minimized. So, 
both expressions reflect the same skill on the part of the forecaster, the 
ability to discriminate occasions when event A will and will not take 
place. 

Analyses of probabilistic forecasting performance using the Sanders 
and Murphy decompositions are typically accompanied by "reliability 
diagrams" (Murphy & Winkler, 1977), in which relative frequencies (d~) 
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FIo. 1. Reliability diagram of (a) a hypothetical perfectly calibrated-in-the-small fore- 
caster, (b) a hypothetical perfectly resolved forecaster, and (c) precipitation forecasts of 
Murphy and Winkler's (1977) Forecaster B (redrawn with the permission of the authors 
and the Royal Statistical Society). 

are plotted against the respect ive  discrete forecasts  @).  When the points 
in a reliability diagram are connec ted  to one  another by lines,  the resulting 
curve is often referred to as a "calibration curve" (Lichtenstein,  Fisch- 
hoff,  & Phillips, 1977). 

Figures l a - c  are, respect ively ,  reliability diagrams o f  the forecasts  o f  a 
hypothet ical  perfectly calibrated-in-the-small  forecaster,  a hypothet ical  
perfectly reso lved forecaster,  and Forecaster  B in Murphy and Winkler's  
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FIGURE 1 (Continued). 

(1977) study of weather forecasters in Chicago. The event being 
forecasted by Forecaster B was precipitation 12 hr hence. Notice that 
Forecaster B's performance was much closer to the ideal of perfect 
calibration-in-the-small than to that of perfect resolution. The reader 
should also recognize that Fig. lb does not represent the only possible 
way that forecasts can be perfectly resolved. All that is required is that 
each point have a vertical coordinate of either zero or one. 

COVARIANCE DECOMPOSITION OF PS 

Yates (Note 1) has derived what is called a covariance decomposition of 
PS. In contrast  to the Sanders and Murphy decomposit ions,  the 
covariance decomposition can be applied to either continuous or discrete 
forecasts. The most basic form of the covar iance  decompos i t ion  of PS is 
given by 

PS(f,d) = S~ + S? + ( f  - d) ~ - 2Sea, (7) 

where Sa 2 and S? are the variances of the outcome indexes and the fore- 
casts, respectively, and Sya is their covariance;fis ,  of course, the overall 
mean forecast for event A. Equation (7) is an instance of a well-known 
method of expressing a mean squared difference of two variables. 

A perhaps__more transparent and useful form of the covariance decom- 
position of PS is given by 

P-S(f,d) = d(1 - ~¢) + AS? + S?,mi n q- 0 ~ - -  d ) 2  _ 2Sin, (8) 

where it is recognized_ (Yates, Note 1) that Sea_ = ~_ -So)d(1  _ d ) ,  Se,min2 = 

(fi -fo)2d(1 - d), and AS? = S? - Sfi, min;fl andfo are, respectively, the 
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mean forecasts of event A's  occurrence when event A does and does not 
actually occur. Several interpretative remarks and comments about Eq. 
(8) are in order. 

The outcome index variance, d(1 - d), provides a good reference point 
for interpreting PS. Suppose the forecaster always reports the constant 
forecast c, e.g., that there is always a 20% chance of rain. A careful 
examination of Eqs. (7) and (8) makes it clear that such a constant 
forecaster would achieve the following value of PS: 

P--S(c,d) = 3(1 - 3) + (c - 3) 2. (9) 

From Eq. (9), it is clear that a constant forecaster can do no better than to 
report the relative frequency, i.e., set c = d. Such relative frequency 
forecasters have sometimes been called "no  skill" forecasters in the 
meteorological literature (Glahn & Jorgensen, 1970), seemingly because 
they do not make an attempt to do anything different from one occasion to 
the next. Perhaps, therefore, it is more appropriate to apply the adjective 
"no  skill" to a n y  constant forecaster. It takes considerable "baseline 
knowledge" to be able to set c near what J will eventually be. Consider, 
for instance, the task of forecasting defaults on personal loans. The aver- 
age layperson is likely to have no idea of what the typical relative fre- 
quency of defaults is. Thus, if he or she were to attempt to forecast 
defaults with a constant probability c ,  that forecast would probably be 
much farther off the mark from d than a similar forecast offered by a 
banker experienced in the personal lending business. 

Another reason that ~¢(1 - d) is important as a reference point arises 
when one is interested in using PS as a means of comparing the skills of 
different forecasters. Again, a careful consideration of Eqs. (7) and (8) 
makes it clear that not only does ~¢(1 - d) reflect aspects of forecasting 
performance n o t  under the forecaster's control, but that the remaining 
terms in the decomposition index aspects that a r e  under the forecaster's 
influence. Thus, it is the latter terms alone which should be used in mak- 
ing statements about relative forecasting abilities. Suppose, for instance, 
that two diagnosticians have considered two different large pools of cases. 
Diagnostician A achieves a value of PS = . 13, while Diagnostician B earns 
a score of PS = .23, in anticipating whether the patients they considered 
did or did not have the disease in question. Clearly, the external corre- 
spondence of Diagnostician A was superior to that of Diagnostician B. If 
one were not careful, it would be tempting to conclude that Diagnostician 
A was more skilled. Suppose, however, it turned out that 45% of Diag- 
nostician B's  cases had the disease, while only 10% of Diagnostician A's 
did. A quick calculation then shows that the "skill" components of PS 
sum to .0400 for Diagnostician A and -.0175 for Diagnostician B. Thus, 
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we would come to the opposite conclusion regarding the forecasters '  
relative abilities. 

The term ~ - d) 2 in the covariance decomposit ion is called by Yates 
(Note 1) the reliability-in-the-large. It indexes a performance characteris- 
tic labeled calibration-in-the-large. Like calibration-in-the-small, calibra- 
tion-in-the-large reflects the ability of  the forecaster  to match mean fore- 
casts to relative frequencies.  In this instance, however ,  the matching 
applies to values over  the entire collection of  forecasts rather  than to 
individual forecast  categories. As implied i_n the discussion of  d(1 - d), 
the ability of the forecaster  to make ( f  - d) z small might be seen as an 
indication of  the quality of  the forecaster 's  baseline knowledge about the 
event  class under  consideration. Alternatively, in some circumstances a 
large value of  0 c - d) 2 might simply be a manifestation of  a response bias. 

While the reliability-in-the-large can often be interpreted as a measure 
of the forecaster ' s  general knowledge about the event  of  interest,  Ssa, the 
covariance of  forecasts and outcome indexes, reflects the forecaster ' s  
ability to make distinctions among individual occasions on which the 
event  might or might not take place. Thus, it could be thought of  as 
assessing the sensitivity of  the forecaster  to specific signs which are indic- 
ative of  what will happen in the future. It also shows whether  that cue 
responsiveness is oriented in the proper  direction. In a very  real sense, 
the covariance indexes the heart  of forecasting skill. 

As suggested by Eqs. (7) and (8), the aim of  the forecaster  should be to 
minimize the variance of his or her forecasts, S~. There is an obvious qual- 
ification on this advice, however.  The only way S~can take on its absolute 
minimum possible value of zero is when the forecaster  offers constant  
forecasts.  This strategy would make the covariance term zero, too. So the 
proper  objective of  the forecaster  should be to minimize S~, given that he 
or she exercises his or her fundamental  forecasting abilities, as repre- 
sented by S m. The conditional minimum forecast variance, given Sin, is 
S~,m~n. The conditional minimum value of  S~ is achieved under  very  in- 
teresting circumstances.  S~ = S~.m~n when all forecasts  for cases in which 
event  A occurs are identical, i.e., f = f l ,  and all forecasts for cases in 
which event  A does not occur  are identical, i.e., f = f0. If, under  these 
conditions,f1 # f0, one has a situation in which the forecaster  has perfect  
foresight, in that he or she exhibits perfect  discrimination of  instances in 
which even tA does and does not occur. The only thing that would possi- 
bly mar the forecaster ' s  performance is mislabeling; the forecaster ' s  nu- 
merical assignments would be inappropriate,  i . e . , f l  < 1 and f0 > 0. Since 
A S f  2 = S f  2 -- Sf2,min, A S f  2 is appropriately considered as the " e x c e s s "  
variability in the given collection of forecasts.  If  Ssa indexes how respon- 
sive the forecaster  is to information related to e v e n t A ' s  occurrence,  then 
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~S 7 might reasonably be taken as a reflection of how responsive the 
forecaster is to things that are n o t  related to event A's occurrence. 

Yates (Note 1) shows that there is a very straightforward relationship 
between the components of the covariance decomposition of PS and those 
of the decompositions of Sanders and Murphy. The essential observation 
demonstrated is a partitioning of the reliability-in-the-small: 

2 Nj( f j  - 2 N ; ( d ~ - d )  =. (10) J=, -d~) = S ? + ( f l - d )  = -  2S m + ~- J 

Besides identifying how the covariance decomposition is related to the 
other decompositions, Eq. (10) shows that resolution and reliability-in- 
the-small are algebraically confounded with each other in a very direct 
way. A graphic summary of the relationships among the PS decomposi- 
tions reviewed is presented in Fig. 2. As suggested in the figure, in a 
particular sense, the components of the covariance decomposition of PS 
are more basic than those of the other decompositions. 

It might be noted that there exist forecasting situations in which three or 
more events form the relevant partition of the sample space, rather than 
simply event A and its complement, as assumed in the discussion to this 
point. Thus, for example, a political analyst might be required to offer a 
"vector forecast" of the probabilities that any one of three political par- 
ties, or none of them, will have the majority in the next parliament of a 

COMPONENTS 
DECOMPOSITION 

Mean Probability Score 

Sanders R e s o l u t i o n  Reliability-in-the-Small 
Sanders: t "J - t J [(-~) ]Ej=t Njdj(t-dj) ] + [(-~)jT. = Nj( f j -d})  2 ] 

ou, o e  J 
Index x 

Variance Murphy Resolution Reliability- in-the-Small 
Murphy: t J - t J - 

[(~(i-(~'] - [ (N'>]ENj id j -a '2]Outcome J=' + ~ [ ( - N ) ~  Nj(fj-dj>2] 

index Murphy Forecast Reliability Outcome Murphy 
Variance Resolution Variance in-the-Large Covarionce Resolution 

Covorionce: J _ _ 
- + [ s f ]  + - [ 2 s , , ]  + 

FIG. 2. Graphical display of relationships among the Sanders, Murphy, and covariance 
decompositions of the mean probability score. 
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certain country. There are vector versions of PS and the Murphy (1972a, 
1972b, 1973) and covariance decompositions (Yates, Note 1) thereof. The 
reader is referred to the indicated papers for the details of those decompo- 
sitions. 

SELF-JUDGED KNOWLEDGE AND FORECASTING PERFORMANCE 

A fundamental distinction made in the decision-making literature con- 
cerns the "level of uncertainty" surrounding the decision situation. An 
implicit continuum of uncertainty levels is often assumed to exist (cf. 
Coombs, Dawes, & Tversky, 1970, pp. 115-117). The continuum starts 
with "total ignorance" about which of the potential events relevant to a 
decision will occur. It then proceeds through the fuzzy kinds of uncer- 
tainty known as "ambiguity" (Ellsberg, 1961; Yates & Zukowski, 1976) 
and the more firmly established "risks," such as those associated with 
canonical events like the selection of colored marbles from an urn (Luce 
& Raiffa, 1957). The continuum ends, of course, with situations in which 
there is no uncertainty at all; at least in his or her own mind, the decision 
maker is absolutely sure of what the consequences of the given alterna- 
tives will be. 

The substantive purpose of the study to be described presently was to 
find out how forecasters' self-judged knowledge about the events they are 
required to anticipate affects their reported forecasts for those events. Put 
another way, the aim was to determine the effect of level of uncertainty on 
forecasting behavior. 

In the classical probability literature of the 17th and 18th centuries, 
perhaps the primary rule to be employed in assigning probabilities to 
events was the "principle of sufficient reason" (also known as the princi- 
ple of insufficient reason). Very often, the principle is associated with 
Laplace (1796/1951), who popularized it in his writings. In its essentials, 
the principle prescribes that, if there is no reason to think that one state of 
the world is any more likely to occur than any other, then the probabilities 
assigned to all states should be judged equal. It has been recognized for 
some time (e.g., Milnor, 1954) that there are some formal difficulties with 
this advice. Nevertheless, it is entirely possible that the same reasoning 
motivating the classicists could influence contemporary probabilistic 
forecasters, too. Thus, we might anticipate that forecasters would exhibit 
a tendency to "collapse" their forecasts for event A toward .5 when they 
feel that they know little about the conditions surrounding the event. 

There is another plausible reason that forecasters might evidence the 
collapsing tendency described above. The forecaster could implicitly view 
the forecasting task as an exercise in estimating the outcome index by his 
or her forecast. The psychological loss function for the estimation proce- 
dure is quite conceivably single peaked (as is PS, in form). This would be 
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the case if, say, the subject would feel regret or embarrassment about his 
or her forecast as an increasing function of its distance from the actual 
value of the index. For instance, one would probably feel pretty silly 
offering a forecast of .02 for rain and then observing a deluge. 

Method 

Subjects. Thirty-eight subjects volunteered to participate in the study. 
They were all individuals associated with the University of Michigan or 
Eastern Michigan University: 14 undergraduate students, 13 graduate 
students, and 11 faculty members. The subjects were not paid. 

Task and instrument. The basic task requested of each subject was to 
submit probabilistic forecasts of the outcomes of several college basket- 
ball games that were to be played in various locations in the United States 
within 2 weeks of the time the subject made his or her predictions. It 
might be observed that there is nothing intrinsic to the sport of basketball 
that led to its selection as the experimental forecasting domain. The pri- 
mary reasons basketball games were chosen for study were (a) at the time 
the investigation was conducted, basketball games were very numerous, 
(b) information about individual games seemed to vary in accessibility, 
and (c) subjects could be expected to differ from one another considerably 
in terms of how they might forecast outcomes. 

The instructions and response scales required for the task were con- 
tained in a printed questionnaire which listed the home and visiting teams 
for 20 basketball games. For each game, the subject was asked to indicate 
which team he or she expected to win. Then the subject was requested to 
report how strongly he or she felt that the predicted winner would indeed 
win the game. This opinion was to be expressed in the form of a subjective 
probability from .5 to 1.0, corresponding to a slash the subject drew 
through a continuous, graded scale provided for the purpose. Finally, the 
subject was asked to rate his or her knowledge of the teams participating 
in the game. He or she indicated whether knowledge was "good,"  "fair ,"  
o r  "poor ."  

Subjects were allowed to keep the questionnaire for several days and to 
complete it at their leisure, as long as it was finished and returned to the 
investigator prior to the date on which the first game was played. Subjects 
were told explicitly that the questionnaire was to be completed without 
the assistance of others, since the investigator was interested in individual 
rather than group judgments. 

Results 

EventA for each of the 20 basketball games considered by the subjects 
was designated as "Home Team Wins," for the purposes of analysis. 
Thus, if for game i the subject predicted that the home team would win , f  
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was read directly from the subject's .5-1.0 subjective probability scale. If 
the subject expected the visiting team to win,f~ was taken to be 1 minus the 
reported subjective probability of the visiting team winning. Thus, com- 
plementarity of subjective probabilities for events A and A was imposed 
by fiat. Given the above specification of event A, d~ = 1 was assigned 
when the home team won in game i, and d, = 0 was assigned when the 
visiting team won. 

Illustrative covariance decompositions for individual forecasters. As an 
illustration of the use of the covariance decomposition of PS for individual 
forecasters, the responses of three subjects are examined in detail. The 
subjects in the study were ranked according to their mean probability 
scores over all 20 basketball games considered. Figure 3 a - c  displays the 
covariance graphs for the subjects with the best PS, the PS that was one 
position better than the median, and the worst PS, respectively. Obvi- 
ously, a covariance graph is a close relative to the ordinary scatter plot. 
The abscissa is defined by outcome indexes, while the ordinate is defined 
by forecasts. Essentially, when the data are numerous enough, a 
covariance graph amounts to separate histograms for forecasts when 
event A does and does not take place, along with various summary statis- 
tics. Here, with fairly sparse data, histogram bars are replaced by rows of 
points for multiple forecasts. The horizontal and vertical dotted lines, 
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FIG. 3a. C o v a r i a n c e  g raph  for  the  fo r eca s t e r  wi th  the  be s t  va lue  o f  PS,  Sub jec t  3. PS 
decompos i t i on :  

P-S = d(1 - d)  + AS,~ + S}2,min q_ ( j~  _ d ) 2  _ 2Sfa 
[ .1762] = [ .2275] + [ .0328] + [ .0506] + [ .0254] - 2[ .0637]  

b ias  = f - d = - . 1 6 0 ,  f l  - f 0  = .280. 
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FIG. 3C. Covariance graph for the forecaster  with the worst  value of PS, Subject  19. 

PS decomposit ion:  

P-S = d ( 1  - d )  + A S ~  + S~,mi n + O e - d) z - 2Ssa  

[.3686] = [.2275] + [.0918] + [.0013] + [.0138] - 2 [ - . 0 1 7 1 ]  

bias = f -  d = - .118 ,  f l  - f 0  = - .075 .  
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respectively, pass through the mean forecast and the mean outcome 
index, i.e., the overall relative frequency of event A. The heavy 45 ° line is 
referred to as the "veridical diagonal." The thin line connecting (0~70) and 
(ld~l) is technically the regression line for forecasts on outcome indexes. 
As such, it and t h e f  and d lines must all intersect at the point (~/,f). 

Several distinguishing characteristics of the forecasting performance of 
the three subjects represented should be highlighted. First, of the three 
individuals, only the subject with the best PS did better than the relative 
frequency forecaster. All three subjects were rather poorly calibrated- 
in-the-large, offering forecasts that were generally biased far below the 
relative frequency with which home teams won. The forecasters with the 
best and worst values of PS exhibited a great deal of variability in their 
forecasts around f0 and 371, as evidenced by their covariance graphs and 
values of AS~. By way of contrast, the median+ subject very seldom 
offered extreme forecasts of any kind. It is apparent, however, that the 
most important differences among the subjects pertain to  the covariation 
of forecasts and outcome indexes, as represented by f l  - f0 ,  since d(1 - d) 
is the same for all subjects. The subject with the best PS seemed to 
achieve his ranking primarily because of covariation; his forecast scatter 
was actually quite poor among the entire group of subjects. On the other 
hand, the median+ subject had a very minimal positive covariance. The 
modestness of his covariance was compensated for by the lack of scatter 
among his forecasts, however. The subject with the worst PS also had one 
of the worst covariances, a slightly negative value. 

Covariance decomposition statistics over all subjects. The mean value 
of PS over all subjects was .2527. Only nine out of the 38 subjects, fewer 
than 25%, had values of PS better than .2275, the value for the relative 
freq_uuency forecaster. Fifteen of the subjects, more than 39%, had values 
of PS worse than .2500, the value they would have achieved had they 
simply reportedf~ -- .5 for each game. So, on the whole, one would have 
to say that the subjects did not perform exceedingly well on the forecast- 
ing task. 

Generally, subjects were very biased in their forecasts. The mean value 
o f f  - d was -.138 (p < .0001). This also implies, of course, that the 
subjects were generally poorly calibrated-in-the-large. 

Overall, the mean value of  S~,min was .0037. By comparison, the overall 
mean of the actual variances of subjects' forecasts, S?, was .0379. Thus, 
on the average, the observed variability of subjects' forecasts was on the 
order of 10 to 11 times the variability that is necessary, given the 
covariance difference f l  - f0. In other words, subjects typically scattered 
their forecasts around f0 and 371 tremendously. This picture would look 
even worse if the two subjects who were constant forecasters were 
excluded from the analyses resulting in the above statistics. 
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The across-subject mean value o f f i  - f 0 ,  the main ingredient of the 
covariance of forecasts and outcome indexes, was .074. While this value 
is statistically significant (p < .0001, under standard assumptions; larger 
realistically), its practical significance pales when one recalls that perfect 
forecasting performance would imply that f l  - f 0  = 1.0. Perhaps a truer 
picture of just  how poor the subjects generally were at anticipating game 
outcomes is gained from summarizing frequencies of covariance measures 
in particular categories. Two of the 38 subjects were constant forecasters, 
as indicated above; one always r e p o r t e d f  = .50, while the other al_ways 
reportedf~ = .60. Seven of the remaining subjects had values off1 - f 0  that 
were negative, though none of these was statistically significantly differ- 
ent from zero. In all, only four subjects had values off1 - f0 that were 
significantly different from zero (p < .05). 

Self-judged knowledge relationships. Subjects' ratings of their knowl- 
edge (K) of the teams involved in each game were converted to numerical 
values according to the following scheme: good, 1; fair, 2; poor, 3. On the 
whole, the subjects felt that their knowledge of the teams playing in the 
games they considered was slightly less than fair (/£ = 2.238, SD = .535). 
In part, this moderate degree of knowledgeability was built into the study 
intentionally. This goal was sought by selecting games that were distrib- 
uted over the entire United States, although the largest concentration of 
games was in the eastern Midwest,  the region surrounding the University 
of Michigan. In addition, care was taken to include games involving teams 
that are relatively obscure in the basketball world as well as games be- 
tween traditional basketball "powerhouses . "  

The mean correlation rK-es between individual-game knowledge ratings 
and probabil i ty  scores was - . 0 0 7  (inverse of  the mean of  Fisher- 
transformed correlation coefficients). This mean was not statistically sig- 
nificantly different from zero (t test on Fisher-transformed correlation 
coefficients). Interestingly, only five of the subjects had values of rK-ps 
that were statistically significant, and four of those were negative. The 
apparent lack of association between self-reported team knowledge and 
forecasting performance level manifested itself at the aggregate level, too. 
The correlation between K and P--S was r/~-b~ = .058 (ns). 

The statistic Ei = ~ - .5) 2 was defined as an index of the extremeness 
of each forecast from .5. The mean value of rr_e across subjects was 
- .648 (inverse of  the mean of Fisher-transformed correlation coeffi- 
cients). This value is highly significantly different from zero (p < .0001, 
via t test on Fisher-transformed correlation coefficients). Thus, it is very 
clear that when subjects felt that they knew little about the teams in a 
given game, they were very much inclined to offer a middle-of-the-road 
forecast near .5. That is, the "col lapsing" tendency hypothesis was con- 
firmed. 
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Discussion 

The results of the study pose an interpretation problem for probabilistic 
forecasts. A forecast near .5 might mean that the forecaster is privy to a 
great deal of conflicting evidence which thus forces the forecaster to 
firmly judge the odds of the given event's occurrence to be just about 
even. Alternatively, such a report might mean that the forecaster simply 
does not feel that he or she knows very much about the situation. Thus, it 
would seem that a sensible thing to request of forecasters is not only their 
forecasts, but also an indication of how secure they feel about their 
knowledge of the given conditions. Unfortunately, however, the present 
study suggests that such self-judged knowledge is unlikely to be predictive 
of the accuracy of the forecaster's opinions. The issues obviously beg for 
further study, at both the fundamental and prescriptive levels. An initial 
concern of such research is the generalizability of the present results. The 
subjects in the current research were amateurs. It is possible that well- 
trained, professional forecasters would, in fact, be able to tell reliably 
when they do and do not know things that are useful to their task. 

USES OF PS DECOMPOSITIONS 

There are numerous research and practical situations in which decom- 
positions of PS can be and have been fruitfully employed. This section is 
devoted to a survey of these applications. 

General Forecasting Performance Analyses 

Seemingly, there are endless circumstances in which people make 
probabilistic judgments. It is only natural that there is considerable inter- 
est in knowing just how good those judgments typically are, in terms of 
external correspondence. Beyond the question of how good such prob- 
abilistic judgments are in a general sense, the issue of how good they are 
in very specific ways is of interest, too. And that is where the usefulness 
of PS decompositions becomes most salient. 

In recent years there have been an increasing number of studies in 
which investigators have reported on particular aspects of external corre- 
spondence. A most curious feature of this trend of research has been an 
almost exclusive emphasis on calibration-in-the-small, to the neglect of 
other performance aspects. Thus, for instance, in their discussion of the 
quality of subjective probability distributions for various random vari- 
ables, Tversky and Kahneman (1974) write only of "ca l ib ra t ion"  
(calibration-in-the-small). Rather than demonstrate its significance, 
Tversky and Kahneman simply assume that calibration-in-the-small is a 
desirable quality for a judge to pursue, considering a particular type of 
miscalibration to be a "bias . . . common to naive and to sophisticated 
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subjects" (p. 1129). They also point out that the bias "is not eliminated by 
introducing proper scoring rules, which provide incentives for external 
calibration" (p. 1129). What Tversky and Kahneman do not acknowledge 
is that proper scoring rules provide incentives for all aspects of external 
correspondence, not just calibration. 

It often appears that the general construct of external correspondence 
itself is superseded in significance in the literature by calibration-in-the- 
small. For example, Lichtenstein, Fischhoff, and Phillips (1977) devote an 
entire review to calibration-in-the-small, barely mentioning other external 
correspondence dimensions. Lichtenstein and Fischhoff (1980) have re- 
ported an elaborate experimental training program, the stated purpose of 
which was to enhance judges'  calibration-in-the-small. Fryback and 
Erdman (1979) have urged similar training efforts to improve the 
calibration-in-the-small of physicians' probabilistic opinions. Christen- 
sen-Szalanski and Bushyhead's (1980) analysis of physicians' probabilis- 
tic diagnoses in actual clinical settings focused almost entirely on 
calibration-in-the-small. 

An interesting exception to this seemingly complete emphasis on cali- 
bration is represented by the paper by Shapiro (1977). Although he uses 
slightly different language and expressions, in so many words, Shapiro 
recommends that the logarithmic scoring rule be used as a research tool in 
assessing the external correspondence of physicians' probabilistic judg- 
ments. The mean logarithmic score over N judgments can be expressed as 

Lg(f,d) = ~- log[fdi + (1 - f ) ( 1  - d~)], (11) 

where the symbols have the same meanings as before. It is worth noting 
that PS is generally to be preferred to Lg as an index of external corre- 
spondence, since a single instance in which the subject indicates f = 1 
where di = 0 o r f  = 0 when d~ = 1 makes Lg = - ~ ,  regardless of what 
happens on all other occasions. In any case, Shapiro indicates a decom- 
position of Lg into components that roughly index aspects of performance 
related to calibration-in-the-large and other performance characteristics. 
Specifically, he suggests computing Lg(f,d), the mean value of Lg one 
would achieve by always forecasting the physician's mean forecast 
Shapiro refers to Lg(f,d) as the score due to the physician's "anchor 
point")~ He speculates that, in the medical context, " a  correct anchor- 
point probability may be obtained either through knowledge of the litera- 
ture or by extensive clinical experience" (p. 1512). Shapiro indicates that 
the difference Lg(f,d) - Lgff, d) can be taken as an index of the physi- 
cian's ability "to individualize assessments to the unique characteristics 
of the patient" (p. 1512). Shapiro (1977, p. 1513) implies, but does not 
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prove, that Lg(f,d) - Lg(f,d) can be shown to reflect directly such indi- 
vidualization of predictions. As we have seen, it is already known that 
decompositions of PS achieve the goal of partitioning important perfor- 
mance aspects even more finely than does Shapiro's technique. 

From the perspective provided by the Sanders decomposition of PS, 
the aspect of probabilistic judgment external correspondence which is 
implicitly neglected by the current overemphasis on calibration-in-the- 
small is resolution. Recall that, according to the Sanders decomposition, 
PS is partitioned into reliability-in-the-small, which indexes calibration- 
in-the-small, and the Sanders resolution. Despite their exclusive focus on 
the calibration-in-the-small of physicians' probabilistic judgments,  
Fryback and Erdman (1979) recognize that "even if calibration improves, 
it will remain to show this benefits patients" (p. 344). Sanders (1973), 
summarizing years of research on probabilistic weather forecasting, indi- 
cates that the reliability-in-the-small typically accounts for a much smaller 
share of PS than does the Sanders resolution. He goes on to suggest that 
forecasting "skill would not be significantly advanced if bias [miscalibra- 
tion] were entirely absent" (p. 1176). He shows that the deterioration of 
the quality of weather forecasting performance over the length of the 
forecasting horizon (1 day vs 4 days) is largely due to the deterioration of 
resolution. Thus, it seems that, in at least some domains, the preoccupa- 
tion with calibration-in-the-small is perhaps unwarranted. 

Why is calibration-in-the-small considered so important and resolution 
ignored? Part of the explanation seems to be that calibration-in-the-small 
appears so intuitively reasonable--on the surface. A reliability diagram 
with points close to the 45 ° diagonal just "looks right." When a stock 
price rises on 20% of the occasions when Market Analyst A says there is a 
20% chance it will rise, and 70% of the time when he says there is a 70% 
chance it will rise, that feels right, too. Suppose, however, that prices rise 
on 100% of the occasions when Market Analyst B says there is a 20% 
chance of a price rise, and they never rise when he says there is a 70% 
chance of a price rise. Assuming that only forecasts of 20 and 70% are 
considered, Analyst A is perfectly calibrated-in-the-small, while Analyst 
B is perfectly resolved. A smart investor should prefer the services of 
Analyst B. He could make a fortune by selling stocks when Analyst B 
offers a 70% chance that their prices will rise and buying them when 
Analyst B says there is a 20% chance that their prices will rise. So, while 
the appeal of calibration-in-the-small is largely "aesthetic," the practical 
significance of resolution can potentially be much greater. In essence, 
resolution pertains to a much more fundamental skill than calibration; it 
refers to the ability of the forecaster to discriminate individual occasions 
on which the event of interest will and will not take place. By contrast, 
calibration concerns the forecaster's ability to assign the "right" numeri- 
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cal labels to his or her forecasts. Of course, such proper labels do permit 
one to interpret probabilistic forecasts the same as relative frequency 
probability estimates. 

Another part of the reason that calibration-in-the-small seems to have 
taken precedence over resolution is that resolution measures are some- 
times difficult to understand and have, in fact, often been misunder- 
stood. For instance, Lichtenstein, Fischhoff and Phillips (1977) incor- 
rectly report that the Murphy resolution "reflects the ability of the 
assessor to sort the events into subcategories for which the hit rate is maxi- 
mally different from the overall hit rate." As we have seen, the Murphy 
resolution actually reflects the ability of the assessor to sort events into 
categories for which the hit rates are either 0 or 1. Lichtenstein and 
Fischhoff (1977) indicate that the Murphy resolution "measures the abil- 
ity of the responder to discriminate different degrees of subjective uncer- 
tainty" (p. 162). The truth of the matter is that one could compute and 
interpret the Murphy resolution even if the response categories were 
completely nonnumerical. In the same article, Lichtenstein and Fischhoff 
(1977, p. 175) imply that one can judge resolution from the slopes of 
calibration curves. Figure lb illustrates the fact that resolution and cali- 
bration curve slopes have no necessary relationship to each other at all. 
Lichtenstein and Fischhoff (1977, p. 162) also indicate that resolution and 
calibration are independent of each other. As shown by Eq. (10) and Fig. 
2, this is clearly not the case. The expression for the Murphy resolution, 
(I/N) ~]J=iNj(d~ - j)2, is genuinely more difficult to interpret intuitively 
than is the expression for the Sanders resolution, (I/N) ~]=lN~dj(1 - d~). 
Thus, the misunderstandings and lack of appreciation for resolution are 
not surprising. 

Study of  Forecasting Processes 

Decompositions of PS hold the potential of being valuable tools in the 
study of basic judgment processes. Specifically, one can construct rea- 
sonable arguments as to the foundations of variations in the various as- 
pects of judgment performance indexed by decomposition components. 
One can then design experiments to test for the effects of manipulations of 
the hypothesized underlying factors. The experiment reported by Mehle, 
Gettys, Manning, Baca, and Fisher (Note 4) might be thought of in this 
light. In that study, the authors tested the effects of auxiliary tasks on 
subjects' tendencies to offer excessively low probabilities for unspecified 
"catch-all" hypotheses. The authors compared their subject groups' 
performance with respect to the components of the vector version of the 
Murphy decomposition of PS. Unfortunately, the conclusions one can 
draw from the analyses are limited, due to the fact that Mehle et al. did 
not compute PS and the component scores in the standard way, defining 



152 j. FRANK YATES 

the outcome index as an indicator variable. Instead, the outcome index 
was taken to be a population relative frequency. 

An alternative strategy one could take in using PS decompositions to 
study basic judgment processes might proceed in the opposite direction. 
That is, one might observe natural covariation between PS decomposition 
components and other variables and then pursue what seem to be plausi- 
ble explanations for that observed covariation. For instance, Sanders' 
(1973) finding that the resolution of weather forecasts, but not their cali- 
bration, diminished as a function of the forecast horizon suggests that the 
fundamental ability of the forecaster to tell what will and will not happen 
is what suffers over time. Perhaps a more fine-grained analysis using the 
covariance decomposition of PS might provide even more specific guid- 
ance as to appropriate hunches to entertain as explanations for the fore- 
cast horizon effect. 

Forecaster Evaluation and Selection 

It has already been indicated how PS decompositions can be used to 
evaluate the comparative abilities of forecasters. Going one step further, 
one could use the results of such decomposition analyses to more appro- 
priately reward forecasting performance and to select skillful forecasters. 
The assumptions implicit in these suggestions are that the samples of 
forecasting occasions on which PS measures are computed are represen- 
tative of the forecasting situations of interest and that the samples are 
large enough to justify the belief that the values of the relevant statistics 
provide good estimates of their population counterparts. But, what is 
"large enough?" 

It has often been assumed that the sampling distributions of the compo- 
nents of the Murphy decomposition are especially formidable (Lichten- 
stein et al., 1977). The simplicity of the covariance decomposition of PS 
suggests that the sampling distributions of such components probably are 
not as peculiar as originally feared. Preliminary simulation results in our 
laboratory (to be reported in another article) suggest that this is indeed the 
case. Thus, the prospect of being able to make reliable judgments about 
forecasters' skills on the basis of fairly small samples of their products 
seems promising. 

Forecaster Training 

From a practical standpoint, the most enticing possibility offered by PS 
decompositions is their use in forecaster training. Most schemes for the 
training of forecasters have had feedback as the primary training device. 
Stall von Holstein (1972) provided his expert and nonexpert subjects with 
feedback on their performance in predicting stock market activity. The 
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feedback was primarily in the form of the subjects' scores computed via 
the quadratic scoring rule. The effectiveness of this feedback was gener- 
ally disappointing. Stall von Holstein (1972, p. 144) acknowledged that 
"i t  is possible that there was too much information in the feedback for 
some (or all) participants to assimilate." Because the forecaster could 
possibly focus his or her attention on only one performance dimension at 
a time, it seems that feedback on PS decomposition components holds 
considerably more promise as a means of improving forecasting perfor- 
mance than Stall von Holstein's global approach. 

Lichtenstein and Fischhoff (1980) attempted such a component-wise 
feedback training procedure. Using primarily factual or "almanac" ques- 
tions, Lichtenstein and Fischhoff sought to demonstrate the effectiveness 
of providing feedback on components of the Murphy decomposition for 
improving their  subjects '  performance.  The results showed that  
reliability-in-the-small scores generally did, in fact, improve, while Mur- 
phy resolution scores remained essentially the same. This pattern of re- 
suits might have been due to the fact that, while subjects were provided 
with detailed instruction in how to interpret reliability-in-the-small scores, 
they were apparently told little o r  nothing about how to interpret resolu- 
tion scores. It would be of considerable interest to know exactly how 
Lichtenstein and Fischhoff's subjects improved their calibration-in-the- 
small. As implied by Eq. (10) and Fig. 2, such improvement might have 
been achieved by nothing more than an uninteresting general translation 
of judgments, leading to a reduction in miscalibration-in-the-large. On the 
other hand, the improvement might have been produced by a reduction in 
judgment variance or an increase in judgment-outcome index covaria- 
tion. These would be impressive accomplishments indeed. 

There are good reasons for being cautious about the significance of 
feedback training in general and feedback studies involving factual ques- 
tions in particular for the improvement of forecasting skill. Since Alpert 
and Raiffa (Note 5) used them in an early study on Harvard Business 
School students' probabilistic judgment tendencies, researchers have 
used almanac questions in a wide variety of investigations. These studies 
have revealed a number of phenomena that are truly interesting in their 
own right. It should be recognized, however, that there are some essential 
differences between true forecasting situations and the circumstance of 
answering almanac questions. Perhaps the most important difference is 
that one can answer an almanac question definitively by consulting an 
almanac, whereas in a true forecasting situation, because the event in 
question has not already occurred, no mortal being can know definitively 
whether or not the event will occur. Effectively, probabilistic judgments 
about answers to almanac questions are statements about the perception 
of one's own state of knowledge. By way of contrast, true forecasts are 
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statements about not only the forecaster's knowledge, but also possibly 
the "inherent" accessibility of predictive information. 

As implied in the previous discussion, from the perspective provided by 
the Sanders decomposition of PS, a primary aim one should have in a 
training program is the improvement of resolution. It is informative to 
think about what perfect resolution of probabilistic judgments about fac- 
tual questions would mean. To be concrete, think of the illustrative ques- 
tion of Lichtenstein and Fischhoff (1980, p. 151), "which is longer, the 
Suez Canal or the Panama Canal?" The subject must indicate which 
possible answer he or she thinks is correct, "Suez"  or "Panama,"  and 
then report a probability between .5 and 1.0 that the stated answer is 
indeed correct. In the coding of such responses, the generic event A is 
defined as "my indicated answer is correct." The outcome index d is 1 if 
the indicated answer is correct; it is 0 otherwise. Now, suppose that 
resolution were perfect. Thus, each summand of the Sanders resolution, 
(l/N) ~]=IN~Jj(1 - dj), would be zero. What this would mean is that the 
subject is capable of perfectly discriminating those occasions when his or 
her answers are correct from those occasions when those answers are not 
correct. It is hard to imagine how a person could do this without knowing 
the correct answers themselves. The point is that the interpretation of PS 
decomposition components for factual questions is peculiar and of limited 
value for understanding true forecasting performance. 

Given that resolution and the variance and covariance components of 
the covariance decomposition of PS concern aspects of forecasting be- 
havior which go beyond simply the way the forecaster assigns numbers, it 
does not appear that they can be materially affected by mere feedback 
alone. Instead, it seems that to influence these terms, one must induce the 
forecaster to use different predictive information than he or she ordinarily 
uses or to employ such information in a different way than is customary. 
That is, a fundamentally different approach to forecaster training must be 
taken. 
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