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ABSTRACT 

Clinical trials are often concerned with the evaluation of two or more time-dependent 
stochastic events and their relationship. The information on covariates for individuals in the 
studies is valuable in assessing the survival function. This paper develops a multistate 
stochastic survival model which incorporates covariates. It is assumed that the underlying 
process follows a semi-Markov model. The proportional hazards techniques are applied to 
estimate the force of transition in the process. The maximum likelihood estimators are 
derived along with the survival function for competing risks problems. .An application is 
given to analyzing the survival of patients in the Stanford Heart Transplant Program. 

1. INTRODUCTION 

In prospective studies and clinical trials, study sl;bjeces may make transi- 

tions among finitely many well-defined states. For example, in canc~ clinical 
trials, possible states are improvement, partial response, complete response, 
and progression. The information available is a. sequence of occupied states 
and the sojourn time in each of these states. Information about covariates is 
always available. We would expect a more comprehensive and instructive 
evaluation of the survival function from incorporating this multistate infor- 
mation with covariates into the model. 

In this paper, we consider a stochastic model based on a semi-Markov 
process to describe the multistate, partially censored survival data. We also 
utilize Cox’s [2] proportion&l hazards rnadel of explanatory variables, OT 
covariates, to estimate the force of transition of the semi-Marlkov process. 
With regard to multistate survival data, several studies about the implication 
of semi-Markov modei; have appeared in the literature (e.g., Weiss and Zelen 
[ 141; Lagakos, Sommer, and Zelen [7]). Weiss and Zelen [ 141 proposed a 
semi-Markov model for clinical trials, but they did not take into considera- 
tion the right-censored observations. The nonparametric likelihood methods 
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proposed by Lagakos et al. [7] provide estimates with several desired proper- 
ties; however, these are not directly applicable to situations where covariate 
information is suitable for use. We propose here a stochastic model which 
permits an arbitrary number of transient and absorbing states and makes 
provision for censored data as well as covariate information. To accommo- 
date censored data, we consider censoring as a cause of failure (see Prentice 
et al. [I 11). For such a case, censoring may be referred to as loss of follow-up, 
or incomplete information due to the termination of the :;tudy. In other 
words, censoring is treated as one of the absorbing states. As a competing 
risk problem, this formulation would enable us to estimate 1 the marginal 
distributions, or subsurvival functions (Peterson [lo]). Peterson di cussed the 
relationship between the overall survival and subsurvival functions for the 
case of two states: censoring and a single cause of failure. A similar argument 
extended to competing risk problems is proposed in Equation (7). 

In Section 2, we discuss the probability model associated with a semi- 
Markov process for the multistate clinical trial. In Section 3, the maximum 
likelihood estimators of parameters and their asymptotic properties are 
derived. Section 4 analyzes the data from the Stanford Heart Transplant 
Program by applying our model to estimate the posttransplant survival 
function. 

2. MODEL 

Consider a semi-Markov model with a finite number of states which can 
be decomposed into two mutually exclusive subsets, A and T. The set of 
states A corresponds to absorbing states, and ‘l” to transient states. Set ‘4 
includes the well-defined endpoint events, such as dying of the cause under 
study, dying of other diseases, withdrawing, or being censored by the 
termination of the study. The transient states include all remaining events. 

Let JI denote the state corresponding to the Ith transition, with Jo the 
initial state, and let the random variable T, denote the duration of sojourn 
time between the (I - 1)th and I th transitions. From the constructive defini- 
tion of a semi-Markov process given by Pyke [ 121, the observed history of a 
process having nz transitions to an endpoint event can be denoted as 

where J, E T for I < m and Jn, E A. In practice, H, is the history of a patient 
who is observed up to the occurrence of one of the well-defined endpoint 
events in m transitions. 

A semi-Markov process can be characterized by (a) the initial probability 
$,, (b) the transition probability pii, and (c) the right-continuous distribution 
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function &j(t), defined respectively by 

Wi=jd =e,c,v 
P~J,=jlJ,=j~~ ,..., J,_,=i}=P(J,=jlJ,__,=i)=p,,. 

P{qGt(J,= j,,..., JI-,=i,J,= j)=F;:j(t) 

for Ia 1. Thus, the transition may be considered in two stages. First, when 
state i is entered, the next state is chosen according to Markov transition 
probabilities pij. Secondly, given that the state chosen is j, the sojourn time 
from i to j has a distribution 4j( -). Note that the semi-Markov model, where 
cj( .) is any distribution function, is more general than a Markov process, in 
which Fij( 0) -6 assumed to be the exponential or geometric distribution 
function. Suppose that there exists the density functionhj( a). Then following 
the construction of the underlying probability space by Moore and Pyke [9], 
we have the corresponding joint density of Equation (1) as 

with respect to the dominating product Lebes ,ue and counting measures. 

3. ANALYSIS 

Suppose that there are g values of covariates 2 = ( Z,, . . . , Zg)’ available 
for each patient and we want to incorporate this information into the 
probability density (2). The force of transition from stare i to state j given a 
covariate vector Z is defined as 

fi, ( t I Z) 
Aij(tlZ)=-- 

l-&j(tlZ)’ 

We follow the proportional hazards model of Cox [2] and approximate the 
underlying force of transition by a step function as discussed by Kalbfleish 
and Prentice [5]. That is, the force of transition Xjj( t 1 Z) can be formulated as 

(3) 

whereSI,=(Pijl,...,Piig) are vectors of regression parameters measuring the 
effect of Z on the force of transition i -+ j, and X;,(t) cc: * be expressed as 

Ayj(t)=Aijk , for t,_,Gt-=t,, lGk<K,,, (4) 

where to, t,, . . . , fK 
‘J 

are preassigned constants. Here we choose the proper I’S 
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and assume that within each interval the underlying forces of transition hijk 
are constant. In addition, our model permits the general case where the 
grouping of sojourn times for different transitions may vary. 

Define A,,( t 12) as the cumulative force of transition from state i to state 
j. From Equations (3) and (4), we have, for t, _ , G t < tk, 

Substituting (5) into (2), we obtain the likelihood function contributed by the 
individual whose transition history is as defined in (1). Since we assume that 
the underlying force of each transition is constant during each interval, we 
must decide how many intervals to construct and choose a method for 
grouping the sojourn times for each transition. If the sojourn times are 
naturally grouped with proper clinical interpretation, one need not create 
arbitruy intervals. Otherwise, arbitrary intervals are constructed so that the 
number of transitions occurring per interval is not too small. 

Consider N independent patients in a clinical trial. Tne information on 
covariate vector Z,, (n = 1,. . . , N) and transition history for each individual 
are recorded. The overall likelihood function is the product of likelihood 
functions contributed by all individuals, and may be factored into a compo- 
nent for each transition: 

XexP 
i 

b,j,t+ *(P:jztt)- 

where the rearranged observed data are 

si = number of patients starting in state i E T, 

bijnk = number of transitions i --) j made in k th interval by individual n during 
the process, k=l,...,K,j; 

b,jn+ =2;2 1 bijnk = number of transitions i --) j by individual n during the 
process, 

cijnk = amount of time spent in the k th interval by individual n during the 
transition i --) j. 

If individual n makes no transition from state i to statej, the value of each 

bijnk is zero and thus biin + equals zero. If individual n makes only one 
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transition from state i to statej in the k th interval, then b,,,lk equals one and 
bij,, + is also one, and the values of the remaining bij,rk I ( k’ # k ) are all equal 
to zero. When more than one, say two, transitions are made from state i to 
state j in the k th and k’th intervals, then bij,l+ = 2 and bi,nk ~1, bi,nk’ = 1. A 
similar argument can be applied to individuals making more than two 
transitions from state i to state j. 

The maximum likelihood estimators of multinomial-type probabilities ei 
and pij are 

and 

N 

Zb i/n + 

pij = “=; 

x x h/n+ ’ 
j n=l 

However, there exist no closed forms for the lVILEs of X and /3, and we have 
to apply a numerical technique, e.g., the Nep’ton-Raphson algorithm. The 
asymptotic properties of (A’, @) can be easily dei;Lved. Since we take 
covariates into consideration, the sojourn times, (;rl:} are independent, but 
they need not be identically distributed for different individuals m&ing the 
same transition. Therefore, under mild regularity conditions (e.g. Hoadley 
[4]), the asymptotic distribution of (ii’, 8’> is a multivariate normal distribu- 
tion with mean vector (X’, p’) and variance-covariance matrix equal to minus 
the inverse of the sample information matrix. In the Appendix, the form for 
the variance-covariance matrix is derived. For inference problems related ~0 
/3, that is, to make inferences about the effects of the covariate vector Z, WC 
may use sttidard techniques for testing hypothesis in multivariate normal 
cases. 

The overall survival function is in general difficult to obtain. We will 
therefore consider only the construction of the survival function for the r 
competing risks model. In this model, we have a single initial state, say state 
0, and r causes of failure, say state 1 up to state r, as the absorbing set. The 
overall surviva: function for an individual with covariate vector Z is esti- 
mated by 

S(tlZ)= i B,[r-Fa,(tlz)]9 

j=l 
67) 

where poj is the transition probability from initial state 0 to statej, and F,j( l ) 
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is the conditional cdf of the survival time for an individual patient with the 
failure type j. This estimator, similar to one discussed in Peterson’s paper 
[IO], provides an alternative to those obtained bv the latent t .me approach or 
by the cause-specific hazard function approach (e.g., Kalbfleisch an8 Prentice 
[6, Chapter 71). 

4. EXAMPLE 

In this section, we illustrate Gur model and its application by analyzing the 
survival time of patients in a heart transplant study. The data came from the 
Stanford Heart Transplant Program and have been analyzed previously by 
Tumbull, Brown, and Hu [ 131, Mantel and Byar [8], Crowley and Hu [3], and 
Beck [I]. Tumbull et al. [ 131 and Mantel and Byar [8] considered the effects 
on the survival function of changing an individual’s status from the nontrans- 
planted to the transplanted group, treating the patient population as homoge- 
neous (i.e., no covariates). Crowley and Hu [3] used Cox’s proportional 
hazards model to discover the covariate values for which transplantation is 
likely to be beneficial. But they did not distinguish the possible different 
effects of covariates on transplanted patients dying from different causes. 
Beck [l] developed a stochastic survival model which incorporates covariate 
information and allows us to estimate the effects of covariates on trans- 
planted patients dying from different causes. However, Beck used the latent 
time approach, -Nhich assumes independence among different stages (or 
causes of failure) &cd hence has no clear physical interpretation. With the 
approach of a semi-Markov model described herein, the assumption of 
independence is relaxed. 

To evaluate the survival of heart transplantation, the state space of a 
semi-Markov process is constructed. as follows. Two transient states are S, 
(being accepted into the program) and S2 (receiving a new heart). Three 
absorbing states are R, (dying from rejecting the donor heart), R, (dying 
from any other causes), and R, (censor 3 due to thz termination of the 
study). Following Beck’s suggestion, we include 94 patients in this analysis. 
The number of patients in the various transitions by the end of this study 

Transition Number Transition Number 

S,-R, 28 - S, - Sz - R, 12 

SPR3 2 Sl-+&-+ H, 24 
S,-+-‘R, 28 

The set of covariates available iln this analysis are Z, = age at transplant, 
Z, = previous open-heart surgery (11’ yes, 0 = no), three measures of the 
degree of mismatch between patient and donor ( Z3 = number of mismatches, 
z4 = measure of HLA-A2, a2d Zs = mismatch score), and Z6 = age at accep- 
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tance into the program. The present analysis focuses on evaluating the 
covariates relating to the survival of posttransplant patients. 

In the first part of this analysis, we include five covariates ( 2, , Z2, Z3, Z,, 

and Zs ) and three possible transitions ( & + R ], S2 -+ R 2, and s2 -+ R 3 ). To 
decide into how many intervals to group the sojourn durations, we assign the 
time division points as t, = 0, t, = 6 months, t, = 24 months, t3 = 48 months, 
and t, = 00. We also assume that the underlying forces of transition within 
each time interval are constant, but they may vary between intervals. The 
vectors of regression coefficients corresponding to each of the covariates and 
the underlying forces of transition are denoted, respectively, by &‘, = 

(P,~l,Pijz,PIj3,)Bij4,Pii~) and X:j=(X,jt,Xrj2,ArjJrXij4) for the transition 
i - j. The estimated values for p, X, and /3 are provided in Table 1. The 
estimated st6mdard errors of k and fi are also given in the parentheses. The 
results in TaMe 1 indicate that the measure of mismatch on HLA-A2 ( Z4) is 
not a significant factor in any of the three transir ons. For death by rejection 
(i.e., S2 --) R 1 ), age at transplant, previous surgery and tile mismatch score 
are importart factors. These findings agree with those of Crowicy anti Hu [3] 
and Beck [ 11. But in contrast to these studies, we find that the number of 
mismatches ( Z3) is s! .‘> an important factor and that the estimated regres- 
sion coefficient & is positive. This means that the larger the number of 
mismatches ( Z3), the less the probability of survival. This is exactly what one 
might anticipate. For death from other causes (i.e., Sz -+ R,), previous 
surgery is the only significant factor. In conclusion, young age, having 
open-heart surgery, and a small number of mismatches are the favorable 
factors in prolonging survival. 

For an individual with a given set of covariate values, the posttransplant 
survival function can be calculated from Equation (7). According to Beck, the 
average values of the covariates of all individuals are age at transplant, 45.6 
years; number of mismatches, 2.7; and mismatch score, I. 17. For an individ- 

TABLE 1 

Parameter Estimators and Standard Errors in the Fitted Model 

Underlying force of transition Rcgrcssion coefficients 

Transition II p A, A, A, Ll PI P7 P? /tl 

J&-R, 12 .1875 .0320 .1672 a a .0388 -1.7571 b b .3654 
(.Ol32) (.0263) (.0038) (.1291) (.1041) 

Sz-+ R, 28 .4378 .0052 JO16 .0056 a .0354 - -3491 .I644 ’ .94(K) 

(.0015) (0004) (.0015) (.0047) (.080X) (.0276) (.1X) 

s,-% 24 .3750 .0356 .0318 .0656 .0730 h -.3514 h h h 
(.0040) (.0033) (.0067) (.0104) (.05t(Y) 

“The MLE is undefined since no transitions occur in this interval. 
bThe MLE is not significant at (r = 0.05 and thus not included. 
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TABLE 2 

Survival Function for an Individual with Average Covariatc Values 
and with Previous Surgery 

Time 
(months) 

Survivdl 
probability 

1 .9304 

3 .8667 
5 .7063 
10 .5496 
15 .4600 
20 -3975 
25 a2817 
30 .I974 
35 .1396 

ual with previous surgery (i.e., 2, = 1) and the average covariate values, the 
estimated posttransplant survival function for is shown in Table 2. The 
mid-life time in this case is about 12.5 months. 

In conclusion, with a semi-Markov model, we could study the parameters 
associated with the marginal subsurvival distributions for the mutually 
exclusive states and the overall survival function as well. An alternate 
approach may be obtained by application of separate and independent Cox 
models for each pair of adjacent states. However, the latter approach is a 
latent time approach with a strong assumption of independence. 

APPENDIX. DERIVATWN OF ASYMPTOTIC VARIANCE- 
COVARIANCE MATRIX Zti,il 

The reduced log likelihood function after eliminating terms of oi and pij 
from Equation (6) is 

bijnkIn Xijk)+ ( 2 bijnk) (P;jzn )’ 
k 

- D ijkCijnA ) exP(P;~~J ’ 
k I 

The first and second derivatives of 9 with respect to X and p are as follows: 

n 

6/2,,,=[; ( ~bijnk)zn/]-~ (( ~Aijkcijnk)zn/exdP:,Z.)J 9 
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otherwise, 

The MLEs f and fl may be obtained by solving the equations (A. 1) set equal 
to zero. 

The asymptotic variance-covariance matrix of (ii, @) is equal to minus the 
inverse of the sample information matrix. Denote 

B,= 

where 6’s are given in (A.2). Thexl by inverting the matrix, we have 

where 

DN =AN-&Bit;, 

EN =B, - cy ; ‘c,. 

The author wishes to acknowledge helpful comments made !y the referees 
and the editor. 
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