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A study of a class of finite element methods for the analysis of Stokes’ problem based on the use of 

exterior penalty formulations is described. The effects of selective reduced integration (i.e., the use of 
quadrature rules for integrating the penalty terms which are of lower order than that required to 

integrate polynomial approximations of these terms exactly) are investigated. Error estimates are 
derived and the numerical stability of these methods, as depicted by a special Babuska-Brezzi 
condition, is explored in some detail. The results of several numerical experiments with these methods 
are also given. 

1. Introduction 

This study is concerned with the numerical analysis of a class of finite element methods for 
Stokesian flow problems of the type 

-pAu+Vp=f 
div u = 0 

in 0, 
(1.1) 

u=o on an, 

where p is the viscosity, u the velocity field, p the hydrostatic pressure, f the applied body 
force density, and 0 is an open bounded domain in R”. 

The methods under study here employ exterior penalty schemes to handle the incom- 
pressibility condition, div u = 0. Such methods have received considerable attention in the 
engineering literature in recent years. This popularity has been primarily because they appear 
to provide a device for eliminating the hydrostatic pressure p from the formulation, thereby 
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reducing dramatically the number of unknowns. If needed, proponents argue, the penalty 
approach allows one to obtain an approximation of p a posteriori from the computed 
velocities with little computational effort. 

Finite element methods based on such strategies have been proposed by several authors. 
We mention, in particular, the works of Fried [ll], Malkus [21], Hughes [14,15], Malkus and 
Hughes [22], Hughes, Taylor and Levy [16], Reddy [23] and Zienkiewicz, Taylor and Too [25]. 

These authors have determined, on the basis of numerical experiments, that it is necessary to 
use ‘reduced integration’ of the penalty terms in such formulations in order to obtain results 
which appear to be physically reasonable. By ‘reduced integration’ we mean the practice of 
using an approximate quadrature rule for integrating the penalty terms (such as 
(div u,, div v)~+~)) in the formulation which is of lower order than that required to integrate 

these terms exactly. We discuss the use of reduced integration and its implications on the 
behavior of these methods in Section 4 of this paper. The equivalence of penalty methods of 

this type with certain mixed methods has been pointed out by Malkus and Hughes [22] and 
Bercovier [3]; also, the convergence of certain finite element methods based on penalty 
formulations of problems with linear equality constraints has been studied by Bercovier [3] and 
Bercovier and Engelman [4], but, unfortunately, under assumptions which do not hold for any of 
the methods of interest here. 

The reduced-integration-penalty schemes considered here exhibit interesting and deceptive 
numerical stability characteristics. We show herein that the numerical stability of these 
methods is governed by a discrete inf-sup condition, referred to here as the LBB-condition 
after related work of Ladyszhenskaya [19], Babuska [l, 21, and Brezzi [5,6], and given by equation 
(4.9). Generally speaking, those methods for which this condition holds with a stability 
parameter (Y~ independent of the mesh size h are stable. If (Yh is dependent on h, then the 
method may be unstable. In such cases if the exact solution is not very regular, erratic 
oscillations in the approximate solutions, particularly the pressures, are experienced. 

In Section 6 of this paper, we develop examples of two popular elements for which we are 

able to show that (Y,, = O(h*). Yet, in special circumstances, particularly in the case of very 
smooth solutions on regular uniform meshes, these unstable methods can produce acceptable 
approximations of the velocities. In such cases, however, the pressure approximation is 

especially delicate and may diverge (in L’(O)) as the mesh is refined. A theory explaining this 
special behavior of the velocity approximation for smooth solutions has been advanced by 
Johnson and Pitkaranta [18] for a special element and uniform meshes on rectangular 

domains. 
It is important to note that projection or ‘filtering’ schemes can be devised which allow one 

to modify the pressure approximations in such a way that a stability parameter CO, independent 
of h can be produced. Such operations stabilize many of the otherwise unstable methods of 
this type and can lead to schemes which exhibit optimal rates-of-convergence for both the 
velocities and the pressures. We describe such a scheme in the present work in Section 8. 
Results of a representative numerical experiment are discussed briefly in Section 9. 

2. Stokes’ problem 

The classical model of Stokes of the steady, uniform flow of a viscous incompressible fluid 
can be characterized by the following variational boundary-value problem. 
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Find (u, p) E V x Q such that 

a(U,v)-(p,divv)=f(v), VuE V, (4, div u) = 0 , t/q E Q . (2.1) 

Here V is the space of admissible velocities, here given as the Sobolev space V= (H$Ll))” 

equipped with the norm, 

with R an open bounded region in I%“, and 

Q = {q E L*(O) ( I, q dx = 0) 

with the norm 

(2.2) 

(2.3) 

(2.4) 

It follows from [18, p. 341 that the space Q is equivalent to the quotient space of L2(0) 
module elements in the closed subspace ker B* where 

ker B* = {q E Q I (q, div u) = 0, Vv E V} (2.5) 

where ( - , - ) denotes the L2(0)-’ inner product. Obviously, B* corresponds to the gradient in 
R” plus boundary conditions, and in the present case ker B* = {constant functions on a}. In 
(2.1) a( * , - ) is the bilinear form on V X V given by 

a(u,v)=p Vu uE V 7 7 

p being the viscosity of the fluid, and f is a bounded linear functional on V given by 

f(v)=fOf.udx, VvE V (2.7) 

where f E (L’(fl))” is the given body force. 
Throughout this paper, we shall assume that 

(1) 
(2) 
(3) 

p is a given positive number, 
f E H”-2(0) = (H”-2(0))” ) s 2 2 ) 
the domain 0 is Lipschitzian. 

Under these conventions and assumptions, the following results hold. 

(2.6) 

(2.8) 
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THEOREM 2.1. Let conditions (2.8) hold. Then (i) there exists a constant CY > 0 such that 

(2.9) 

and (ii) there exists a unique solution (u, p) E V X Q to problem (2.1). If, in addition, fl is of 
class Ce”, s B 2, then 

u E (~(~)~ n V and p E H”-‘(fl) . (2.10) 

Proofs of results such as this, together with many additional details on this problem, can be 
found, for example, in the book of Temam [24]. Condition (2.9) was derived in a different but 
equivalent form by Ladyszhenskaya [19] and, in fact, holds under much weaker hypothesis 
than those stated in this theorem. Conditions similar to (2.9) have been developed by Babuska 
[l] and Brezzi [5] in the study of elliptic problems with constraints, and because of this history, 
we shall refer to (2.9) as the ‘LBB-condition’. 

3. A penalty-formulation of the Stokes’ problem 

The mixed variational problem (2.1) also characterizes the solution of a constrained 
minimization problem: minimize the energy 

J: V+W ; J(u)=~a(u,u)-f(u), (3.1) 

subject to the constraint that div z, = 0. Thus, the hydrostatic pressure p is a Lagrange 
multiplier associated with the incompressibility constraint div u = 0. A direct finite-element 
approximation of problem (2.1) leads to so-called mixed finite element methods which have 
been studied extensively in the literature. 

An alternative formulation to (2.1) is provided by the notion of exterior penalties whereby 
(2.1) is replaced by a family of perturbations consisting of unconstrained problems depending 
on a penalty parameter E >O. A significant advantage in such penalty formulations is that the 
hydrostatic pressure p does not appear explicitly in the formulation-thus suggesting that 
corresponding finite element schemes can be constructed which have significantly fewer 
unknowns than standard mixed methods. 

Let F be an arbitrary positive number. Then a penalty approximation of the variational 
problem (2.1) consists of seeking U, E V such that 

a(u,,u)+s-‘(divu,,divv)=f(u), VnE: V. (3.2) 

It is easily shown that there exists a unique solution U, to (3.2) for each E >O. It is also useful 
to note that this equation characterizes minimizers of the penalized energy functional, 

J, : J + R ; J,(u) = $z(v, v) -f(v) + as-‘]]div o]]: (3.3) 
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over all of V, the term &-‘[(div u[[: describing an exterior penalty associated with the constraint 
div z, = 0. 

To appreciate the relationship between (3.2) and (2.1), it is informative to note that the 
solution (u, p) E VX Q of (2.1) is a saddle point of the functional L : VX Q-R, 

L(v, q) = J(u) - (q, div v) (3.4) 

whereas saddle points (u,, pE) of the perturbed Lagrangian L, : Vx Q+ R, 

are characterized by the system 

u(u,,o)-((~,,divu)=f(u), VUE V, 
-(q,divu,)-E(q,PE)=O, Vqf Q. 

Since 

I div U, dx = 0 , 
n 

we can eliminate the perturbed hydrostatic pressure from the last equation to obtain 

p,=-kdivu, in Q 

(3.5) 

(3.6) 

(33.7) 

which, upon introduction into the first equation in (3.6) yields precisely the problem (3.2). 
Thus, the exterior penalty formulation (3.2) arising from the minimization of the functional 

J, in (3.3) is equivalent to the perturbed Lagrange formulation characterized by (3.6). Of 
speciat significance, however, is the observation that a penalty approximation pE of the 
hydrostatic pressure can also be obtained via (3.7) once the solution u, to (3.2) has been 
determined. This again suggests that when a variational formulation such as (3.2) is used as a 
basis for constructing finite-element methods, schemes can be devised which produce results 
analogous to standard mixed methods but which lead to numerical methods which require 
considerably less computational effort. As we shall see, these apparent advantages are not 
always attainable. 

We next establish the basic convergence theorem for the penalty method (3.2). 

THEOREM 3.1. Let ts, E V be the solution of (3.2) of given E > 0 and let pE be given by (3.7). 
when the sequence ((uE, p,)] obtained from such solutions as E + 0 converges strongly V x Q to 
the solution (a, p) of (2.1). Moreover, the estimate 

(3.8) 

hoods with C a constant i~de~ndent of E. In particular, 
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II& - 411 s ~-lIIpll”& md IIp - &II s 2P~-211pll,,E 

w~e$e cy is the co~stu~t in (2.9) and fi is the v~s~osi~. 

PROOF: It is sufficient to prove (3.9). Subtracting (2.1 

a(u,-u,u)=(p,-p,divu), VuE V. 

An application of condition (2.9) leads to the relation 

4lpe - Pllo 5s &4Ik - 4l (Pe - P E a> * 

Setting v = U, - u in (3.10) we obtain 

(3.9) 

) from (3.6), yields 

(3.10) 

(3.11) 

2Pll% - 41: s a(u, - u, u, - u) = (pE - p, div(u, - u)) . 

Since div II = 0 in L2(0), (pE - p, div(u, - u)) = (pE - p, div u,). 
Because of the identification (3.7) we have (pe - p, -opt) Q (PC - p, p)c Thus, 

2641~~ - 41: sG IIP6 - PllollPllo~ (3.12) 

and combining (3.10) and (3.11) implies IIu, - till, < IIpllo(~/cx). The second estimate in (3.9) now 
follows from (3.1 I). 

Results similar to these have been obtained by much lengthier arguments by Bercovier [3], 
Reddy [23], and others. Generalizations of this proof for obtaining e-convergence estimates to 
nonlinear boundary-value problems can be found in [17]. 

4. Finite element approximations 

We now construct a family of finite-dimensional subspaces {Vh} of the space V using 
conforming finite elements on a suitable discretization flnh of 0, spanned by continuous, 
piecewise-polynomial basis functions. The index h is, as usual, the mesh parameter. We will 
generally assume that the family { Vh} is generated by regular refinements of the mesh and that 
f2,, coincides with L! (a is, e.g., polygonal). More will be said about the approximation 
properties assumed for V, later. 

In anticipation of some numerical difficulties to be addressed below, we will use numerical 
quadrature to evaluate certain integrals appearing in our approximation of the penalized 
problem. In particular, we shall evaluate the L2-inner product of two functions f, g E c”(a) by 
means of numerical quadrature formulas I( * , * ) of the type 
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Here E is the total number of elements in the mesh, and {[F, We} is the set of quadrature 
points and weights within an element 0,, 1 d i s G. Thus 

Our approximation of the penalized problem (3.2) then assumes the following form. 

u: E v-h: a(ut v”) + c-‘l(div ui, div uh) = f(v”) , \d vh E vh. (4.2) 

We first establish the solvability of (4.2). 

THEOREM 4.1. Under the above conventions and the hypotheses of Theorem 2.1, there exists a 
unique solution 142 of (4.2) for each h and E > 0. Moreover, for each fixed h, llu!ll, is uniformly 
bounded in E. Finally, there exists a constant C independent of E such that 

I(div ui, div ut) = 5 2 WT(div u~(,$~))‘~ CE . (4.3) 
e=l j=l 

PROOF. The existence of a unique solution uk to (4.2) and its uniform boundedness follow easily 
from the coerciveness of a( - , - ) and the fact that vh C V. Estimate (4.3) follows from (4.2) upon 
setting vh = uf and recalling that I/u’& is bounded independent of E. 

Notice that (4.3) indicates that the incompressibility condition is satisfied at the quadrature 
points 6; in the limit as E tends to zero: 

divu:([T)+O as E+O; l<jsG, l<ecE. (4.4) 

The fact that (4.2) is uniquely solvable for uz is, of course, no indication that (4.2) provides 
an acceptable approximation of (2.1). SitICe the functions vh E vh are pOlynOmialS, it is always 
possible to choose the order G of the quadrature rule to be high enough that I(div u& div v”) 
yields the exact inner product (div u& div v”). However, for all practical purposes, the exact 
evaluation of these penalty terms does not produce a meaningful approximation to (3.2). For 
approximations of the Dirichlet problem (2.1) with reasonably fine meshes, the exact in- 
tegration of the penalty term leads to so-called ‘locked’ solutions, and for a fixed mesh size h 

such locked solutions will have the property that /[u~ll: = O(E): hence, the divergent-free 
solution obtained as E + 0 is uh = 0. 

To illustrate the problem, consider the case of a mesh of 4-node isoparametric (a,-) 
elements on a polygonal domain and suppose div ut div vh ’ IS integrated exactly (e.g., 2 x 2 
Gaussian quadrature is used, G = 4). For the corner element illustrated in Fig. 1 we will have 

u: = {$uZ(l + [)(1+ n)}i + {&“E(1+ [)(l+ v)}j 

where i and j are mutually-orthogonal unit basis vectors and 

div u$ = $z(l + n)+ &~z(l+ 6). 
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Fig. 1. Corner element. 

Because of (4.3) both u’, and ZIP are O(&), and are almost zero for a sufficiently small E > 0. 
Thus, within the corner element, ub is ‘locked’. Similar arguments can be made for adjacent 
elements, and we conclude that the entire solution is locked: U! 3 0 as F -+ 0. 

For the same element, however, if we under-integrate the penalty term by choosing only the 
one-point Gaussian quadrature rule for I( * , * ), then 

l.43 + v’, = O(G) ) 

i.e., U! need not be locked and nonzero solutions are possible. 
Of course, one might avoid such difficulties by choosing non-uniform meshes with h 

sufficiently small or, equivalently, limiting the reduction of E for a given mesh. But this is 
impractical: even for very fine meshes, E must typically be so large that the constraint 
div u = 0 is not accurately satisfied. 

Such locking phenomena and the necessity of selective reduced integration (i.e., the use of a 
quadrature rule I of order less than that necessary for the exact integration of penalty terms) 
has been noted by many authors; see, for example, [20,35]. 

With these observations in mind, we now suppose that an ‘unlocked’ solution U: to (4.2) has 
been obtained and we proceed to define an approximation p$ of the hydrostatic pressure. We 
begin by introducing approximations I?,, and I?: of the constraint operators B and B* (which 
represent the divergence and gradient operators plus boundary conditions, respectively) 
defined by 

I(qh, div V”) = (qh, B,$) = (B;qh, U”) (4.5) 

for every vh E Vh, and qh E Qh. Here Q,, is the finite-dimensional subspace of Q which 
satisfies the following conditions: 

(1) The numerical quadrature rule I of (4.1) and the space Qh satisfy 

I(qh,divvh)=(qh,divvh), VvhE VI,, V#EQh. (4.6) 

(2) There exists an element pk E Qh such that 

(4.7) 
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for 1~ i s G, 1 Q e SE, and (pi)* E ker Bh*, where 

ker B; = (4” E Q,,: Z(qh, div u”) = 0, v uh E Vh>. 

(3) There exists a positive number (Yh such that 

‘Yh(lqhOU s sup 
vhE vh-(0) 

where 0. lo denotes the mesh-dependent norm, 

inf 
(&*EkerB; 

l(qh + (qh)*lIO . 

(4.8) 

(4.9) 

(4.10) 

For example, if Q,-elements are employed and the one-point Gaussian quadrature rule 

(G = 1) is used to construct Z( - , * ), conditions (1) and (2) imply that 

Qh = qh ) qhIn, = constant, 1 
( 

de SE, and xq!meas(fi,)=O . 
e I 

Similarly, if 9-node isoparametric (a,-) elements are used with Z( - , . ) given by the 2 x 2 
Gaussian quadrature rule, the space Qh for approximations of the pressure is characterized by 
(1) and (2) as the space spanned by globally-discontinuous functions which are bilinear 
polynomials over each element. On the other hand, if 6-node triangular (P2-) elements are 

employed for the velocity approximation with Z( * , . ) given by a three-point quadrature rule, 
conditions (1) and (2) define as the space Qh a class of discontinuous piecewise linear 

functions, 

These examples are illustrated in Fig. 2. It is clear that the reduced-integration-penalty method 
characterized by (4.2) and conditions (l)-(3) above is equivalent to a regularized mixed 
finite-element method based on the perturbed-Lagrangian formulation (3.6) in which non- 
conforming (discontinuous) polynomial approximations of the pressures are employed. 
specificially, when (1) and (2) hold, problem (4.2) is equivalent to the discrete problem, 

(U:, p:) E vh x Qh , 

~(uP,u~)-(p8,divu~)=f(~~), VuhE V,, 

(qh,.?p2+divut)=0, kfqhEQh. 

This equivalence has been observed and discussed by Mall&s and Hughes [14,21,22]. 
We also note that by a straightforward (but lengthy) calculation of 

Z($, div U”) = 0, t/ Vh E v,, 

More 

(4.11) 

for each of these three examples, we can characterize the kernel of the discrete operator Z3:. 
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, -_-c_ ‘8 A, 
-._/ 

‘1 I j ‘- . _ 

(4 @) 

Fig. 2. Typical choices of vh and Qh: {a) velocity 
field; (b) hydrostatic pressure. 

(a) --Bp.B_ 
A,B,A/B 

I 
iAl6’ 

A B /A6 A6 

@‘I 6 A j6 A 18 A 

------- 
AB AB AB 

1 I 

Fig. 3. Examples of ker Bh*: (a) Q1-elements l-point 
Gaussian; (b) Qz-elements 2 x 2-Gaussian; (c) P&e- 
ments 3-points Gaussian. 

For example, in the case of a rectangular domain and a uniform mesh, ker Bz is {c, c,(x)), 
where c is a constant and cb is the piecewise-constant checkerboard pattern shown in Fig. 3a. 
For &elements with 2 x 2-Gaussian quadrature, ker B h* contains an ‘hour-glass’ function 
which is piecewise bilinear over each element and which assumes the constant values A or B 
at the Gauss-points of each element (Fig. 3b). For the triangular Pt-elements with dis- 
continuous piecewise-linear pressures, ker Bt contains constants and a discontinuous piece- 
wise linear function which assumes the values A or B at the midpoints of sides of each triangle 
to form the pattern indicated in Fig. 3c. 

~~~A~K 4.2 {One-point methods). The reduced-integration penalty methods described up 
to this point do not include cases in which the velocities are approximated by quadratic of 
higher-degree polynomials but I( - , - ) is defined by a simple one-point quadrature rule. 
Nevertheless, conclusions similar to those given above hold for such schemes with some minor 
modifications. For example, if V’ is constructed using Q-elements, and ($, cpi + div u!) is 
computed using piecewise constants qh and p! on each element, p: is defined by 

(4.12) 
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with G > 0. The corresponding penalty formulation is 

UZE v,: a(~$, v”)+ E-‘f(div u& divvh)=f(gh), tlVh E v,, (4.13) 

where 

r(div u& div v”) = i e=l ,,,‘, n 5 WY div u!(&) - 5 WT div v”([j”). 
e 1=1 i=l 

(4.14) 

If 2 X 2-(4-point) Gaussian quadrature is taken in (4.14), the constraint div u = 0 is satisfied in 
an average sense in each element as E +O; i.e., 

i i div ui(&)+ 0 as E + 0 
i=l 

for each element L&. Similar results hold for triangular (P2-) elements and one-point in- 
tegration. 

It is noteworthy that for the Q2- and P2-elements with the above formulation, we will have 

kerB;C kerB*C Q. (4.15) 

Indeed, ker Bh* = ker B” = (0). This relation does not hold, in general, for the other penalty- 
elements considered earlier. 

We shall describe some additional properties of this class of penalty methods in Section 7. 

5. Convergence of (u!, pB) to (u, p) 

If conditions (l)-(3) of the previous section hold, then it follows from arguments similar to 
those used in the proof of Theorem 3.1 that the sequence {(u!, p!)} E vh X Qh of approximate 
solutions of (4.2), or equivalently (4.11), converges to a pair (uh, p") E vh X oh satisfying 

a(uh,vh)-(ph,divvb)=f(vh), VVhE v,,, (qh, div u”) = 0, tl qh E Qh (5.1) 

as E --) 0. It is noted that the ‘mixed’ formulation (5.1) may not have a unique solution (uh, p”) 

in V,, x Qh, since in some cases ker Bh* # (0). However, the sequence (u&p:) obtained by the 
penalty method converges to one of the solutions of (5.1) as E + 0. This proof is similar to the 
one for Theorem 3.1, but is different from it. 

THEOREM5.1. Let (~2, p:) and (u”, p”) besolutions of (4.11) and (5.1), respectively, and let the 
conditions (lE(3) hold. Then 

and 
(5.2) 

(5.3) 



308 J.T. Oden et al., Analysis of Stokesian flow 

PROOF. From (4.11) and (5. I), we have 

a<u: - Uh,Vh)=(p:-ph,divvh), tlVE v,,. 

An application of (4.9) yields 

Setting vh = ul- uh in (5.4) we obtain 

(5.4) 

(5.5) 

2,u//u! - uhl/:s a(ut - uh, u,” - uh)< (pt -ph, div ui) 

= (p! - ph + qh, div u$) , V qh E ker Bz , 

since div uh = 0 in L*(R). Noting that qh leads to the quotient norm 0 . lo in the estimate (5.5), and 
setting div uh = -&pi, we have 

&-4lu~ - u”ll: s Opf - phOollp:llo& . (5.6) 

Because of the manner of identification of the hydrostatic pressure pp in (4.11), 

1 
qh,pt+-divu2 =(qh,pt)=O, VqhEkerBz. & > 

Then the orthogonal relation (5.7) implies 

inf IlpZ + qhllo = 
&kerB; 

$&fB; {IIP3i + 11q”1&>‘” = llpfllo . 

By using (4.9) we have 

Since lJu~j\, is uniformly bounded in I and h, 

(5.7) 

(5.8) 

(5.9) 

for a proper positive number C > 0. 
Combining (5.5) (5.6) and (5.9), it is possible to conclude the results (5.2) and (5.9). 
We emphasize that if ker Bl !,Z ker B*, then the norm 0 . I,, is different from II * Ilo, the former 

obviously depending on the mesh. 
Another observation regarding the mixed problem (5.1) is that condition (3) (the discrete 

LBB-condition) and (5.1) imply that 
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In other words, a proper constant M > 0 exists such that 

Thus, in view of (5.2) and (5.3), if the parameter (Y ,, in the discrete LBB-condition (4.9) 

depends upon the mesh size h, it may be necessary to choose a very small E (= O(ai)) in order 
to assure for convergence of the penalty solution (~9, p:) to the solution of the corresponding 
mixed formulation as h + 0. 

Next, we shall consider the convergence of (uh, p”) E vh X Q,, to the solution (u, p) E V X Q 
of the Stokes’ problem (2.1). 

THEOREM 5.2. Suppose that the conditions (l)-(3) hold. Then constants MI and Mz exist, 
independent of h, such that 

bh - ~111 s MI( 1 + $)(1/v” - u/(1+ Ip - qhlo) (5.10) 

and 

(5.11) 

for all vh E vh and qh E Qh, where (uh, p”) is the solution of (5.1) and (U, p) is the SolUfion Of 
(2.1). 

PROOF. Setting v = vh in (2.1) and subtracting from (5.1) yields 

a(uh - U,vh)=(ph-p,divvh), VVhE v,. (5.12) 

Then 

a(u” - u, uh - u) = (p” - p, div(uh - v))+ a(uh - u, vh - u) . 

Since (qh, div u”) = (qh, div u) = 0, V qh E Qh, we have 

(p” -p, div(uh - v”)) = (p - qh, div(vh - uh))+ (p” - qh, div(u - v”)) . 

Thus, for arbitrary vh E vh and qh E Qh, 

a(uh-u,uh-u)=a(uh-u,vh- u) + (p - qh, div(u - uh)) + (p - qh, div(vh - u)) 
+ (p” - qh, div(u - vh)) . 

On the other hand, the discrete LBB-condition (4.9) implies that 
(5.13) 
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i.e., 

w[qh - phUu 4 sup 
(qh - p", div v”) 

uhE !4-{0) lIVhlll 

ZZ sup (qh 

uhEv*-tol llV% 
s II@ - Pll” + 3-4~ - Uhlll , 

llqh - Alo s $ (119” - Pllo + G4lu - UhllI> . (5.14) 

From (5.13) and (5.14) it is easily established that a proper positive constant c > 0 exists 
such that 

CllUh - 4: d Ilvh - 41: + IIP - q”llFI + (-g&t -p/Ii+ llvh - 4:) , 

i.e., the estimate (5.10) follows from this result. On the other hand, 

UPh - PO0 d OPh - qhOo + Us” - PUO s OPh - 9% + llqh - PIlo . 

Thus (5.14) and this result imply (5.11). 

6. The discrete LBB-condition 

In this section, we attempt to evaluate the stability parameters (Yh appearing in the discrete 
LBB-condition (4.9) for the approximation of the Stokes’ problem. We first consider the 
stability condition (4.9) for two of the most popular elements: Qi-(bilinear) elements with 
l-point integration and Qz-(biquadratic) elements with 2 X 2-(4-point) Gaussian quadrature. 
Our numerical experiments indicate that these elements are marginally stable: especially the 
hydrostatic pressure pt is very sensitive to mild singularities in the applied forces and 
boundary conditions. But on rectangular uniform meshes they may yield surprising good 
results for velocities when the solution is smooth enough. For these elements, 
ker Bz e ker B*, and ker BE contains the notorious checkerboard patterns described earlier 
(recall Fig. 3). 

Throughout this part of our analysis we confine ourselves to a uniform mesh of rectangular 
elements defined on a rectangular domain in IX’. The space vh is obtained by partitioning J2 
into a uniform mesh of E rectangular elements fin, of diameter h, and we consider only regular 
uniform refinements of the mesh. In particular, we will choose vh to be VC’ or V’,“, where 

vf’= {v” = @I:, vi) 1 d E c”(fi), v:lii. E Q&'n,) , 
(6.1) 

V h =Oon rD, lsesE,i= 1,2}, s= 1,2. 

Here Q, and Q2 are the spaces of tensor products of polynomials of degree 1 and 2, 
respectively. 
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We first introduce the following algebraic results for later use. 

LEMMA 6.1. Let {a,}:=, be a set of real numbers. Then the following inequality holds, 

aI+~(ai-,-ai)22~a~, Vm, m=l,..., r. 
i=2 

311 

(6.2) 

PROOF. We first note for any given (Y > 0, 

(4 aa:+(ai-aj)‘2&aT. 

We then prove (6.2) by induction. We assume that the following holds: 

(b) aI+A (ai-,-ai)22+a$+ i (ai_1-ai)2. 
i=2 i=m+l 

Clearly (b) holds for m = 1. If it also is true for m = n, then 

a:+ 2 (ai-I-ai)’ n aLa?+ i (ai-1 - ai) 
i=2 i=n+l 

= +a:+ (a, - a,+1)2+ i (a,-, - ai)’ 
i=n+2 

a- a2,+1 + i (aiel - ai) 
l/n 

1 + l/n 
i=n+2 

1 
=-aZ,+l+ i (ai-1-ai)2. 

n+l 
i=n+2 

Thus (b) is true for m = n + 1. Hence (b) is valid. Then (6.2) is direct consequence. 

LEMMA 6.2. Let {a;}%, be a set of real numbers. Then the following inequality holds : 

a: + 2 (aipl - ai) 
i=2 

a$$ a:. 
,=, 

PROOF. By (6.2), 

a:+2 (ai_,-ai)‘>ia:, r = 1,. . . , N. 
i=2 

Thus, 

N(a: + 5 (ai-1 - ai)2) 2 5 i a: > 6 5 a:. 
i=2 r=l z=l 

(6.3) 



312 J.T. Oden et al., Analysis of Stokesian flow 

Dividing both sides of the above inequality by N, we obtain (6.3). 

THEOREM 6.3 (4-node, Q,-elements). Let the domain fi be rectangular and every vh E V,, be 
such that v” = 0 on lY Thus, for Q,, = (4” ( qh(n, = constant, 1 d e s E, Xc, ph ICI~ mea@&) = 01 and 
V,, = V’,“, the LBB-constant (Yh satisfying 

(6.4) 

is oforder h*: (Y,, = O(h*). [A n improvement O(h) is possible; see the addendum at the end of this 
paper. 1 

PROOF. In this case, G = 1 in the definition of I( * , . ) and 

I(qh, div v”) = 5 Ie(qh, div uh) = h* $’ qh(&‘)div vh(t’) 
P’1 e=l 

= ;hg {v,j(qt - q: - q: + q;) + vzi(qli + qf - q: - q:)} 
i=l 

(6.5) 

where E is the number of elements, N the number of nodes, 8’ are the Gauss points in a,, q: 
the constant pressures in quadrant n of a collection of four elements meeting at node i 
numbered as shown in Fig. 4. 

For fixed qh we choose uh E vh such that 

vli=q;-q:-q;+q;, v*i = q; + qf - q: - q; . (6.6) 
Then, 

I(qh, div uh) = h[ 5 (~:i + v:i)}“*{ 2 2[(q! - 45)’ + (q? - q?)*]}“* . 
i=l i=l 

(6.7) 

If cf” E ker Bt, a series of calculations similar to those above gives 

I(qh, div 0”) = h{ 2 (v:i + v&))“,( 2 2[(4i’ - G?)‘+ (d:- G?)‘]}“* 
i=l i=l 

(6.8) 

Fig. 4. QI elements with l-point integration. 
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for qh = 4” + qh. Taking the special (5” E ker Bz such that 

Here we have used the fact that ker Bz consists of piecewise constant functions of the type 
qf = (5;‘~ A and qf = -, q4 = B (because of the condition Jfl 4 dx = 0 in 0, B must be -A), and 

that N = 0(1/h’). Then (6.8) becomes 

(6.9) 

By direct calculation we can show that 

Thus, (YJ, = Ch2 = O(h’), as asserted. 

Exactly the same procedure described in the proof of Theorem 6.3 can be used to study case 
of 9-node isoparametric element with 2 x 2 Gaussian rule for I( * ). Hence we have the 

following theorem. 

THEOREM 6.4 (9-node Q2-elements). Let the domain 0 be rectangular and let Vh C V be 
constructed using a uniform mesh of rectangular elements with V,, = Vi*‘. Moreover, let Qh be 
defined by 

oh= 9h)9hliicEQ,(~-i,),1de~E, 
I I 

qhdx=O . 
R I 

Then the LBB-constant &j, of (4.9) for these spaces is such that ffh = O(h”). 

It is now clear that convergence cannot be concluded from the results in Theorems 5.2, 6.3 
and 6.4 for Q,-elements with l-point integration and Q,-elements with 2 x2-integration. 
Estimates in (5.5) and (5.6) suggest that in order to obtain convergence of 11~ - ~~(1, and 
up - phi0 to zero as h + 0, the LBB-constant q, must be O(hp), p < $. We note, however, that 
the above result does not imply the method of Q,-elements with l-point integration rule 
always diverges as h -0, since the estimate of ah obtained above need not be optimal. 

7. Projection methods for the Q2-element with ‘l-point’ integration rule 

In the study of conditions similar to (4.9) for certain mixed methods, Crouzeix and Raviart 
[9], Girault and Raviart [12, 131 and Fortin [lo] have shown that, to prove the existence of ah 
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independent of h, it is sufficient to find a +vh such that 

(d iv wh -$,Qh)=O, vd”EQ,,, IlW% s Cll~“ll~~ . 

Indeed, it follows from (7.1) that for ah qh in Qhr 

(7.1) 

(7.2) 

Hence, (4.9) is satisfied with (Yh = l/C independent of h. 
We now consider the penalty method (4.14) obtained by Q2-elements and ‘l-point’ in- 

tegration rule discussed in Remark 4.2. 
Let the mesh of rectangular elements be generated by a sequence of affine invertible maps 

of a master element fi in the spirit of Ciarlet and Raviart [7,8]. Indeed, let V(h) denote the 

18-dimensional space of vector-valued function v whose components are biquadratic poly- 
nomials, and let F, : L? + 0, be invertible affine map of fi onto a typical element 0, in the 

mesh. For cp = p(x), x E a,, denote $ = cp 0 F’. 

THEOREM 7.1. Let the families of spaces { vh} be constructed using uniform regular partitions 
of R into Co-9-node quadratic rectangles (Qz-elements). Let I( * ) be defined by ‘l-point’ 
Gaussian quadrature on rectangles as in (4.14). Then there exists (Yh > 0, independent of h such 
that (4.9) holds for h sufficiently small. 

PROOF. (1) Let ZJ E V be the solution to the problem 

div ZJ = qh in R, ]]o]]l G Cl]qhll, (7.3) 

for a given qh E Qh C Q. The existence of such a v is assured by the LBB-condition for the 

continuous problem. Suppose that 

I 
R (vi - Wi),jV,j dx = 0 ) 

Clearly, (I WII ~,n s IIt4 I,&. 

w iS the V-orthogonal prOjeCtiOn Of 2, Onto vh: 

v v E V(0). 

(2) Let {ai}:, and {ay}l<isj<4 denote nodes on the master element numbered as in Fig. 5b. 
We pick an element 0 E V(d) such that 

Oi(aj) = Wi(aj) , i = 1,2 ; j = 1,2,3,4,5, 

0(&j) * +(aij) = W(&j) . +(a,), 1 S i S i S 4 
(7.4) 

where Gs the unit vector tangent to ah. 
(3) Conditions (7.4) provide 14 independent conditions for the 18 degrees of freedom of 0. 

The remaining four conditions specify the normal components at the midside nodes: 
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(a) 

o---- 

I 
0 

Cc) 

=12 

(b) 

a9 

al 
a6 

Cd) 

Fig. 5. Some two-dimensional biquadratic elements and a composite element consisted of four bilinear elements. 

Here @‘, 4” are the bilinear shape functions for nodes ai and aij and ri is the unit outward 
normal to a&. 

(4) The unique function 0 constructed via (7.4) and (7.5) satisfies 

for every constant 9. 
(5) It remains to show that the second equation in (7.1) holds. For a uniform regular family 

of partitions of 0, we set eh = u - w, e = W - o. Then, following the ideas of Girault and 
Raviart [12, Lemma 2.5, p. 761, we can show that /ehjjl S Ch-‘(sn let2 dx + l]e)l:)1’2, from which we 
conclude that 

110111 s C(1 + Ilh)llqhllo * 
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REMARK 7.2. The above proof employs the strategy used by Crouzeix and Raviart [9] for a 
mixed method obtained using 6-node P2-elements with a piecewise constant pressure field. 

Thus from the estimates in Section 5 and the theory of interpolation we have the following. 

THEOREM 7.3. Let the conditions of Theorem 7.1 hold and suppose u E (H’(a)))” n V and 
p E H’(R) n Q*. Then the following estimate holds for some positive constant C independent of h : 

lb - ~~111 + I/P - hello d C(lb112 + 1Iptll)h . (7.6) 

We note that while this under-integrated scheme is stable ((Ye is independent of h), inexact 
integration has reduced the rate of convergence by one order lower than optimal. Our 
numerical experiments have confirmed this observation. 

8. A projection method for composite Q1-elements 

The fact, proved in Section 6, that the Q,-elements with l-point Gaussian quadrature may 
lead to a stability parameter ah = O(h*) indicates that schemes employing this element may be 
divergent. Nevertheless, this element is very popular in engineering computations because of 
its simplicity. We shall now describe a slight modification of this element which leads to a 
stable method which exhibits optimal rates of convergence. The construction of a special 
composite element is described as follows. 

(P.l) Let R C R’ be a rectangular domain. We partition 0 into a uniform mesh of 
rectangular elements {0,}:=‘=, each consisting of four equal rectangular subelements K:: 

Over each subrectangle Kk we approximate the components of the displacement vector vh by 
c-bilinear functions of x = (x,, x2). Thus, a composite element consisting of four bilinear (Q,) 
subelements of the type shown in Fig. 4 is obtained. With families of such elements, we obtain 
families { Vh} of finite-dimensional subspaces of V = (H:(0))*: 

vh = {uh = (v:, v;)E c”(6) 1 v&h E QdK:)? j = ‘, 2; 

i=l,2,3,4;e=l,2 ,..., E}. (8.2) 

(P.2) The approximation of pressures 9 h is constructed in two steps. First, we generate a 

family of finite-dimensional spaces Qh of piecewise constant pressures defined by 

Q,, = {$ E Q’(n)] qhlK: = q) = constant, i, 2,3,4; 1 se < E} (8.3) 

where the numbering scheme shown in Fig. 5d is used. This is precisely the space used in 
Section 6 which led to the (unacceptable) stability parameter (Yh = O(h*). 
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We shall take for our space of approximate pressure, 

A word of interpretation is called for. Consider a linear function 03 defined on fie of the 
form 

Then, if the numbers q) are such that (rt(&) = qb for the centroid 5: of each composite 
element, the function (lr will define a plane which passes through the four points (&a, qk), 

i = 1,2,3,4. Then we will have q: + qi = qi + 44. 

Note also that for any qh E Q,,, we will have 

qa-qz=q:-qz, q: - q% = qf - q2, 

q1- 4: 
4 3 1 4 

qb_qa_q~+q~=q~_~~~~gfq~=q~+~~~~~-q~= 

q:-42 

q;+qa_q:_q:=+. (8.5) 

Another significant feature of Q,, is that if B,*(Q),) is the adjoint of the discrete operator 
associated with the space & then, in view of (6.6) 

Q~ n ker Bh*(Qh)= (0). (8.6) 

Thus, the choice of Q,, over Qh reduces ker BE to the trivial set (0). This means that if the 
condition Jn gh dx = 0 is applied in Qh as in Q, then ker Bz = ker B*. 

Within a composite element L&, we shall define the quantity 

where 

~5:~ = - i div ~:(&a), lSiS4. (8.8) 

Now define 

PL = p’z, - (Pa)* , de = p’,e + (pi!)* , 
(8.9) 

P 3 Ee = p’ze - (p,“>*, p:e = p’:e + cd)* . 

Then it is clear that 

pk Q,,, (8.10) 

that is, the adjusted pressure p’t by (8.9) belongs to the space Qh defined as (8.4). Further- 
more, within a composite element L$, the identity 

I,($, div 0”) = I,(pt, div vh), V vh E vh such that vh = 0 on LX& (8.11) 
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holds for pz defined by (8.8). That is 

$ I(div uf, div vh) = -(pE, div v”) (8.12) 

is satisfied, as is required. Thus the condition (2) in Section 4 must now be changed according 

to: 

(2’) There exists an element pt E oh defined by (8.8). (8.13) 

Now we shall verify that condition (3) in Section 4, the discrete LBB-condition, holds on the 
special space oh defined by (8.4). To do this, we first record some properties of finite element 

approximations following [7,8]. 

8.1. Some preliminaries 

For simplicity, we assume that &I is a polygonal domain. Let Th be a triangulation of fi 
composed of E rectangles I& with diameters bounded by h, such that 

a = h,. (8.14) 
<=I 

Each rectangle fie is characterized by two numbers 
- h, = diameter of 0, ; and 
- pe = diameter of the largest circle contained in 0,. 
For simplicity, we will confine our attention to refinements in which there exists a number 
u > 0 such that heJpe = a, < a, 1~ e SE. 

We denote by b a reference rectangle and by 9 = (a,, R2) the Cartesian coordinates of points 
in fi. The elements 0, C y,, are affine equivalent to fi in the sense that there exists affine 

envertible map F, such that 

F,(i) = B,(P) + b = x E a. (8.15) 

For each function r~= defined on fi= we associate a function 5 defined over d by 

a(a) = &(Fe(i)) ) f E n. (8.16) 

Likewise, if 17 E _Y(Hk+l(J&)), H”‘(J&)), k + 1 > m > 0, we define an operator I? E 

9?(Hk”@), I-I” (fi)) by 

ris=n^u, VUEHk+‘(0). (8.17) 

Also, the matrices B, in (8.15) have the property that 

(8.18) 
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where 11 * (( denotes the matrix norm, h” = diag(fi), and 6 is the diameter of the largest sphere 
contained in fi. 

All of the above properties are developed in full in the book of Ciarlet [7]. In addition, we will 
need the following properties of such finite element families proved in [7]. 

LEMMA 8.1. For m 3 0, the map v, + G = v, 0 F, is a,n isomorphism from H”(K&) onto H”‘(h). 
Moreover, constants CI, C, exist, depending only on 0 and m, such that 

Izil,,~ d GllB$‘ldef Be11’21vl,,~, , lvl,,~, G GIIB~‘ll”‘ldef &-“*l~lm,~ (8.19) 

where I - J,,,n is the seminorm, 

(8.20) 

We also need the companion lemma. 

LEMMA 8.2. Let k and m be integers such that 0~ m s k + 1 and let 17, E 
T(Hk”(O=), H”(6$)) be defined by 

(I~,v,)o F’ = fi(v OF,) (8.21) 

where fi E Z(Hk”(fi), H” (firi)) is a projection operator that preserves polynomials of degree 
S k; i.e., if P,‘(d) is the space of polynomials of degree S k on hi, then 

fip=p, vpEPk(h). 

Then there exists a constant C, independent of II, and fle, such that 

be - 17,ve(m,n s CIIBellk+lllB,illmIvelk+l,Ol, v V, E Hk+‘(O,). (8.22) 

8.2. Discrete LBB-condition 

We shall now show the existence of an element rvh E vh satisfying (7.1) for a given qh E Qh. 

LEMMA 8.3. For the finite-dimensional spaces Vh and Qh defined by (8.2) and (8.4) there 
exists an element vh E V,, satisfying the following condition. 

For any v E (H’(0))‘, (qh, div(vh - v)) = 0, V qh E Qh . (8.23) 

PROOF. It suffices to prove (8.23) on a typical composite element fle; i.e., we shall show that 

(8.24) 

or, equivalently (since grad 4,” = 0), 
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qhvh * qhv . n ds (8.25) 

where n is outward unit normal on the boundaries of subrectangle KL. Using the notations in 
Fig. 5, let {4j}y=l denote the piecewise bilinear basis functions defining vh so that 

O(X)= E Oj4j(X) 3 V(X) = i i@j(X) 3 

j=l j=l 

C$j(ai)=6ji, lSi,js9. 

Then by a direct expansion of (8.25) we construct the following set of equations: 

(8.26) 

(8.27) 

(q, + q.,)L% = (41 + q4){& I,4 u cb - @I+ 04,) > 

where v = (u, u) and h is the length of a side of Kk. Also, 

udx2- tig , 

(8.28) 

(q,+q2-q3-q4)%= 

+ (42 - q+(; Is7 v dx, - p7)+ + 12’ u dxz - ; I,3 u dxz) + $( fi3 - ti2)} . 

Hence, using (8.5), (8.27) and (8.28) yield 
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(8.29) 

In the composite element L&, tih has 18 degrees of freedom. Eq. (8.29) represents six 
independent relationships. Once the 12 components of vh appearing on the right-hand side of 
(8.29) are specified, we could determine the values of the 12 components of the right-hand side 
of (8.29) by equating the nodal values of v and vh. Since v may not be smooth enough to allow 
this computation, we will use instead of v its HI projection onto V’,,. Specifically, let wh be the 
unique vector defined by 

(V(v-wh),Vzh)=O, VzhE v,. (8.30) 

We denote wh = (XT=, U&i, C?=‘=, V$i), and choose the remaining 12 degrees of freedom of vh 
as follows, 

rlii= I?;, i= l-2,3,4,6,8, 

Pi= V,, i= 1,2,3,4,7,9. 
(8.3 1) 

Here index i indicates the nodal numbering in L$ as shown in Fig. 5. 
We have thus shown that for every v E (H’(0))’ there is a unique vh E Vk satisfying (8.23). 

LEMMA 8.4. There exists c1 cu~~t~nt C > 0, in~epe~~e~t of h, such that 

11~“111 s CllVlll (8.32) 

for the element vh satisfying (8.23). 
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PROOF. We first note that (8.29) implies that 

where 
e= v-v’. (8.33b) 

In addition, along the sides of the subrectangles which pass through the center node of ft,, 

I 6 a e*i,dxz--$ II 1 6 e * i2 dx, - I 6 2 e - i2 dxl + J 8 3 eohdx,-~~‘e.i,dx,)=O. 

7 9 4 3 @*33c) e -i,dx,-1 e-irdxz-- 
I 9 

e*i,dx:!+ 
I 7 

e-i,dxi-le-iidx,}=O. 

Here iI and i2 are unit bases vectors directed along x1 and x2, respectively. 
Next. we define the error functions 

E=h = vh - wh E V, ; g=v-wh (8.34) 

where wh is the H’(n)-projection of v into V, (introduced in the proof of Lemma 8.3). Thus, 

Thus, we need to obtain an estimate of IE,jl,n. --- 
Toward this end, we note that Eh(@) = 0, i = 1,2,3,4 and that along the sides 12, 23, 34 and 

41, E,, . t = 0 where t is the unit vector tangent to each of these sides. Also, since e = Eh - 5, 

(8.33a) and (8.33~) yield the conditions 

(8.36) 

In these last two equalities, we have used the fact that Eh(ai) = 0, i = 1,2,3,4 and that the 
subrectangles have equal dimensions. 

In each composite element, Eh can be expressed in the form 
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where a, is the center node, a, the midside nodes on side [ai, Uj], and &, +ij the corresponding 
local, piecewise bilinear shape functions for the element. Only six of the 18 nodal values of &, 
are nonzero and can be determined by conditions (8.36). To use these conditions, we note that 
for continuous f, 

Hence, by integrating Eh along side [Ui, Uj] of &, we have 

Eh(uij)= [l &ij di]-’ l %ds^ 

(8 = 8 OF’). Also, for the components of Eh at the center node u5, we have 

Eh(u5)-i2= [168~d~,]l{bii2dri-r+i[blgldP2 

(8.38) 

(8.39) 

Hence, (8.38) and (8.39) lead us to the inequalities, 

I&(&)( = I&(@)( s Cll$llo,ati s ~{lkfllb + lil:.~11’2 (8.40) 

where i = 1, . . . ,9, k = 5, . . . ,9 and ( - I denotes the Eucledian norm in R2. We have from 
(8.19) 

IEh(@)I s Cldet ~el-“2(l1511~,n, + ll~e1121~lL.)1’2 . (8.41) 

On the other hand, (8.19) also shows that 

(8.42) 

Combining (8.41) and (8.19) gives 
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Thus, according to (8.18) 

Our problem thus reduces to one of obtaining an estimate of ~~~~~0,~ and ]&/,,n (5 = ZJ - w”) in 
terms of Iv/,. We immediately have 

because wh is, by definitions, the II&orthogonal projection of v. Thus, we need only estimate 
[&t. This can be accomplished by the duality agreement of the well-known Aubin-Nitsche 
method. 

We first consider the auxiliary problem, 

-Az=ginfl, zlI‘ = 0 on r. 

For which it is known that a constant C exists such that //z&~ G C//g/O,n. Thus, for a given 

g E L*(R) 

1&g)=-(~‘;Az)=~~V~‘Vrdx, i=1,2 

and, again using the orthogonality of the error, 

(5’, g) = (w.l V(z - Zh>> =z l~‘ll& - Zhl,.n, v .zh E Sh 

where V, = (&)‘. Choosing .zh to be the interpolant in Sh of z, we have (from (8.22) with 
k = m = 1), 

Collecting (8.359, (8.44), (8.45) and (8.46), we have 

(8.46) 

lluhll,.f2 =s l&2 + w-211511~.n + 15Ld’” 
s lvlr.sz + C{h-2(Chlvll,a)2 + l+2Y2 
=s Cl&n 

as asserted. 
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Using Lemmas 8.3 and 8.4, we have: 

~~EO~~~ 8.5. Under c~~~~~~u~~ (P.1) and (P.2) on 0, on re~~ements of the mesh, and the 
spaces V, and Qh listed earlier, there exists a constant a, independent of h, such that 

where Vh is defined in (8.2) and Qh in (8.4). 

Thus, we can conclude the convergence of the penalty method (4.2) for C&-elements with 
the ‘l-point’ Gaussian integration rule under the assumptions that the domain fl is a rectangle, 
and that the domain is uniformly discretized by equal size subrectangles. That is: 

THEOREM 8.6. Let conditions (P.l) and (P.2) listed earlier (particularly, (8.1~(8.4)) and 
condition (2’) hold. Let (uh, p”) E V,, x Qh be the mixed finite element approximation of (2.1) 
obtained as the limit, as E * 0, of the solutions (ui, pt) of the penalty-approximation obtained 
using the spaces and projection methods described earlier. Finully, let the solution to (7.1) 
satisfy 

(u, p) E H*(0) X H’(0). 

Then 

Ilu - u”ll1+ IIP - PhII s C(llull2 -t lblldh 

where C is a positive constant independent of h. 

(8.47) 

9. Numerical example 

A typical example problem is described which is designed to verify some of the results 
obtained thus far. This example involves the Dirichlet problem for Stokesian flow in which the 
fluid is subjected to a constant body force f = (800,800) applied over a square subdomain J&, 
as shown in Fig. 6. We take p = 333 and the penalty parameter F = IO-‘. We use a rather coarse 
mesh of 16 elements and choose 

&elements (9-node biquadratics) for vh , 

I( ) - 2 X Z-Gaussian quadrature , 

Fig. 6 shows computed hydrostatic pressures which seem to be smoothly distributed 
sections A’-A’. The method (9.1) is stable for this case, and the results appear to be 
satisfactory. 

For the choice 

along 
quite 
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A A A : Y-node L-point Gaussian quadrature 

A’ -+- A': O-node 2x2-pt. Gaussian quadrature 

2. 

t 1 
A A' 

Fig. 6. Pressure distribution across the sections A-A and A’-A’ of the example in Section 9 (uniform load). 

&elements (9-node biquadratics) for V, , 

I( ) - l-point Gaussian quadrature , 
(9.2) 

again a smooth pressure distribution is obtained as is also shown in Fig. 6. 
For other choices of data, we observe one major difference between methods (9.1) and 

(9.2): method (9.2) appears to be quite robust and insensitive to singularities whereas method 
(9.1) behaved well only so long as the data were smooth. In particular, if a point load 

f = 2(30(6(x - x y), 6(x, y - Y)) is applied at point (3, y) E 0, then similar oscillation to the 
checkerboard modes in ker Bh* appear to be activated, and we obtain pressures in which such 
modes are superimposed upon those obtained using method (9.2). It is significant that the 
LBB-conditions (4.9) hold for method (9.2) with cyh independent of h whereas the unstable 
method (9.1) (Ye = O(h”). 
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.?\ +A : g-node l-point Gaussian quadrature 

.A. -+--A’ : g-node 2x2-pt. Gaussian quadrature 

\ 
I \ \ -‘o, -\ \ ‘a. 

% = loco. - -2oo.‘, 

” = 0.49999 
‘4 

\ 
\ 
\ 

- -400. 

Fig. 7. Pressure distribution across the sections A-A and A’-A’ of the example in Section 9 (point load). 

Pressure distributions of the problem obtained by both methods (9.1) and (9.2) are given in 
Fig. 7. Similar spurious pressure modes were obtained using method (9.1) when singular 
boundary conditions of primal variable are applied, such as the well-known driven-cavity 
problem which contains a rather severe singularity at the corner of the domain. 

Similar experiments were run using the 4-node ((&-elements) by l-point integration. 
Interestingly enough, good results were obtained for smooth solutions on a uniform mesh and 
the method performs well in such cases. However, for distorted meshes and in the presence of 
irregular solutions, poor (oscillatory) pressures are again experienced. 

Added in Proof 

Olivier Jacquotte of TICOM has supplied us with a proof that the estimate (Ye = 0(h2) in 
Theorem 6.3 can be improved to ah = O(h). The k ey is the construction of the sharper estimate: 
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(as opposed to the 0(h4) estimate given below (6.9)). The idea is to consider a case in which the 
origin of an integer coordinate system (i, k) for node numbering is located at the node in the 
lower-left corner of the mesh, with the first node numbered (1, 1). We set 4: = 4: = 0 and 
introduce a C?-piecewise bilinear function C$ which interpolates the Gee, forj + k even at the nodes. 
One can show that 

j+ k even 

where L?’ is a rectangular domain centered h/2 from ~30 inside R. An application of Poincare’s 
inequality (which is possible because 4: = 42 = 0) gives the desired result. Further details on this 
and related results are to be discussed in a forthcoming paper by Oden and Jacquotte. 
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