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ABSTRACT 

The properties of MgO when used as a support material for Ru-Au catalysts have 
been investigated by thermal analysis, chemical analysis , surface area measurements 
and X-ray diffraction. During impregnation the support undergoes a bulk hydration 
but heating to 673 K restores the oxide. In a sample impregnated by water only, 
the dehydration occurs at 651 K and the surface area increases from 15 to > 
m* g-1, due to the formation of small pores. Great changes in the DTA peak 

300 

temperature and in the surface area after dehydration are found in the catalysts 
and in MgO impregnated with HCl solutions. It is shown that these changes are 
accurately correlated to the amount of chlorine which remains in the solid (deriving 
from the metal precursor compounds or HCl). The formation of basic magnesium 
chlorides, shown by X-ray diffraction, seems to favour an easier release of water 
(i.e., lower DTA peak temperatures and lower apparent activation energies) and 
to reduce the formation of small pores. 

INTRODUCTION 

Previous studies on supported Ru, Au and bimetallic Ru-Au catalysts showed that 

the MgO supported samples exhibit a different behaviour compared to the correspond- 

ing Si02 supported samples. Strong metal-support interactions were observed when 

ruthenium [I,23 or gold [3-61 were dispersed on MgO. In Au/MgO, also a 'reverse' 

interaction was found, i.e., gold affected the oxygen-exchange capability of the 

bulk MgO C71. In supported bimetallic Ru-Au catalysts, an unexpected ruthenium 

surface enrichment occurredonMg0 [5,6,8] but not on silica [9]. Based on these 

previous results, we focussed our attention on the characteristics of MgO under 

typical catalyst preparation conditions. The characterization of the MgO samples 
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was performed by thermogravimetric analysis (TGA), differential thermal analysis 

(DTA), quantitative analysis of H20 and CO2 developed at 793 K, quantitative 

analysis of chlorine, adsorption of nitrogen and wide-angle X-ray scattering (WAXS) 

EXPERIMENTAL 

Commercial MgO (Carlo Erba RPE-ACS, from a reagent grade magnesium carbonate, 

calcined at 1273 K) was used throughout the study. The samples were prepared by 

soaking MgO in distilled water, dilute HCl or aqueous solutions of RuC13.H20 and/or 

HAuC14.3H20. The resulting slurry was filtered and dried for 4 h at 383 K in air. 

The Ru-Au/MgO catalysts were the same as used previously [6,91. 

Thermal analysis was performed in a Mettler TA2 instrument. Samples were first 

maintained for 1 h at 383 K and then heated at a rate of 4 K min 
-1 

to 773 K in 

flowing air, the reference sample for DTA being a-A1203; 40 - 50 mg-samples were 

used for each TGA - DTA test. 

Immediately after a pretreatment in the thermobalance (2 h at 673 K), surface 

area measurements were performed by adsorption of nitrogen at 78 K, using a 

single-point BET method. 

The pore distribution was measured by N2 adsorption in a Carlo Erba Sorptomatic 

series 1800, after 2 h at 383 K under vacuum. The BJH method [IO] was used. 

WAXS was performed by a Philips X-ray powder diffractometer, equipped with a 

scintillation counter and a pulse height analyser. Ni filtered CuKa radiation 

was used. 

Routine analytical methods were used for the analyses of H2D, CO2 and Cl. Water 

and carbon dioxide were released from the samples when the temperature was raised 

to 793 K in flowing air. 

RESULTS AND DISCUSSION 
2 -1 

The magnesium oxide used was a low surface area solid (15 m g after 16 h 

at 383 K and 25 m 2 g -' after 2 h at 673 K), almost free of pores below 30 1, 

(Table 1). After impregnation of this MgO with Ru or Au precursors, the BET surface 

measured after 2 h at 673 K was in most cases significantly higher than 25 m 
2 -1 

g 

obtained on the untreated MgO (Table 2). A similar behaviour was observed with 

MgO soaked in water or in dilute HCl (Table 3). 

TGA on the untreated MgO sample showed a small weight loss (Aw g 4%) between 

483 K and 603 K, accompanied by a small endothermic DTA signal. On the contrary, 

all the samples examined, previously soaked in aqueous solutions and then dried at 

383 K, underwent considerable weight losses (mostly 25 - 35% of the initial weight) 

during the TGA experiments. These results were in good agreement with the amounts 

of H20 and CO2 released during heating to 793 K. The percentage of CO2 in the 

released gas ranged from 2 to 8 %v. This indicated that the weight losses were 

essentially due to the decomposition of magnesium hydrates and of small amounts 

of carbonates. The existence of such compounds in the examined samples, after 
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TABLE 1 

Contribution of pores of different radius to the total pore volume, as measured 

by nitrogen sorptiona 

Sample Heated atb 
3 -1 

Volume/cm g due to pores in the range 

/K 15-30 B, 30-60 A 60-150 8, 

MgO not ) 383 0.00 <O.Ol 0.09 

impregnated 673 0.01 0.01 0.03 

'MgO+H20' 383 0.00 0.03 0.12 

673 0.27 0.08 0.10 

383' 0.00 0.08 0.19 

673d 0.20 0.09 0.15 

'MgO+HCl' j 383 <O.Ol 0.10 0.24 

Cl = 0.42%~ 673 0.03 0.07 0.20 

'MgO+HCl' l 383 0.02 0.02 0.14 

Cl = 1.93%w 673 0.01 <O.Ol <O.Ol 

aFor the samples heated at 383 K, the volume per unit weight is referred to the 

weight reached after the 673 K treatment. 

b383 = 4 h at 383 K; 673 = 4 h at 383 K + 2 h at 673 K. 

'After the 673 K treatment, the sample was exposed to air overnight and then 

reheated to 383 K. 
d 
This treatment followedthatdescribed in note c. 

impregnation and drying, was confirmed by WAXS. Mg(OH)2 was always found, while 

the diffraction lines of MgO were often weak or could not be detected at all. 

In some cases, the presence of MgC12.2MgC03.Mg(OH)2.6H20 [II] and of 3MgC03. 

Mg(OH)2.3H20 [I21 was also evident (Tables 2 and 3). After heating at 673 K in 

air, the diffraction lines found were mainly those corresponding to MgO. 

For most of the samples, the greatest weight loss measured by TGA occurred above 

498 K and corresponded to a further Aw of 20-35% with respect to the weight reached 

by the samples after 1 h at 383 K. It is very likely that below 498 K only the 

weakly bound water molecules (e.g., water of crystallization) can be eliminated 

from the samples. The decomposition of magnesium hydrates and carbonates is known 

to start at higher temperatures, at least for the pure compounds, i.e., at 513 K 

for 3MgC03.Mg(OH)2.3H20 and at 623 K for Mg(OH)2 and MgC03 C131. In correspondence 

to the weight loss in the 498-773 K region, a strong endothermic peak appeared in 

the DTA profile. The peak temperature (Tp) varied between 588 and 651 K, the latter 

being the value found for MgO soaked in distilled water (MgO + H20). The Tp of each 

sample was reproducible within +2 K. No systematic dependence of T on the AW values 

measured above 498 K was found. The variations of Tp from 651 downPto 588 K 



TA
BL
E 

2 

Ch
ar
ac
te
ri
za
ti
on
 

of
 
th
e 

Ru
/M
gO
, 

Au
/M
gO
 
an
d 

Ru
-A
u/
Mg
O 

ca
ta
ly
st
s 

Sa
mp
le
 

Ch
em
ic
al
 
an
al
ys
is
 
/%
w 

Su
rf
ac
e 

ar
ea
a 

Di
ff
er
en
ti
al
 

th
er
ma
l 

an
al
ys
is
 

Cr
ys
ta
ll
in
e 

co
mp
ou
nd
s 

Ru
 

Au
 

Cl
 

/m
2 

g-
l 

Pe
ak
 
te
mp
er
at
ur
e 

Ap
pa
re
nt
 
ac
ti
va
ti
on
 

by
 
WA
XS
b 

To
/K
 

en
er
gy
, 

Ea
/k
ca
lm
ol
 
-1
 

Au
/M
gO
 

- 
3.
46
 

0.
02
 

24
8 

64
9 

35
 

I,1
1 

3.
03

 
0.

58
 

12
7 

62
5 

30
 

I,1
1 

Ru
-A
u/
Mg
O 

0.
26
 

4.
45
 

1.
39
 

32
 

62
1 

11
,1

11
 

1.
25

 
2.

70
 

0.
53

 
10

6 
62

2 
33

 
I,I

I,I
V

 

2.
36

 
2.

97
 

1.
88

 
63

 
60

3 
11

,1
11

 

2.
12

 
2.

34
 

0.
75

 
98

 
61

7 
II

 

3.
48

 
0.

81
 

2.
20

 
41

 
60

8 
(I

),I
I,I

II
 

Ru
/M
gO
 

4.
50
 

- 
1.
95
 

43
 

60
6 

26
 

(I
),I

I,I
II

 

2.
10

 
- 

1.
30

 
46

 
60

8 
II

,(I
II

) 

0.
75

 
- 

1.
00

 
51

 
61

2 
28

 
II

 

0.
41

 
- 

0.
50

 
17

8 
62

1 
28

 
II

 

0.
16

 
- 

0.
15

 
21

2 
65

3 
39

 
I,1

1 

0.
06

 
- 

so
.0

1 
20

1 
64

6 
I,1

1 

Ru
/M
gO
 

1.
60
 

- 
co
.0
1 

20
3 

63
4 

I,
11
 

fr
om
 
KR
u0
4 

aA
ft
er
 
he
at
in
g 

fr
om
 
ro
om
 
te
mp
er
at
ur
e 

to
 
67
3 

K 
at
 
4 

K 
mi
n 
-'
 
an
d 

th
en
 
fo
r 

2 
h 

at
 
67
3 

K.
 

bI
 

= 
M

gO
; 

II
 

= 
Mg
(O
H1
2;
 

II
I 

= 
Mg
C1
2.
2M
gC
03
.M
g(
OH
)2
.6
H2
0;
 

IV
 =

 3
Mg
C0
3.
Mg
(O
H)
2.
3H
20
. 



136 

TABLE 3 

Characterization of MgO impregnated by water or diluted hydrochloric acid 

Cl Surface areaa DTA peak temperature Crystalline compounds 

/%w /m2 g-l Tp/K by WAXSb 

317 651 I,11 

0.01 253 638 

0.02 210 646 I,11 

0.06 202 645 

0.24 206 639’ I,11 

0.24 163 633 

0.42 165 628 I,11 

0.45 95 627 

1.20 24 610 I,II,IV 

1.20 39 607 

1.30 32 595 

1.93 36 588 I,(1111 

aAfter heating from room temperature to 673 K at 4 K min 
-1 

and then for 2 h at 

673 K. 

bI = MgO, II = Mg(OH)2, III = MgC12.2MgC03.Mg(OH)2.6H20, IV = 3MgC03.Mg(OH)2.3H20 

'Apparent activation energy, from DTA, is 35 kcal mol-1. 

(Tables 2 and 3) indicate the existence of chemical modifications of the examined 

material. Considering the Ru/MgO catalysts (Table 2) it is evident that Tp 

approaches 651 K when the Ru content is lower; the situation appears to be less 

clear in the bimetallic catalysts. 

It was tempting to assume a specific effect on Tp of the Ru compound supported 

on MgO, such an effect being eventually modified by the presence of gold compounds, 

but the behaviour of the samples prepared by impregnating MgO with dilute HCl 

(see Table 3 where large variations of Tp are again found) excludes the presence 

of ruthenium as the main factor. Instead, for both supported metal catalysts and 

impregnated MgO samples, the value of the DTA peak temperature seems to correlate 

with the amount of chlorine that remains on the support after impregnation. 

Increasing the chlorine content leads to a systematic decrease in the Tp values 

(Figure IA). The role of chlorine is confirmed by a 1.6% Ru catalyst, prepared 

using KRu04: its Tp value was significantly higher than that expected for a Ru/MgO 

sample of comparable metal content, but prepared starting from the usual chlorine 

containing compound (Table 2). 

In the metal catalysts, chlorine generally derives from the ruthenium precursor 

compound, while chloroauric acid causes only a limited chlorine contamination of 

the solid. This is in agreement with the surface analysis performed by XPS on the 
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650- '&' 
A 

6W O8 

610 - 

FIGURE 1 DTA peak temperature (Tp), apparent activation energy (E,) estimated 

from DTA and surface area (S.A.) vs. the chlorine content in the samples: Cl, 

Au/MgO;m, Ru/MgO; 0, Ru-Au/MgO;O , 'MgO + H20' and 'MgO + HC 1’ 

same samples [63, that showed the absence of chlorine in the Au/MgO catalysts and 

its presence in the Ru and Ru-Au/MgO samples, even after reduction by hydrogen 

at 673 K. 

WAXS has shown that chlorine is present in the form of a magnesium basic carbon- 

ate chloride (detectable when chlorine exceeds 1%). Possibly other basic chlorides 

can also form in the samples. Even if no data about the mechanism were collected, 

the presence of magnesium chlorides seems to favour a release of water (and C02) 

at lower temperatures. The apparent activation energy (E,) of the decomposition 

corresponding to the DTA peak was roughly estimated, for a limited number of samp- 

samples,by the Kissinger method [14]applied to DTA experiments performed at different 

heating rates (2, 4 and 8 K min-') (Table 2). To a first approximation, E, seems 

to decrease with increasing chlorine content (Figure IB). This again confirms that 

the presence of magnesium chlorides makes the release of Hz0 (and C02) easier. 

The amount of chlorine in the samples was never higher than 3% and therefore 

the decomposition of the basic chlorides alone cannot account for the observed 

Aw values. Probably the observed phenomena are essentially due to the decomposition 
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of Mg(OH)2, the temperature of which is modified by the presence of chlorides. 

Also other species, present in the impregnating solution and able to react with 

MgO, could possibly exert similar effects. An example is given by the nitrate ion, 

where replacing HCl by HN03 solution of equal concentration gave ahOSt the same 

Tp values (627 and 628 K). However, much higher values (650 - 655 K) were found 

after impregnating MgO with H2S04 of the same normality or molarity. This, together 

with the fact that no correlation exists between the pH and the observed Tp shift, 

leads to the conclusion that the nature of the anion and not the proton plays a 

key role. From Figure 1A it can also be seen that, up to a chlorine content of l%w, 

all the samples follow the same trend. At higher chlorine content, the experimental 

points are more dispersed. Indeed, some differences seem to exist among the samples 

which fall in this region of the plot. The ruthenium richest samples show a 

shoulder in the DTA spectrum (Figure 2), at about 643 - 653 K, which is absent 

in the 'MgO + HCl' samples and indicates the decomposition of another species, 

present in much smaller concentration. Furthermore, it is quite possible that 

in the ruthenium richest samples some chlorine is bound to the metal and not to 

the support. 

After impregnation and drying at 383 K, 'MgO + H20' had approximately the same 

surface area as the untreated MgO (18 m2 g-l). The pore volume, measured by nitrogen 

adsorption, was mainly due to pores larger than 60 A (Table 1). Heating this sample 

at 673 K produced a great number of pores below 60 8, yielding a surface area of 

ca.300m2g . 
-1 

Leaving this last sample in contact with moist air for some hours 

lowered the surface area to the initial value. Heating again restored small pores 

and high surface area (Table 1). The metal containing samples behaved in a similar 

way. It therefore seems likely that, when Mg(OH)2 is decomposed to MgO, very small 

pores can open in the solid; exposure to the atmosphere causes a re-hydration of 

the oxide, which is sufficient to occlude smaller pores. 

A pretreatment of the sample at 483 K, i.e., at a temperature lower than that 

of the DTA peak, did not significantly affect the surface area. This confirms that 

the formation of the small pores responsible for the increase of surface area is 

strictly connected to the decomposition of magnesium compounds which occurs in 

the 498 - 773 K region. It was therefore decided to investigate whether the surface 

area also depends on the composition of the samples, as it was found for the peak 

temperature in DTA. A pretreatment of 673 K was chosen, in order to be well above 

the Tp value of each sample. Measured surface areas ranged between 30 and 250 m2 g' 

in the metal catalysts (Table 2). Similar results were found for the 'MgO + HCl' 

samples (Table 3). Results seem again to depend on the amount of chlorine that 

remains in the samples (Figure 1C). The higher the chlorine content, the lower 

was the BET surface area after heating at 673 K, due to a limited formation of 

small pores (Table 1). In most samples, the number of larger pores changes after 

heating at 673 K, but this has a minor effect on the surface area. The role of 

chlorine in explaining these results was again confirmed by the sample prepared 
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r 
SW 550 600 650 I 

FIGURE 2 DTA endothermic peak for: A, 'MgO + HCl', 1.93% 

1.95% Cl; C, Au/MgO, 3.46% Au, 0.02% Cl. 

Cl; B,Ru/MgO, 4.50% Ru, 

using KRu04 instead of RuC13.H20: a high surface area was 

pretreatment. 

found after the usual 

This investigation has given a better knowledge of the behaviour of MgO when 

used as a support for metal catalysts. During the impregnation, this material 

undergoes not only a bulk hydration, but also a reaction with other species (i.e., 

cl-, N03-) present in the solution. This probably influences the dehydration 

behaviour of the solid and-consequently the number of small pores that are formed. 

In the Ru, Au and Ru-Au/MgO catalysts, the main effects were due to chlorine and 

not to the supported metals. The formation of basic magnesium chlorides seems to 

favour the release of water at low& temperatures and to reduce the formation of 

small pores. Assuming that these pores derive from the breaking up of the solid, 

due to the development of water molecules, the results are consistent: an easier 

release of water could lead to a less severe breaking up. While the results have 

clearly shown that chlorine interferes with the properties of MgO, the role of 

chlorine is, however, not fully understood. On a purely speculative basis, it is 

possible to imagine that the presence of islands of chlorides (large enough to 

be detected by WAXS, at least in some of the catalysts) within the bulk of the solid 

or on its surface could influence the nucleation of MgO during the dehydration 

process or just modify some physical properties of the Mg(OHJ2 agglomerates. In 

fact, the Tp value of Mg(OHJ2 is known to be shifted varying its physical properties 

and especially the particle size [15]. With respect to this, however, no significant 

correlation could be found between the % Cl or Tp values and the particle size 
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of the hydroxide, as inferred from X-ray line broadening analysis. 

The data reported in this paper have two important implications for the use 

of MgO as a catalyst support: a) In order to achieve high surface area, the 

concentration of anions such asCl- + NO; should be kept as low as possible; 

b) Care must be taken in choosing the pretreatment conditions for BET area 

measurements, as these can lead to wide variations in the surface area. 
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