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Abstract: Bargmann transform techniques used to calculate norm kernels for nuclear cluster systems
have been generalized to evaluate interaction kernels for central interactions of gaussian form
for binary cluster systems made up of SU(4)-scalar (4 = 4n) cluster fragments with internal func-
tions of good SU(3) symmetry and equal oscillator width parameters. The technique involves a
reduction from A-particle orbital states of space symmetry characterized by 4-columned Young
tableaux to 1A-particle states of single-column symmetry. The interaction kernels are built partly
through a convolution of the single-column Bargmann transforms of the Fourier components of
basic one-body operators. Bargmann transforms of single-column type have been evaluated in
algebraic form for a two-body gaussian interaction and for the one-body Fourier kernel, chxp
(ig - r;). for the following A-particle systems and cluster decompositions: 4 = 12, 2+"Be: 4 =
16, a+'2C, 8Be+®Be: 4 = 20, 2+ '°0, *Be+!2C: and 4 = 24, '2C+!2C, ®Be+ 0, a2+ 2°Ne.
The construction of the Bargmann transform for the full A-particle system is illustrated with a
simple example. The example also shows how the coordinate space matrix elements needed for the
evaluation of RGM and GCM kernels can be extracted from appropriate expansions of this Barg-
mann transform by purely algebraic techniques.

1. Introduction

The microscopic cluster model ') provides a basis for a number of interesting nuclear
problems, including not only the study of possible cluster structure within nuclei, but
also the determination of effective potentials for the scattering of heavy ions and a
treatment of nuclear reactions in which the Pauli principle is properly incorporated
into the theory. Practical calculations in the framework of a microscopic cluster model,
however, are dependent on the availability of techniques for the evaluation of challeng-
ing norm and interaction kernels. In the early calculations of the Wildermuth school 2)
resonating group (RGM) kernels were calculated by cluster coordinate techniques
which involved the direct evaluation of the multi-dimensional integrals. A refinement of
the RGM technique has led to the Hackenbroich computer chain 3) which has proved
practical for the calculation of light systems *). The calculations of Tang and cowor-
kers °) in which RGM kernels are calculated by the complex generator coordinate

* Work supported in part by the US National Science Foundation.
** Nishina Memorial Foundation Fellow, on leave of absence from the Department of Physics, Niigata
University, Niigata 950-21, Japan.

77



78 Y. Suzuki et al. | Interaction kernels

technique (based on a single Fouricr transformation), the generator coordinatc (GCM)
calculations of Weiguny and coworkers ©), the computer codes of Tohsaki-Suzuki 7 )for
both RGM and GCM kernels based on a double Fourier transformation. and the
complex generator coordinate technique of Horiuchi ®) essentially all involve at some
stage a variant of the Margenau-Bloch-Brink technique °) for the cvaluation of the
many-particle matrix clements. The computational difficulties associated with these
techniques have restricted the applications. As a result detailed, practical calculations
in the framework of the microscopic cluster model have been limited to very light nuclei
or to simple systems involving closed shell nuclei such as x+'°0, '*O+'°0, or
a+*0Ca.

Powerful techniques have recently been developed !¢ ') for the evaluation of norm
and overlap kernels for a fully antisymmetrized cluster basis, but the calculation of
interaction kernels still presents a challenging problem. Much of the recent progress in
the calculation of norm and overlap kernels has been aided by the introduction of the
Bargmann-Segal transform. It is the purposc of the present investigation to show that
the Bargmann transform technique can also be used to advantage in the calculation of
interaction kernels. The essential point of the present method centers around the fact
that the antisymmetrization operation and the transformation to cluster-relative mo-
tion coordinates can be carricd out algebraically by computer in the Bargmann space.

The calculation of norm and overlap kernels is greatly simplified by the use of SU(3)-
coupled cluster model functions. The SU(3) symmetry furnishes a useful tool because of
(1) the SU(3)-scalar character of the anlisynimctrization operator, (ii) the inherent
SU(3) symmetry of the ground-state wave functions of nuclear cluster fragments in the
A = 4-20 mass range, and (iti) the possibility of exploiting SU(3)-recoupling tech-
niques if the cluster functions are expanded in an SU(3)-coupled basis. The simplifi-
cations introduced by the SU(3)-scalar property of the operator no longer apply for the
interaction kernel. Even in this case, however, an expansion in SU(3) irreducible tensor
components may facilitate the calculations in an oscillator basis ') and may be parti-
cularly useful for light 4n self-conjugate nuclei ' *). In such nuclei the wave functions of
the ground states and of rotational band members based on the ground states are
represented reasonably well by states of simple SU(3) symmetry (A0) or (Op). States of
such SU(3) symmetry can be obtained from a single, Slater determinant intrinsic wave
function or SU(3) coherent state. The calculations are simplest for 4n self-conjugate
nuclei, yet these include some of the most interesting problems which remain to be
investigated by the microscopic cluster model. The '2C+'2C system with its rich
spectrum of so-called quasi molecular resonances forms a prime example. The impor-
tant exit channels include the a+ 2°Ne and ®Be + !°O fragmentation which also fall
into this category.

The present investigation is limited to binary cluster systems. The A-particle nuclear
system is decomposed into fragments with mass numbers fand 4 —f, alternately f”
and 4 —f", where each fragment (f, A—f, f" and A —f") is a 4n self-conjugate nucleus
and is assumed to have an orbital function of highest possible space symmetry, of
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[44. . .4] character. The calculation of interaction kernels is simplest for such systems.
The fragment internal functions are built from spin-isospin saturated products. As a
result, the calculation of matrix elements of the hamiltonian can be reduced to the cal-
culation of matrix elements of orbital functions only. This reduces the calculation
from one involving A-particle states of space symmetry characterized by 4-columned
Young tableaux to one involving 14-particle totally antisymmetric orbital states
characterized by a single-column tableau. This reduction process is explained in
sect. 2. For the 2-body interaction it involves the introduction of the Fourier trans-
form #(q) of the radial part of the interaction u(r). The full 4-particle hamiltonian
matrix element can be obtained from three basic matrix elements involving
totally antisymmetric 4-particle orbital functions, (i) the norm or overlap matrix
element, i.e. the matrix element of the antisymmetrizer, (ii) the matrix elements of
basic 1-body operators including the Fourier kernel ) ; exp {i(q - r;)}, and (iii) a 2-
body matrix element of purely orbital type.

The Bargmann transforms of the three types of basic operators are given in sect. 3.
The single-column Bargmann transforms are first expressed in single-particle
Bargmann space variables. The transformation to Bargmann space cluster-internal
and cluster-relative motion coordinates is made in sect. 4. For cluster fragments in the
A = 4-20 mass range only a few cluster-internal degrees of freedom carry oscillator
excitations. The dependence of the single-column Bargmann transforms on these
internal Bargmann space variables is extracted in this section in terms of SU(3)
coherent states or in some cases a simple superposition of SU(3) coherent states.
Detailed calculations are carried out for the single-column Bargmann transforms
needed for the following systems: (i) the 12-particle system with cluster decomposition
a+ ®Be, (ii) the A = 16 system with cluster decompositions 2+ !2C, and ®Be + ®Be,
(iii) the A = 20 system with cluster decompositions x+ '°0, and 8Be+ !%C, and (iv)
the A = 24 system with cluster decompositions '>C+ '2C, o+ 2°Ne and ®Be + '¢0.
The combination of single-column Bargmann transforms to construct the Bargmann
transform of the hamiltonian for the A-particle system of full 4-columned Young
symmetry is carried out in sect. 5. It involves the convolution of 1-body operators
in the Fourier decomposition of the 2-body interaction.

The complicated 3A4-dimensional coordinate space matrix elements needed for the
calculation of both RGM and GCM interaction kernels can be extracted from the full
Bargmann transform by purely algebraic techniques through the expansion of the
Bargmann transform in appropriately coupled Bargmann space functions. The re-
lationship between the needed coordinate space matrix elements and the coefficients in
these expansions is established in sect. 6. Two cases are considered. In the first an
expansion of the cluster basis in SU(3)-coupled harmonic oscillator functions (with
equal width parameters) is used. In the second an angular momentum coupled cluster
basis is combined with locally peaked radial relative motion functions. In both expan-
sions cluster-internal functions are SU(3) coupled to functions with definite internal
SU(3) quantum numbers. The Bargmann space expansions are illustrated in some
detail with the simplest of our examples, the 2+ ®Be cluster system, in sect. 7.
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Finally, sect. 8 gives a summary and discusses the difficulties which may be en-
countcred in generalizing our technique to more complicated cluster systems.

2. The hamiltonian. Reduction to matrix elements of {A-particle orbital functions

Both in the Bargmann technique with intrinsic states of SU(3) symmetry and the
various generator coordinate methods of calculating interaction kernels, the actual
calculations involve matrix elements between wave functions of antisymmetrized pro-
ducts of single-particle functions. For 4n self-conjugate nuclei with spin-isospin satu-
rated cluster fragments the reduction to the calculation of matrix elements involving
1 A-particle orbital functions only is best carried out by the methods of Brink °), and the
notation of ref. °) is therefore followed in this section.

The A-particle wave functions are built from a set of independent single-particle
functions ¢,¢,,, (alternately ;¢ ), where i stand for the orbital quantum numbers and #
for the spin-isospin quantum numbers, (with o; = mgm, = +1+4, +1-1 —144
43— fori=1,...4)

4
@ =(A!) o { l—l (@,(r:)¢,, (0, )PP 4 2080, (0; 4 4 Ti+4)---)},
i=1

4
Y=(A) o {l—[ W (r)S,, (0 ti)lpz(ri+4)éa‘(ai+4’ti+4)'")}_ (1

i=1

Here </ is the A-particle antisymmetrizer, normalized according to .o/ = Y (—1)°®'P, .
where the sum runs over the 4! permutations, P. For the hamiltonian

A A
H=Y t;+ YV, (2)
i=1

i<j
with a central two-body interaction
V{r) = u(r)W+BP,—HP,—MP_P)), (3)

the sums over spin-isospin quantum numbers a;, a;, ... can be carried out explicitly, and
the A-particle matrix element is reduced to

(@ HY) = KD,V 3 (¥ p(B™");

+(@, ) ) b lulb D[ Xo(B™ B+ X (B~ )y(B™") ], (4)

ijki

where the sums are over orbital quantum numbers i, j, ... only, and the direct and
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exchange terms of the potential energy are given in terms of the exchange parameters by
Xy =3(16W+8B—8H—4M), X, =1i(16M+8H—8B—4W). (5)
The matrix B and its inverse B~ ! are given by the single-particle overlap integrals

B;; =< ¥y, (6)

with
(P, ¥> = (det B)*. (7)

Except for a norm factor of (det B)?, and a spin-isospin coefficient of 4, the kinetic
energy part of the hamiltonian is reduced to a matrix element involving totally anti-
symmetric +A4-particle orbital functions, by the relation

A4

Y o

i=1

detBZ(d:,-, (B 1) =<d1bs... a4 SV 20y (8)

where ./ is now a jA-particle antisymmetrizer. A trivial correction for c.m. motion is
still to be made (see sect. 4).
After rearrangement of the interaction part of the matrix element (int),

int = (X4+ X, )(det B)* Z(¢i¢j|u|tpkw,>(3_‘),“.(B_I)U

ijkl

— X.(det B)* Z<¢i¢j|l‘|¢k¢l>[(3_ ! hiB™ ! )lj_ (B~! )ii(B~ ! )u]’ 9
ijk!

the second term has been put into a form which can be converted directly to a matrix
element involving totally antisymmetric 1 A-particle orbital functions, by the relation

3detB ZH<¢:¢jlu|¢k¢:>[(B_ (BT (B7 )y (B™ )]

A/4

Z“(rij)'dl‘pl‘ﬁz---)- (10)

i<j

=<{$:1¢,...

To convert the first term of eq. (9) into the appropriate form it is convenient to
introduce the Fourier transform of u(r)

u(r) = jdqﬁ(q)eﬁ""" (11)

and use the analogue of relation (8) for the basic one-body operator, Y jexp{\/ii
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x (q-r;)}. Thus
(detB)? Z<¢i¢j|u|¢k¢’l>(3_ ! hil B~ ! )j

ijkl

= jdqm«mdetm T (e ¥ (B~ ) ldetB) Y (g e TV (B,
ik i

A4

P AT Vi .(12)

= quﬁ(q)(rﬁlsz- .-

A4 .
Y e Vi iy
ji=1

With the use of eqgs. (8)-(12) the full A-particle hamiltonian matrix is reduced to
(D, HY) = 43 H ;

(X + X ) J dqi(q)# p(q)# o —q)—2X, H 3Ky,  (13)

where the matrix elements

-#N = <¢1¢2---|-“’||/’1¢2--->~ (14)
A4
Hr=L$1¢;... .thj'd Yiys.. ), (15)
44 Mg
C Helq) = {d,0,... Z eV W, D, (16)
Aj4
-’fu = <¢1¢z _Z.U(",'j)-“’ l//lllll--'>~ (17)

are matrix elements involving 1 A-particle totally antisymmetric orbital functions only.
Xy is the norm or overlap matrix; that is, the matrix element of the ;A-particle
antisymmetrizer. The hamiltonian matrix is now expressed in terms of #y and the
basic one-body matrix elements 3, and ), as well as the orbital 2-body matrix
element J#, where all of these are quantities pertaining to the ;A-particle system of
orbital symmetry characterized by a single-column Young tableau.

If a Fourier analysis is made of the general one-body operator (e.g. the nuclear charge
or current density operator), the full A-particle matrix element of such an operator is
reduced to the calculation of 3, and »#; by the relation

(P i eV 5""{% = 43¢ ((q)- (18)

j=1
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3. The Bargmann transform

Although a numerical evaluation of the basic matrix elements, eqs. (14)-(17), can be
achieved most directly by the Brink technique, i.e. by relations such as those of egs. (8)
and (10), the evaluation of such matrix elements in the analytic form vital for RGM
calculations is complicated for all but the lightest systems because of the difficulties
associated with the inversion of the overlap matrix B. The evaluation is greatly sim-
plified by the introduction of the Bargmann transform of the operators ('.«/, with
¢ =1,% 1,3 expli/2q - r;}.and ¥, u(r,;). The Bargmann transforms of the operators
(-.«/ for the many-particle system are obtained if the single-particle functions ¢;, ¥, in
the multi-dimensional spatial integrals are replaced by

oF - Ak, r;), W, > Ak¥,r,), (19)

where ~
A(k‘r)zn-gc—§k-k+\:’2k-r—:r-r (20)

is the kernel function which generates the Bargmann transform in the 3-dimensional
single-particle space. The properties of the Bargmann transform which are most re-
levant for the microscopic cluster model have been discussed in ref. !!). The notation
will follow that of ref. ' !). Thus the r; are dimensionless single-particle coordinates ; that
is, r; is equal to the physical single-particle coordinate vector divided by the oscillator
width parameter, [#/mw]*. The same notation was implied in sect. 2 where g is also a
dimensionless vector, that is the physical ¢ (measured in fm™') divided by [mw/h]*.
This investigation will be restricted to cluster fragments with equal width parameters.
The generalization of the Bargmann transform to the case of fragments with unequal
width parameters is straightforward. However, the elimination of spurious center-of-
mass motion excitations would then require special techniques.

The k; and k; are the Bargmann space single-particle vectors. The Bargmann trans-
forms of ¢.of are easy to evaluate in these single-particle variables. The extraction of
matrix elements for a particular cluster decomposition of the A-particle system then
involves a simple transformation from single-particle to cluster-internal and cluster-
relative motion variables, where this is given by the same orthogonal transformation
matrix in real space and in Bargmann space variables. The essential point of the present
method centers around the fact that the antisymmetrization operation and the trans-
formation to cluster-relative motion variables can be carried out algebraically by
computer for the {A-particle Bargmann transforms characterized by a single-column
Young tableau. The extraction of cluster-internal excitations corresponding to cluster
fragments in minimum Pauli-allowed states of simple SU(3) symmetry is facilitated by
the harmonic oscillator generating function property of A(k, r). The transformation to
Bargmann space cluster-internal and cluster-relative motion variables is carried out in
sect. 4. In this section we first give the Bargmann transforms of the basic operators in
single-particle Bargmann space variables.
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The Bargmann transforms of the operators €.« are to be denoted by H, (k, k*) where
k stands for k, k,, ...,

Helk, k*) = CA(k, r )* A(ky, ry)*. . |C.of | A(KE, 1 )A(KS, ¥,).. . (21)
[Asin ref.'') the Bargmann variables in the bra part of a matrix element will always
carry a bar.]
(a) The single-column norm. With ¢ =1, the Bargmann transform of the (4 4-particle)
antisymmetrizer, built with permutation operators P, is given by

Hy(k, k) = 3. (~ 1" Mexp {Z k- Pk;."} . (22)
j
(b) The kinetic energy operator. With ¢ = ) .1,
H,(k, k*) = tho {; (= 1)y [3—4(k;— Pk}¥)*]exp [Z (k;- Pk}‘)]}. (23)
i i

(c) The basic 1-body operator. With ¢ = Y ¢ W

Hy(k, k*) = e_*""’; (— 1) Z [exp {ig- (k;+ Pk*)}]exp {Z (k- Pk,’.")}. (24)
J i

(d) A gaussian 2-body interaction. With ¢ =Y, u(r;;) and u(r;;) = e~ #riwhere B.

like r;;, is dimensionless,

Hytk,k*) = (1+8)"1 Y (= 1) ¥ exp[ —ig(k; —k;+ Pk*— Pk})*}
P

i<j

X exp {Z (k;- Pk;")}, (25a)
1
where
g = B/2(1+B). (25b)

In egs. (22)-(25) the sums over particle indices i, j, { run from 1 to 14, the sums over
permutations contain (34)! terms.

4. The Bargmann transform in cluster coordinates

The transformation from the single-particle k; to Bargmann space cluster-internal
and cluster-relative motion variables is achieved by the same A x A orthogonal trans-
formation matrix which effects this transformation in real space. For cluster fragments
in the A = 4-20 mass range, however, only a few cluster internal degrees of freedom
carry oscillator excitations. As in ref.'!) the cluster Bargmann space vectors are
denoted by K, K, K_, where a subscript i denotes a cluster-internal variable, K
(without a subscript) denotes the relative motion vector of the binary cluster system,
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Kem

Fig. 1. Nlustration of the Bargmann space cluster variables for the x+®Be system. Cluster-internal

variables such as \/1(k, —k,) or \.".‘v,(k2+k5—2k.4) (dashed lines), can carry no oscillator excitation.

They are given no special designation since they are set equal to zero in the final expansions in K-space
variables.

and K_  is the Bargmann space vector for the motion of the center of mass of the 4-
particle system. (See fig. 1.) For 4n self-conjugate nuclei, the four single-particle vari-
ables ki, Ky i kograrir K3prasi (With i = 1,..,14), carry the sume dependence on K,
K. ..K,.K,, ..., whereas cluster-internal variables built from linear combinations of
such a set of four (with the same i), can carry no oscillator excitations if the cluster
fragments are in minimum Pauli-allowed states of highest possible SU(3) symmetry.
For such a cluster decomposition into fragments with mass numbers f and 4 —f, the
single-particle Bargmann space variables are transformed according to

kpgari= [.fT<— [ Af—jl K+ [ﬁ] Kc_m_> +... fori <1f.

k oo, = 1 ) &K+ A=/ iK + forif<i<ia, (26)
nA4+i [A_f]; A A c.m. 4. = 4%

where n = 0, 1, 2, 3, and where the terms abbreviated by +... stand for the cluster-
internal degrees of freedom K|, specific to each particular cluster system.

In principle, the extraction of a many-particle matrix element of ¢".o/ in the appro-
priate cluster basis requires three basic steps: (i) a transformation from Bargmann
single-particle variables k; to Bargmann space cluster variables K;. K, (ii) the com-
bination of single-column Bargmann transforms by the anlogue of eq. (13) to construct
the Bargmann transform of €./ for the full A-particle system, and (iii) an expansion of
this transform in the cluster variables K, K retaining only the needed low powers of the
internal K; which correspond to cluster fragments with internal wave functions in
minimum Pauli-allowed states of highest possible orbital symmetry. In step (i) the key
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relation follows from the orthogonality of the transformation from the k; to K, K .
K,...

A
[1Atk;,r) = AK,RAK, . R )] AK,R,). (27)
j=1 i
In step (iii) the generating function property of A(K;, R;) is vital

AK,R) = %Z P(K, )22 }(R,)\CO*, (28)
2
Here $2% is a 3-dimensional harmonic oscillator function in the variable R;, P(K;):2% is
its Bargmann transform, and « is any set of convenient subgroup labels of the SU(3)
representation (Q0). For the x+®Be cluster system of fig. 1, e.g., only the internal
variable K, carries oscillator excitations. To construct a ®Be internal function with
(An) = (40) each single-column transform must contribute one oscillator excitation. In
the K-space cxpansions of such a transform therefore the only terms which can contri-
bute to the 2 + ®Be matrix elements are those which are of first power in K, (and of first
power in K¥).

The direct method for the evaluation of the matrix elements sketched here is com-
plicated by the presence of the antisymmetrizer, and the process is actually carried out
by somewhat more indirect means. This more indirect method uses the fact that the
Bargmann kernel function is related to a Os-oscillator function centered at ﬁk.

Ak, 1) = oylr, /2k)e* X (29)

Differentiations with respect to k,(x = x, ¥, z) convert Os-oscillator functions to Op-
oscillator functions:

((1\ A(k, 1) = { o, (r,/2K)e* K.} (30)
The term abbreviated by +... is not written explicitly. The term indicates that there is
an additional Os term. It is not written explicitly because such a Os term is generally
annihilated by the action of the antisymmetrizer if a Op-oscillator function is needed in
the construction of the many-particle matrix elements. Similarly, sd-shell functions are
created by appropriate double k-variable differentiations. A transformation from the
single-particle Bargmann space variables, k, to cluster variables, via eq. (26), in which
K_ . and K, are set equal to zero, leads to a product of single-particle oscillator
functions centered at position vectors appropriate for fragments f and 4A—f. The
action of the antisymmetrizer is carried out in a straightforward fashion in the space
of single-particle variables. The transformation to cluster-relative motion K-space
variables is also straightforward. Finally, the dependence on the internal Bargmann
space variables can be regained through the construction of SU(3)-coherent states
of the simple SU(3) symmetries appropriate for the cluster-internal K; in the
K-space expansions of the single-column Bargmann transforms.
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The method is best illustrated with a few examples of the type to be treated in this
investigation.

4.1. THE 1 +2 PARTICLE SYSTEM

For the 12-particle system with an a + ®Be cluster decomposition, the single-column
Bargmann functions are built from 3-particle systems where one of the particles comes
from cluster fragment of mass number f = 4, and the other two from cluster fragment
A—f = 8. For this system

o 3
- A(E,-, i }]
[ck], {.l:ll ") K=0K, ., =

= X poury, —[204 =) AT K )ollra +[2f/AA=]K)

X {Gop,(r3 +[2f/AA=F)]*K) +.. .. (31)

with a = x, v or z. The operation implied by the notation for the left-hand side of eq.
(31) involves

(i) differentiation with respect to the single-particle Bargmann space variable,

(ii) subsequent transformation from the k; to K, K., K__ , and

(i) the setting to zero of all but the cluster-relative motion K-space variable.

{The term +... is included for completeness; it again indicates the presence of a Os
component for particle 3, also centered at \/2f /(A —f)A K. This term is annihilated by
the subsequent action of the antisymmetrizer and can thus be omitted henceforth.)
When applied to the bra side of the Bargmann transform the above operation yields
spatial functions of oscillator excitations appropriate for the internal functions of the
cluster fragments. To regain the proper dependence on the corresponding internal
Bargmann space variables K (the single Bargmann space variable K, in this example),
it is sufficient to take the scalar product

K- [i{n Alk, }] = FU Y PR, IVG(1)O08 230, (32)
ck, K.=0 z

Kom=0

where (1), (2) and (3) are shorthand notations for the arguments of eq. (31), and the
oscillator labels Os, Op are replaced by the SU(3) labels (00), (10). The state in eq. (32) is
an SU(3)-coherent state of irreducible character (4u) = (10). Using the properties of
the K-space functions the product of four such coherent states will yield an internal
state of SU(3)character(4,_ u,_,) = (40) where the desired subgroup label can be
extracted by the appropriate SU(3) caupling.

The combination of the operations implied by egs. (31)and (32) when applied to both
the bra (K) variables and the ket (K*) variables of the Bargmann transform of .o/ leads
to the single-column Bargmann space functions of SU(3) symmetry appropriate for the
cluster-internal wave functions. By defining functions F which are the generalizations
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of the functions introduced in ref. ' ') for the norm kernel (¢: = 1) [seeeq. (57) of ref. ' !)]
the necessary single-column Bargmann transforms are obtained at once. For the 1 +2
particle system, we define

FASY = | g an (33)
“\o0;08 cky, k¥,

K =0K'=0,K_,_ =0

The single-column Bargmann transform H.(k,k*)is defined by eq. (21). The operations
implied by the right-hand side are identical to those introduced in connection with eq.
(31). With this F,

P(K 1O pK*)on =
gﬁ; (K, )¢ OP(KY); F«(0;0ﬂ> H«(z(lo)‘2(10)>’ .

where the H,(330)15{90)) are the generalizations to the arbitrary operator € of the single-
column Bargamann space functions introduced in ref. ' ') for the norm (¢ = 1).[See, in
particular appendix C of ref. '!), and note the slight generalization of notation. The
factor exp {n(K - K*)} of ref. ') has also been absorbed into the definition of H,.}

4.2. THE 1 +3 PARTICLE SYSTEM

For the 16-particle system with an o+ !2C cluster decomposition, the single-column
Bargmann functions are built from 143 particle systems where the 3 particles from
cluster fragment A —f = 12 must carry SU(3) character (Az)=(01) built from the !2C
Bargmann space internal functions K, and K,. With \/g[Kl xK,] = K,,, the SU(3)
(Ap) = (01) coherent states can be constructed by

__ 0 0 4 —
V3K, xK,]- [[a% x %] {H Ak, "')H

= 8 ¥ e, P(K )P VO VD) OVB3) V94)! ", (35)

apy
where the ¢(i) with i = 2, 3, 4 are oscillator functions centered at +./2f/(4—f)A K,

while ¢,(1) is centered at —./2(4A—f)/Af K. The appropriate single-column
Bargmann space function is now

0;08y
a;y a‘;y'aaﬂyp(xl 2 );0 ! )sa’p'y’P(KTZ )z(z} O)Fa (0 ; OB’)”>

= H, (1(00) 1‘00)). (36)

Kl =0, K:,m. =0

3(01){3(01)
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4.3. THE 2+ 3 PARTICLE SYSTEM

As a further example, we consider the 20-particle system with a ®Be + '2C cluster
decomposition. The single-column Bargmann space functions for this system are built
from 2 + 3 particle systems where the 2 particles from fragment f = 8 must carry SU(3)
character (i) = (10} while the 3 particles from fragment A —f = 12 must carry SU(3)
character (Au) = (01). The appropriate SU(3) coherent states are constructed from

. .12 ¢
;xmﬁ[fle(a]x[ﬁpu[aa ak] {HA( }:|x.=0

Kem =0

e 3, PIR PR 27 e (1O VB I IPB) VAN OGS (37)

Now

XY PROPK) ey, PKDEVPKE ) sy

2fyv 2By’
Oot; Opv ) 2(10)
X Ft'. (0!1:;0}‘,"/) = H(' (3(01)

The corresponding single-column Bargmann space function needed for a matrix ele-
ment connecting a ®Be + ' 2C cluster function to an a + °O cluster function is given by

i \(10) (01) IO(Z;O’)’V - 2(10) 1(00)
2, PROPR ) e F "<o;oxyz)‘H"<3(01)4(00) ’ (39)

where the SU(3)-scalar function \/%'(K ¥ [K% x K%])for the '°O fragment need not be
written explicitly.

2(10)
3(01)>. (38)

4.4. THE 1+ 5 PARTICLE SYSTEM

Cluster systems with sd shell fragments can also be included. For the 24-particle
system with an o+ 2°Ne cluster decomposition, e.g., the 1 +5 particle single<olumn
functions are given by

1(00)|1(00) _ (20 02 0; Oxyz(ap)
e sansony) = EPERSPROGE(GOED). o

where (af) in F, denotes [1+8,,]*(0%/0ke_0kss) and
P(K)GR = [1+0,4] Ko K,
Single-column Bargmann space functions of the type

H (I(;‘-tﬂl) i;(ll’#l')
¢ n(j'n#n) nl(in’#n') ’
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with ! = 1f,n = (A —f), needed for the calculation of cluster norm and overlap matrix
elements (0 = 1) have been evaluated in ref. !!) for many simple cluster systems with
[+n £ 6.[See in particular, the tabulation in appendix C of ref. ' ').] In ref. !!) the (4,4,)
and (4,u,) were coupled to a specific resultant single column (4_z.). At present, we shall
reserve this coupling to a later stage in the calculation. This simplifies the calculation of
by means of auxiliary coefficients y,,;.,-, Which had to be evaluated for each (4.u.) via
specific SU(3) coupling coefficients and a knowledge of the F,. Since the H,, as defined
in this investigation, automatically have the desired (4,4;), (4,u,), (%.14;) and (4,.p,.),
their evaluation via relations such as those of egs. (34), (36) and (38)-(40) is somewhat
simpler. In the present method the single column (4;y;) are first combined to the
resultant (4;u,) when the single-column Bargmann transforms are combined to A-
particle Bargmann transforms of full 4-columned Young symmetry. Similarly, the
single column (/ u,) are first combined to resultant (2,_,u,_,). The (ipu,) and
(Ag-sia_s) of the f- and (A—f)-particle cluster fragments are then combined to
resultant A-particle internal SU(3) symmetry (2 u.). This process therefore is now part
of the SU(3)-recoupling transformations of the Bargmann space internal K of the full
A-particle Bargmann transforms and is thus discussed in sects. 5-7.

The compyter code used in ref. 1) to calculate the functions F, with ¢ = 1 has now
been generalized to include the basic one- and two-body operators enumerated in sect.
3. For the kinetic energy operator, however, no new Bargmann space functions are
needed since the Bargmann transform of T'can be related to that for the norm. Before
proceeding to the Bargmann transform of the interaction this relationship will be
established.

The kinetic energy operator. The Bargmann transform of T for the full A-particle
system, characterized by a 4-columned tableau, can be obtained from the single-column
transforms Hy(k,k*) and H,(k, k*) of eqs. (22) and (23) by the Bargmann space
analogue of eq. (13) (T-term). Since we want the kinetic energy relative to the cm., a
subtraction for the c.m. motion must be made. The Bargmann transform of the trans-
lationally invariant T for the A-particle system (full 4columned symmetry) is
therefore

4H (k, k*)H3(k, k*)— HS™

(A/4)! A/4 44
_ 4{%@,( S (<1 Y (3306 — Pk¥)exp { Yk Pk;‘})}
P i=1 j=1
x Hy(k, k*)—4hof3 —3(K. . — K2, Y JHA(K, k*)

A
= fhofHA— 1)~} 3 (% +kr) + 3K, K2 P IHAE K*)

i=1

(Aj4)!

A/4
+4H 3 ho [% Y (—1)Pexp {Z ﬁEj-Pﬁk;}] : (41)
P j=1 Z



Y. Suzuki et al. | Interaction kernels 91

where the simple identity
Y(=1)y"""Y (k;- Pk¥*)exp {Z k;- Pk;?}
P i j

= [%Z(— 1)°P exp {Z JZk;- P Zk;ﬂ (42a)
P j 7

has been used to convert the second term to a useful form. In this form the action of the
operation

(‘1

. %
YT
["]‘_i, akjﬁ] K =0Kr=0K,, =0

defined by the functions F, of eq. (33). effectively converts the second term of eq. (41) to

d A [FGu)
4HL w[dZ {Z HN("U—..N..) " (i) ke ik § e R (42b)
K‘a\/zkn

where ¢;,, is the total number of k-space derivatives in F, that is the total number of
internal oscillator quanta carried by the cluster fragments f, A—f, /' and A—f" in
the single-column transform, summing over cluster fragments in both bra and ket.
(For the example of eq. (38), ¢;,, = 1 +2+14+2 =6.)

In the first term of eq. (41) the sum

A
Y (k2 +k¥?) =Y (K2 +K}*)+ K>+ K*? + K2 +K*2, (43)

can effectively be replaced by K2 + K*? if all cluster fragments have internal functions of
minimum Pauli-allowed oscillator excitation. If a K? for a particular internal cluster
degree of freedom were retained in the sum (43) within the first term of eq. (41), the
expansion of H} in internal K-space variables would perforce contribute two fewer
powers of this K;. This would correspond to an A-particle norm transform with Q,_, two
less than the minimum Pauli-allowed oscillator excitation, and such a norm transform
would be identically equal to zero.
Thus eq. (41) for the full A-particle Bargmann transform of Tcan be converted to

H(K, K*) = Yo {B(A 1) 440, — 3R+ K*)]H (R, K*)

+ [i Hy(JZR, ﬁx*)] } (44)
V7 -

where Q,,, = 44;,,, and where H;(K, K*) and Hy(K, K*), with variables K, K* (rather
than k, k*), stand for the (properly normalized) Bargmann transform of the full 4-
particle system of 4-columned symmetry. The Bargmann transform of the kinetic
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energy operator can thus be calculated from a knowledge of H N(K K*). The com-
bination of four single-column functions of type H( ,_ A4 |t - #4:) to build the
(properly normalized) Bargmann transforms H, (K, K*)is dlscussed in detail in sects. 5—
7. Before proceeding to the general cases the single-column functions
Heloa- pid\a £y o) for operators, ¢ = Y jexp,/2i(g- r;) and ¢ = Y i< ulr;;) have
to be calculated.

Single-column functions of this type can in principle be evaluated by straightforward
application of equations such as egs. (34), (36), or (38)~(40). In actual practice, the sums
over a, f,... in these equations could contain a huge number of terms. Straightforward
application of eq. (34) would involve a sum over 3% or 9 F, functions; for eq. (38) it
would involve a sum over 3° or 729 F functions. In actual practice the two F, functions

withaf = zzand zx are sufficient for the evaluation of the H.(-: || ) of eq. (34); while a
choice of 9 F, functions are sufficient for the H.(: : | - '} of eq. (38). This is so because the
structure of the H, (k, k*), egs. (22)-(25), and the nature of the F,(Z ZZ: ZZ Z) permit us

to enumerate all possible scalar products which can be constructed from the Bargmann
space vectors K ,,...K,3,... K¥,... K, K*, and ¢ (in the case of Hy). The coefficients of
the various possible scalar products can be determined by assigning specific orien-
tations to K,,...K%,.... The process can be understood most easily by examining the
structure of some of the results.

For the tabulation of the results it is useful to define a few short-hand symbols.
Assuming that the K variables or the bra side of a matrix element always correspond to
cluster decomposition into fragments of mass numbers f and 4 —f, while the K* vari-
ables or the ket side of a matrix clement correspond to a decomposition into fragments
of mass numbers f', 4 —f" (including, of course, the possibility f* = f'), then it is useful

to define
- A 3 A s
X = - | K,  a*=|— — | K* (45
[f(A f)] [./ (4-7 )] )
In terms of these variables the quantities e, defined in ref. !!), have the value
e’ =exp(—pA - H*), (e =e”"). (46)

The H . can be expressed in terms of these e? and exponentials in the functions 0(a, b)
with g, b = | or 2, where

01, 1) = iq- - <4-;-f—'> A~ (#) xf*],
02,1) = ig- % A — (f’;i’) f"‘],
0(1,2) = iq- | — (f-_£> A+ ; ;r*}

0(2,2) = iq- %xﬁ / .1*].

(47)
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These satisfy the simple relation
0(a,b)—0(a',b') = ig- [(a—a') K + (b—b')x"*], (48)

which is useful in the convolution of the Fourier transform.
Finally, for a gaussian interaction the Hy can be expressed in terms of the e” and
exponentials in functions ¢, with

e?1-9 = exp [~ gl - A),
eb0. 1) = exp [—%gx" . _f#],

(49a)
e?! 1 = exp [—4g(H+H*) - (H +H*%)],
e "1 = exp [—3g(H —H*) - (F — )],
where ¢ is defined in eq. (25b), and ¢(i, j) can be expressed by
Ol J) = —glix +jA*). (49b)

The a+®Be single-column transforms. The evaluation of eq. (34) for the single-
column Bargmann transform of ¢ = Z,-exp{i\/i(q - r;)} for the 12-particle system with
an a+ 8Be cluster decomposition, (f' = f =4, A—f' = A—f = 8) leads to

1(00)[1(00
H*-‘(zzloi 22102) - P [“ o “Y %*]e"p[_%"'q]

X [(Kl .K*)feo(l. 1)_e1e0(1 2’—6169‘2' 1)+(2_e1)ea(2.2n_
+(K* f)(K Y*)\( 9(1 2)_ele0(2 1) elet)(z 2))
+(ig- K, MK A ){e'e> Vel 2)
(’q K )(K f*){el 01.2) _ alaB2. zn
+(iq - K, Yig - K¥)(1 —e')e®* ], (50)

From the general structure of the single-column transform, eq. (24), it can be seen that
the coefficients of the various exponentials must be built from products of factors of the
type (iq-a), (ig-iq), or (a-b) where a(b) are one of the vectors ¥, X*, K,, K*.
However, the ¢-independent scalar products (a - b) must arise from a factor with the
same structure as the norm and must therefore be SU(3)-scalars ; they therefore include
only the possibilities (K, - K¥), (K¥- %), (K, - #™*),and (X - #°*). From the definition
of the single-column function H, each coefficient must contain both K, and K* to the
first power. Thus the ¢g-independent coefficients which are linear in both #and X#*, for
example, must be of the form [A(X¥"- K¥)(K, - #™*)+ B(K, - K*)(# - X*)] where A
and B are easily evaluated from the ¢-independent coefficients (linear in %" and #°*)in
the various exponential terms of the two functions F(§:9z) and Fg(3:3Z). The result
[cf. eq. (50)] shows that B = 0.

The evaluation of eq. (34)for € = ), . u(r;;) with u of gaussian form [eq. (25)], leads
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to the single-column transform (x + 3Be cluster decomposition)

100100 _ ;e [1/0A=S) -
H”<2(10)2(10)>_(1 %) e"p[4 a X "(*]

x [P(10000){(1 —2¢)+(—1+2g)e'e®! O+ (—1+2g)e'e?* !
+2—g)? V4 (~1-gele?! 1}
+ P(01100){(— 1+ 2g)e'e? 1 O+ (— 1 +2g)e'e?® Dy g2e!- 1) — (1 —g)Zele!- ~ 1)}
+ P(00011){g2e?- 1 — gZele®t- ~ 1))
+P(00110){ (g —2g%)e'e?" O 4 g?e?- Dt (— g+ gP)e'e?!: ~ 1)
+ P(01001){(g —2g%)e'e®® V4 g2 DVt (— g+ gPlele®t- ~ 1}, (51)

where

P(abcde) = (K, K¥y(K, - X*'(K*- XK, AYKT- H*Y. (52)

Note that H, (unlike H;) contains scalar products of the form (K, - #°), SU(3) (20)
tensors, and (K* - #*), SU(3) (02) tensors. Note also that both H;;and Hare invariant
under the transformation K, «» K¥, X" <> #™* (interchange of bra and ket).

Finally, note that the single-column norm transforms, Hy, can be read from
Hy(q = 0) or from Hy(g = 0) through the relations Hy = (4)"'H.(g = 0) or
H, = [4-14GA4—-1)1"'Hy(g = 0). For the a+°®Be system this leads to [cf.
appendix C of ref. 11)]

2(10)[2(10)

Single-colurrin functions H; and H have been evaluated for the following cluster
systems: A = 16, a+ !2C and ®Be + ®Be cluster decompositions; A = 20, a+ "®O and
8Be + 12C cluster decompositions; and A = 24, «+2°Ne, ®Be+!°O and '*C+!2C
cluster decompositions. Since the expressions for some of the heavier systems are
somewhat lengthy, the results are given in tabular form. The appendix illustrates the
results with the 12C+ '2C and ®Be + 'O cluster decompositions of the A = 24 system.
Complete results are tabulated in ref. '?).

HN(”OO) 1(00)) — exp G - H¥){(K, - K¥)(e®—e')—e' (K, - H*)K}- ). (53)

5. A-particle Bargmann transforms

The combination of single-column Bargmann transforms Hy, Hy, Hy, to construct
the Bargmann transform of the interaction for the A-particle system of full 4-columned
Young symmetry is carried out in this section by the Bargmann space analogue of eq.
(13). For a gaussian interaction the Fourier transform [normalized according to eq.
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(11)] is given by

4
q) = (1) e ", for u(r) = e 4", (54)
n
with
i, #
T TRy

For the interaction ¥, with arbitrary exchange mixture, the full A-particle Bargmann
transform H, (K, K*) is thus given by

ki
HV(K,K*)=C{(Xd+Xe)H§ (%) f‘-dqe‘""'HE(q)HE(—q)—2er3HU}, (55)

where the exchange coefficients X4, X, are given by eq. (5), and Hy, H; and H, are
single-column transforms of the type given in egs. (50) and (51) for the a + 8Be system.
Since these single-column transforms are constructed for cluster-internal functions
with single-column SU(3) symmetries appropriate for fragments of mass numbers % f
and 2(4 —f), a transformation must be made to internal functions of full 4-columned
symmetry. For systems with a 8Be fragment in bra each of the four single-column
factors H, of eq. (55) carries an internal function P(K,)'?’ coupled to other K-space
functions. With a !2C fragment in bra there is a similar P(K,3)°". A recoupling
procedure is used to combine the four K, factors to P(K,)*? and the four K, ; factors to
P(K,;)°. Finally the ®Be symmetry (2 ;p1,) = (40) is coupled with the '*C symmetry
(Aa-si4-7) = (04) to resultant SU(3) symmetry (4.u.). The details of this recoupling
process are best illustrated by specific examples (see sect. 7). Since the single-column
functions Hy, Hg, Hy, are constructed with normalized single-column internal func-
tions, such as P(K,)\'®, a renormalization factor, C, is needed in eq. (55) to build the
H (K, K*) for full 4-columned symmetry with normalized internal functions such as
P(K,)*® for ®Be fragments, or with (i u,)= (04) for '2C fragments, or
(Aq-siq—g) = (80) for a 2°Ne fragment. Thus, the coefficient C contains a factor
[(11)*/417* for each ®Be and each !2C fragment in bra and ket and a factor [(2!)*/8!]*
for each 2°Ne fragment. In addition, a factor ./ is needed if the two cluster fragments
in the bra are identical, similarly for the case of identical fragments in the ket. Thus
C = 4[1/4!7? for *2C +'2C fragment decomposition in both bra and ket, whereas
C = J/i[1/4!]'[2*/8!]* for '*C+'*C fragment decomposition in bra and a+ 2°Ne
fragments in ket, for example.

Except for the details of the recoupling process the evaluation of the Bargmann
transform H,(K, K*) is thus reduced to the evaluation of the convolution integral
_[dqe“"zH £(q)Hg(—q). From the form of the single-column transforms H(q) [cf. eq.
(50)] and the relations (47) and (48) it can be seen that this integral consists of a sum of
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terms which, except for a g-independent factor, have the general form

* n
(%) que—(wﬂ)qz [] (iq- a;)iq- ig)"exp iq- [(a—a' V" +(b—b')H*]
j=1

j=

T

1 n
= (2g)i"+"'(1—2g)i{ ijdqexp[-q’z—ziq’-x] II(iq'-a,-)(iq"iq’)"'}, (56a)
i=1

where the substitution ¢ = (y+ 1) *q’ = (2¢)*q’ has been made, and where we have
defined

k= —(Gg[(a—d) X +(b-b)x*], (56b)
with
—k* = ¢la—a,b-V), (56¢)
where ¢(i, j) is defined in eq. (49).
The basic integral can be evaluated in general form:
% dg'exp [—q*—2ig’ - vc}jlf[1 (iq'- a;)(iq" iq')"

[n/2]

= L (ilaar k) enp) (57)
where
colp) = 1,
alp) = (—1F" 3 CPn+3=p Y, form >0
with

cPe) = (-1y &

r

m s \I'(s)I'(x+m-—s)
<S)<s—r>m—__r(x) X forr > 0,

_TI'(x+m) ® m! 1l (x+m-s)

rx) " Sim-s)'s Tk (58)

and where the symbol [a,a,...a,/x]"? defines a function involving scalar products of
the vectors a; with  in which p contractions have been made. With no contractions

(p = 0),

[a,a,...4,)k]° = (a, x)(a,"x)...(a, ). (59a)
With one contraction (p = 1), the symbol defines the sum of 4n(n— 1) terms:
[a,a,...a,x]") = (a,a,)(@; x)...(a, x)+(a," a;)a;"x)...(a, K)

+...+(a,_, a,)a, x)...(a,_ x) (59b)
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With two contractions (p = 2), the symbol defines the sum of 3n(n—1)(n —2)(n—3)
terms:

[a,a;...a,)k]* = (a," a,)(a;" a,)(as" K)...(a, )
+{a,-as)a, a,)as x)...(a, x)+... (59¢)
etc., where [a,a,...a,|x]? is homogeneous of degree n—2p in :
[a,a; a,loxk]? = 6" *"[a,a,...a,k]P. (60)

From the general form of eq. (57), and the fact that (a —a’) [similarly (b—b)] = +1,0
[see eq. (56b)], we note that the convolution integral leads to terms of the same form as
those appearing in Hy, ; that is exponentials of the type e?" 7, defined by egs. (49) (or e®),
multiplied by scalar product factors of the type (K, - K¥), (K, X),...and the ad-
ditional #"-dependent factors e? of eq. (46).

As a specific example we give the results for the « + ®Be decomposition of the 4 = 12
system. In terms of the P(abcde) defined by eq. (52), and H,, given by eq. (53), we get

b
<3:—) que_"“"‘HE(q)HE(—q) = (1—2¢)}[H%{3+2e#! O 4290 1) 4 2ee(1. ~ 11}

+exp [2o0 - o * Hy(P(10000){(—2 — 29+ 2ge') + (2 — 2g + 2ge* )[e** 0
+e#0: 1] 2?1 D _ gebtl. — 1))

+ P(00110)(2g){(g + (1 —g)e!Je: O —glet!- ~ 11

+P(01001)(29){(g + (1 —g)e')e? - V) —ele?’. 11}

+ P(01100)(2g){2e'e?!: O 4 2eleH0: 1) 4 2ele#l. ~ 1}

+exp [24 - .;Y'*](P(ZOOOO){M—2g+292)+Zg(1 —2g)! +2g%?
+(—4+2g—2ge )[e?!! O +e#0 D] 4 (229 +2ge’ Jet - 1) 4 2e#1. ~ 1)}
+P(10110)2g9){(—g+(—2+g)ke' ) D+ (g+ (1 —g)e' et V 4 elet!: ~ 1}
+P(11001)(29(— g+ (—2+g)e")e?® V4 (g + (1 —g)e' Je?!+ U 4 elet!: ~ 1}
+P(11100)(2g){e? + (— 2ge" + (— 1 +2g)e?)[e?!- O +e#: V]
+(g+@2—g)' et V4 (=2 +e?)ett 1)

+P(00200)(K, - K,)(29){e? —e%e*: 1}

+ P(02000)(K?% - KT)(2g){e? —e2e*!- O}

+ P(02200)(2g){e%e*+ ) + g2e#(0: 1) 4 gZed1. ~ )

+ P(01210)(2g2){(ge" + (1 — g)e2)e?t: ) — e2e#t1 1)}

+P(02101)(29%){(ge" + (1 — ge?)e?® 1 —eZedtt. 1)
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+ P(01111)(2g%)e?e?t: ~ 1
+ P(10011)(2g%)(1 —et)e?t- 1
+P(00101)(K, - K,)(2¢°)(—e' +e?)e?*: 1)
+ P(01010)(K* - K¥)(2g%)(—e" +e?)e?!-©
+(K, K )KY - K1)g*)(1—e' )] (61)

For the heavier systems the convolution integral can lead to a large number of terms.
However, the systematics of eqs. (57)«59) are such that the process can be com-
puterized easily.

6. Relationship between coordinate space matrix elements and expansions of the
Bargmann transform

The Bargmann transform H, (K, K*) of the interaction can be used to extract both
RGM and GCM interaction kernels by purely algebraic techniques. For this purpose,
however, it is necessary to convert eq. (55) to a more useable form. If a harmonic
oscillator expansion can be used for the calculation of an RGM kernel, an expansion in
an SU(3)-coupled oscillator basis is particularly useful [cf, e.g., eq. (109) of ref. '1)]. If
harmonic oscillator expansions lead to convergence problems a basis in terms of more
conventional angular momentum coupled-channel functions with cluster-internal
functions of good SU(3) symmetry may be more appropriate. In the partial-wave:
decomposition of a GCM kernel such a basis with locally peaked radial functions is
particularly useful. For both cases the needed coordinate space matrix elements (com-
plicated 34-dimensional integrals), can be read from an expansion of the Bargmann
transform H, (K, K*) in terms of the analogous appropriately coupled K-space func-
tions. In this section we shall first establish in a general way the relationship between
the coordinate space matrix elements and the coefficients of the K-space expansions.
The specific example of the a -+ ®Be cluster system is then used to illustrate the process in
some detail.

6.1. EXPANSION IN AN SU(3}COUPLED OSCILLATOR BASIS

To establish the desired relationship in the harmonic oscillator basis the Bargmann
transform of the operator €.</ is first transformed to cluster variables with the use of eq.
27)

A A
H, =[] Atk r)*10o| TT AGk®, 7))
j=1 j=1

= < l—l A(Ki, IZ)*A(K’ R-)*A(Kc.m.’ Rc.m.)*lci'gﬂ l_[ A(K_T’ Rj)A(K*v R)A(K:m’ Rcm)>
(62)
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The expansion of each A(K;,R;) in 3-dimensional harmonic oscillator functions by eq.
(28), followed by successive SU(3)-coupling of both coordinate-space and K-space
functions, leads to '?)

H, =

(Aenc}QUAR)Z Ues)Q (' p')a!

X [[P(K,,... )40 x P(K,... ) 4-1ma-n]0ee) x p(g)QOI]Gn)

x [[P(K’{', . .)(}‘f'lf’) X p(K}t, . _)(ua-;-u-f')](né.ié) x p(K*)(OQ')]-ga'A')

X <[¢(/1nu) X ¢(1A—ﬂu—f)](lcnc) X d)(R_)(QO)];J-M)d)(RC.m-)(Oo?lc,_dl

X [[¢(/‘.rur) % ¢114 -fHaA -f')](léné) X ¢(R)(Q'0)](;}'M')¢(Rc.m.)(00)>_ (63)

Here K, and the cluster-internal K-space variables which carry no oscillator exci-
tations have been set equal to zero, and only the terms corresponding to minimum
Pauli-allowed excitations in the variables K; have been retained. The square brackets
denote SU(3)-coupling. If we now imagine that the operator ¢ is expanded in SU(3)-
irreducible tensor components

¢ = Z @L‘-ouo)’ (64)
otk

a generalized Wigner-Eckart theorem can be expressed by
L[...J8eL|... ]85
= Z Z([ . .]f“"||0“°“°’.d|l[. __]y}’u')>po

(AoHo)20 po
X (AL (' 3)F | (ot Jto) pe (65)
In both egs. (63) and (65) the phase factor associated with complex conjugation - 14)
has been included in the definition of &. (Complex conjugation converts ¢**? into

¢¥'*%) By combining egs. (63) and (65), the desired K-space expansion of H,, is
attained,

= (Aouo)p
He = Z Z Z Cag’ "
(Actc)Q(AR) (Acue)Q’(A'n") (Avpo)avpo

X [[[P(Kl, .. _)().ﬂu) X p(Ki, .. _)(lA—an—f)](lcuc) X p(K)(QO)](;,‘,

X [[p(KT, . _)(I‘f'lf') X P(KJ?, . _)(na-rh—r)](nélé) x P(K*)(OQ')](M'l')](liuﬂo)ﬂo”
(66a)

where the subscripts a(a’) in the expansion coefficient are shorthand symbols for
a= [[(;‘f”’j‘)(i,{—fﬂ,{ —f)] ()'t#c)(QO)](Au),
@' = [[ApupMhaz ptta ) JEHNQOAR),
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and the expansion coefficient c{:%#?#0 js the SU(3)-reduced matrix element of the
operator ({}oro).of,

C‘(:;,‘?‘lu)po — <[[¢(1ﬂ4;) X d)(}u-ﬂu -f)](lcuc) X d)(R')(QO)](}.n)d)(Rc.m.)(00)”

X G““““’.a{||[[¢“'"“") X d,(l,q-ru,«-r)](iéué) X ¢(R)(Q'0)](A'u')¢(Rc n )(00)>po_ (66b)

By expanding the Bargmann transform H.(K, K*) in the SU(3)-coupled K-space func-
tions [...J{%**9%° of eq. (66a) the needed coordinate space matrix elements can thus be
read from the coefficients in this expansion.

6.2. EXPANSION IN AN ANGULAR-MOMENTUM COUPLED CHANNEL SPIN BASIS

In the evaluation of a GCM kernel a slightly different K-space expansion is useful.
With cluster fragment internal wave functions of good SU(3) symmetry the A-particle
basis function of the GCM can be expressed by

o {[pPran) x ptha-rka-1lei T(Rop X)PR. )} (67)
where I'(R,,, X) is a gaussian wave packet which describes the fluctuation of the
(physical) relative motion coordinate R, around its mean value X

TR, X) = (v/n)texp [— (R, — X)*]. (68)

The Bargmann kernel function A(K, R), with real K, has essentially this form

A(K,R) = n~ etk MR-VIKY _ y-iiK' (R, X),
with
v = mof(A—f)/hA and X = [2hA/maf (A—f))*K; (69)

and it is now useful to restrict the oscillator expansions and successive SU(3) couplings
in H, to the cluster-internal factors A(K;R;) [cf. eq. (62)]. To extract the radial
coordinate R for the cluster-relative motion in a partial-wave expansion it is useful to
expand I'(R,,, X) and hence exp[ —1K?]A(K, R) according to

C'QK'ZA(K,R) — n_*- Z i,(ﬁKR)e_(Rz+2K2)/2 x 47 z Ylm(R)* Y,,,,(K), (70)
1 m

where i/(x) = \/n/2x1;,4(x) and I, ,(x) is a modified Bessel function, and R, K are
unit vectors. An angular momentum coupling of the spherical harmonics Y,(R) [and
Y,.(K)], with cluster-internal functions of angular momentum I_M,, yields the angular
momentum coupled-channel functions

([d,(j'fﬂf)x ¢('1A—IF‘A—f)]§";cI‘:=) X Y:(R))](a, (71)
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(and the corresponding K-space functions). In eq. (71) the square bracket denotes
SU(3)-coupling, whereas the round bracket denotes ordinary angular momentum
coupling. In terms of such functions the analogue of eq. (63) gives the expansion of the
Bargmann transform of ¢.«/ in the form

He= ¥ Y % 2

(Acuclxclc GAcpedxels W IM ' M)
x 4t X ([P(K ,...) ") x P(K,...) 44100 x Y(K))L,
x 4ntet K ([PKE,.. )M x PKE, .. ) e ra-r s BAR)) Yy, (— 1) M5
xc ([ x @ V-riamsMtieser Y (R & THF K (2R R)R, )0
X G |([Armr?) x lia-ria-rid x Y. (RN, e R 20 (2K RIGR. 7.

Kele

(72)
If the operator @ can be expanded in terms of spherical tensors
C= Y tr, (73)
komg
it is useful to use the Wigner-Eckart theorem in the form
LTl Ome 1L Taay>
=(IMJ = Milkgmod(— 1) =ML 0% [... ] (74)

(Note the unconventional order of J, J' and k, in the angular momentum Wigner
coefficient which is convenient for the generalization to SU(3)[cf. eq. (65)]. The angular
momentum-reduced matrix element of eq. (74) thus differs from the conventional
angular momentum-reduced matrix element by a factor of [ 2k, + 1]*). For the central
interaction of eq. (3), ¢ is a pure k, = 0 operator. In the more general case the
expansion of the Bargmann transform of ¢.« can be put in the form

Ho= ¥ ¥ T3 3 16/netl+K)

(Actte)kclc (Acpe)kell W JJ komo
Giptty) i a - sa— PP hetic 5
X ([P(K,...) " x P(K,,...)\ 4= 4= . y(K))

x ([P(K%,.. )% x P(KY,...)Fa-ria-srMwid « y (R Yo (K, K ), (75a)

where a and g stand for the channel quantum numbers
a =4 U f)(}'A —fHa—g A )x 1 ),

a= ([(Af'”f’)()'A—f’#A—f')](lzﬂ::)xz:lzr)‘l’,
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K (K, K,

=[x plrestes it YRyl 2RR)e™ ¥R+ 2RG (R, OO

Kele

x oo ||([rHr) x plhamrtte rTYERD x Y (R iy (2K R)ETHRIFKD (R 100)

Kele

(75b)

This  coordinate-space  matrix element with the radial function
ii(/2KR)exp{ —4(R*+2K?)} is precisely the spatial integral which is needed for a
partial-wave decomposition of a GCM kernel with gaussian, locally peaked radial
functions and with cluster channel functions specified by angular momentum quantum
numbers I, [, J. To extract the needed spatial integrals from the Bargmann transform of
C .« itis only necessary to restrict the Bargmann space relative motion variables, K and
K to be real and expand H,(K, K* in the angular-momentum coupled K-space fun-
ctions {16./mexpi(K>+K?)(...)} of eq. (75a). The needed 3A-dimensional spatial
integrals, functions of K and K, are then the coefficients in this expansion.

7. A specific example. The 2 +%Be system

It will be useful to illustrate the expansion process with a specific example, the
simplest of our cluster systems. For the x + 8Be system the single-column transform H,
of eq. (51) can be written in the form

H, = exp[% Z_(AA_‘f_) ra _;r*] (1-2g) ¥ P(abcde)G apeye (76)

where the G,,,, are functions of # - X"*, & - " and J* - X * through the exponen-
tials e*-? and e”.

In terms of these functions the Hy Hy,term of the full-A-particle transform H (K, K*)
of eq. (55) can be written as

H}H, = (1 —2y)3exp[fll%f) 2 J(*]Z(?)(—l)’e’(l —e')p!
1

x {P(4—11100)G 000
+P@B—=11+11+100)Go; 00+ PB—111+110)Gyg110+P3—1141101)Gg,001
+PB—1 1l 11)Gopoy1)- (17

A similar expansion of H2 {dge ™ "* Hg(q)H (— q) leads to H,(K,K*) in the form

9
Hy(K,K*) = Y Y (K, -Kt)(K, - K*)'(K}- KY f,G, (K, K*), (78)
s=11
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TABLE |

_The functions f; for eq. (78)

s a b c IA

1 4—1 ] ! 1

2 3—1 I 1+1  (K,-K) = /3[P(K, " x P(K)19]22),

3 3= L 1 (KK = JI[PEDOD X PE* VIR

4 3~1 ! I (K, - K)(K%-K*) = 3{ JE[.. J99 - /3. 187}

[n_](olu) = [[P(Kl )(10) X P(K)(lo)](zm
x [P(K¥)OV x P(K*)O1]©2]m

21 I 142 (K- K,) = J6PK,)E"
6 2-1 I+2 1 (KtKD=6PKS?
7 2-1  1+1 I (K K)K} KY)
= /3J6{VEL. 190 - V3. 182}
[...J6»
— [[P(Kl )(10) x P(K)uo)](zm x P(KT)(OZ)]g.u)
8 2-1 I I+1  (Kt-K*)K, K,
= V3 VAL 107 AL 187
[...Jg»
— [P(Kl )(20) X [P(K?)(OU X P(K*)(Ol)](OZ)]g.M)
9 21 I [ (K K)(KE-KY) = 6{ 3100 -3l .- 167}

[ 16" = (PR, x PRIV

where the nine functions f; are defined in table 1, and where the powers a,b and c have a
different I-dependence for each s (also given in table 1). The nine G, , are functions of
(K- K*™), (K- K), (K*- K*) through the exponentials e®* ?, e, and ¢ ¥ and are made to
to include all g- and mass-dependent factors. [ Note that we have converted the mass-
dependent A", . * (which were a convenient shorthand notation in sects. 4 and 5) back
to K, K* (which have a simpler normalization in their SU(3)-tensor character). Note
also that the G, , are independent of the cluster-internal variables K, K¥.]

To gain the expansion of H, (K, K*) in terms of the appropriately coupled K-space
functions, of eq. (66) or eq. (75), it is necessary to combine the K, (and K¥)-dependent
factors by simple SU(3) recoupling techniques of the type used in ref. ! !). [ We adhere to
the notations of refs. !!* '#).] Since the recoupling procedure is somewhat different for
the two cases, they are discussed separately.
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7.1. HARMONIC OSCILLATOR EXPANSION

To attain the expansion in the SU(3)-coupled K-space functions of eq. (66) it
is convenient to combine all SU(3)-scalar factors first. For this purpose a power
series expansion is first made in exponentials of the type exp {(1—
plA/f(A=N]+g[A/f(A—H]K - K*} which contain the SU(3) (00) tensor (K - K*).
The SU(3) scalar factors are then expanded by

(K- K¥(K,-K*)(K* Ky (K-K*y = ) R,(abcx;ipy)

(A1)

. % [[P(Kl )(a+b- 0) % P(K)‘”" 0)](/'-1#1) X [P(Kn(o.aﬂ) x P(K*)(O.b+1)](l‘1i-1):|500)’ (79)
where

R,(abca; iqpy) = [d(4 p)a+b)a+c)(b+2)c+a)!]H
(a0) (c0) (¢+c,0)
x| (b0) «0)  (b+20) (80)
(@a+b,0) (c+2.0) (A4y)

[see eq. (B.8) of ref. 1) and note that the SU(3) 9-(An) coefficient, with
A +2p, = a+b+c+ua, is equivalent to a simple SU(2) 9- coefficient].

The K -space functions of eq. (79) are then combined with the factors f; of table 1 to
yield
(K- KT)“(Kl -K*)P(K}- Ky (K- K*)f, = z R (abca; 7, p) Z

(Arpr) (A2pt2)(4203)

X Y RylAiy s Azttz, 2505 3 (ADP) x [[P(K )4 x P )@ 20 0)has)

amp
X [P(K’{‘)“"“ x P(K*)“" Q'—Z)')](uil'z)]sxl:l—)g, (81)
where:
(@) fors=1: (@) = 0, Rz = dpuniiimPuasunniinn’ 82)

Gi) fors = 2: (TP = (20)1, R, = Suigupyanen(— DH T THT

(10) (10) (20)
3d(Ap) | ,
X [m] (a+b, 0) (L+fx,0) ('11#1)
@+b+1,0) (c+a+1,0)  (Aps)

N
y |:<a+i7+l)<c+<it+ )] ’ 83)
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witha+b+1 =4, c+a+1 =Q0-28:d(lp) =30+ 1) u+1)a+u+2);
(iii) fors = 3: (A@)p = (02)1, R, = 8;pupyayup(— 1) T+

(a+c,0) (b+a,0) (A1)

3diguy)
- 10 10
"[d(zow.lm_] (10) 10y (20)

(a+c+1,0) (b+a+1,0) (Ayu5)

y |:(a+c1'+1><b+<it+1)]*, (84)

witha+c+1 =4:b+a+1 =0 —2y;
(iv) fors = 4: (4i1)p = (00)1 and (22)p,

d(du;)
R, = 3[f"(;p)(00) V38 Ozayaz)] l:d(zo)dz(;pl :|

X U((A22) (141 AEN02); (20) - _ (4325)_p)

(a+b!0) (('+(Z,0) ('{l.ul) (a+c’ 0) (b+a, 0) (;~1l‘1)
x| (10) (10) (20) (10) (10) (20)
{@+b+1,0) (c+a+1,0) (Au;) [[(@a+c+1,0) (b+a+1,0) (Ayu))

i
5 [<a+11)+1)<c+alt+l><a+;‘+l><b+olc+l)] ; (85)

(v) for s =5: (Za)p = 20)1, R, = Suasusyaran( — Pftmtiata

y [d(izpz)J* |:<a +b+ 2)]*
d(4,p) 2

x U((20)(a+b, 0)(A2p12)(c + 2, 0); (a+b+2,0)_ _;(Apy)-_); (86)

(vi) for s = 6: (Aa)p = (02)1, R, =9

(A2m2)(A181)

y [d(,l’zp’z)]* [(a +c+ 2):'*
d(Aypy) 2

x U((02)(0, a+c)(u2A: 00, b+2); (0,a+c+2) - ;5 (uydy)-_); (87)
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(vii) for s = 7: (i1)p = (00)1 and (22)p,

3d(Ayu,) |
R, = [f5< )(00) \/-‘)wxzz)][ - 2]

d(A,p4y)

x U((20)(4; 11 JAR) (M2 A2) 5 (AzH2) - P53 (02) - )
x U((02)(0, a+c)(u242)(0, b+ a); (0, a+c+2)_ _ 5 (114,)- -)

(10) (10) (20)
X (a+b,0) (c+2,0) (A py)
_(a+b-+-1,0) (c+a+1,0) (Azpt3)

x£<a+ll)+1)(c+alt+1><a+§+2>:|*; (88)
(viii) fors = 8: (1) = (00)1 and (22)p,
3d(A5u5)
R, = [\/_6(Iyl(()0) fé( )(22)][‘1(,1 2#12 :|

x U((20)(Ayp0 J(AA)(1343) 3 (Aoptz) -5 (02) - _)
x U((20)(a+b, 0)(4,pt2)(c +@,0); (@+b+2,0)_ _; (21py)- =)

(10) (10) (20)
x| (a+c,0) (b+a,0) (Arty)
(@a+c+1,0) (b+a+1,0) (Asu3)

b
x[<a+i'+1><b+alz+l>(a+12)+2):| : (89)
(ix) for s = 9:(4i)p = (00)1 and (22)p,
6d(Xyits)
R, = [f5(Auxm) \/_5(1,,)(22,] l:d(llzﬂlz ]

x U((20)(A; 0 WA (W2 A2) 5 (A2p2) -5 (02) - )
x U((20)(a + b, 0)(4,u,)(c +2,0); (a+b+2,0)_ _; (4,1y)- -)
x U((02)(0, a+c)(u2A2)(0, b+a); (0, a+c+2)_ _ ;5 (ur4y)- )

g [(a+b+2><a+c+2)]*- (90)
2 2
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In the final step of the harmonic oscillator expansion, a power series expansion is
made in the exponentials containing the (20) tensors (K- K) and the (02) tensors
(K*- K*). The factors (K - K)?, (K* - K*)" are then combined with the K-space functions
ofeq. (81) to give

(K- KK, - K*P(KY - K)YS (K- K*)(K - KY(K*- K*)f

= Z Ry (abcx; 2y py) Z sz(/ll.“l;/-z#z, Moy s (ZR)P)
(A1) (A2420(A503) (Aa)p

X Z R;3(Aatty, A3pty, (Z1)P 3 (Aotto)Po)

(do10)po

 [[P(R )40 x P(R)@O7]o x [P(KA)®9 x PRAYOIW i, (91)
where
R, = {(hzquﬁ,())L: 0:(0,2y) L= 0]|(A;3u5)L = 0>
[(Cata) Uiy ()5 ]

(zﬂa 0) (0, 27) (2'3#3)-—
x 2 (AA)L= 0; (43u3)L = Oll(Zopto)L= O,
2

AT
X [(2ﬂ+ D2y + 1) (%)(%)]

x U((40)(Q — 28, 0)(4u)(2B,0); (A215) - - (QO)- )
x U((04X0, Q" —2y) (' A'X0, 27); (1222)- -+ (0Q')_ _). (92)

The final SU(3)-coupled K-space function is now in the form needed for the har-
monic oscillator expansion of eq. (66). The determination of the needed coefficients is
achieved by carrying out the sums over all abcafy-dependent terms which are contri-
buted by the several terms of eq. (55).

() (W2)  (Aoko)Po }

7

L~ - P

7.2. CHANNEL SPIN EXPANSION

To attain the expansion in the angular-momentum coupled K-space channel func-
tions of eq. (75), the SU(3) recoupling transformations are restricted to the K,, K*
dependent factors, given by egs. (79) and (81) with « = 0. With « = 0, the coefficient R,
has the simple form

d(Apy)a+b—p ) a+c—p,
(b—p)c—py)!

[t
R (abc0; i pu) = [ )':| (—1)ptbrerlitmprer (93)
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The coefficients R, are those enumerated in egs. (82}-(90) (with & = 0). The SU(3)-
coupled K-space functions of eq. (81) can now be converted to angular momentum-
coupled K-space functions by means of SU(3) > R(3) reduced Wigner coefficients:

[[P(K )40 x p(K @10 ]tazna) x [ P(K¥)\0 x P(K*)(Oqz)]umn](mp o

= Z Z Z((’lzﬂz)'\'szl(Il'z/:’z)'\'lzl-‘z||(;~_ﬁ)1—4 = 0),;

Laksxa Icly IEl2

X O 5 (q10)1(A2pa2 )KLy DS (04)] (0g )0, |1(u345)K5L )

l: 2"”’(1[111*'1 ])I(Z[q2+[2])l :|112‘“K‘“
Ga; = LD1C[92— DG+ L+ Dig, + L+ 1)!

x ((P(R )0 x Y, (K- x (PKH)Y x Y,,(K)y-+) =0 (94)
where we have used
4n2'(3lq +1])! :|i = =
P(K)4® = i P1 S LR LA K%Y, (K (95
(K [(z[q Mig+i+ i | X HmK) )

[see, e.g. Kramer et al. '), although the phase convention is that of refs. 11-14)], Note
that the symbols Q — 28, Q' — 2y of eq. (81) have been replaced by the running indices 4,
q,. Since q, < 4, g, < 4, the SU(3) o R(3) (double-barred) Wigner coefficients of eq.
(94) are very simple. Exponentials of the type exp {p(K - K)}, and exp {t(K - K)} are
functions of the magnitudes K and K only and contribute directly to the K, K-
dependence of the spatial integrals of eq. (75). Exponentials of the type expi{a(K- K)}
withe = (1—p[A4/f(4—f)] 2 g[A/f(A—f)]) are best expanded in terms of modified
spherical Bessel functions to match the convergence properties of eq. (70). With this
expansion the K-space angular functions can then be combined by

e B(P(R, 2% x ¥, (KN x (PR x Y, (R)Y)

o @2J + 1)L, + DRl + DELA+1)?
- ok ST ol Hore Ll

x (I, OLOJIOYI,0LO|'0Y x U (Il JL; LU, JL; Lyl)
x (P(R {0 x KK)Y x (PR x Y,(K))*)S, (96)

to yield the K-space expansions in terms of the desired angular-momentum coupled
channel functions. The determination of the needed coefficients is again achieved by
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carrying out the sums over all abc, L-dependent terms which are contributed by the
various pieces of the full H, (K, K*).

8. Summary and discussion

The complicated 3A4-dimensional coordinate space integrals needed for the eva-
luation of both RGM and GCM interaction kernels can be extracted from an appro-
priate expansion of the Bargmann transform of the interaction by purely algebraic
techniques. The Bargmann transform of the antisymmetrizer (norm kernels) and the
two-body interaction in a fully antisymmetrized basis (interaction kernels) can thus be
made to play the central role in the calculation of RGM and GCM kernels. In the
present investigation techniques developed for the evaluation of the Bargmann trans-
form of the antisymmetrizer have been generalized to include the Fourier kernel,
Zjexp(iq - r;), of the basic one-body operator, and a central two-body interaction of
gaussian form with arbitrary exchange mixture. The present investigation is limited to
binary cluster systems in which both cluster fragments in both sides of a matrix element
are 4n-self-conjugate (SU(4) scalar) nuclei with internal wave functions of space sym-
metry of [44...4] character and oscillator functions of good SU(3) symmetry. The
cluster fragments are thus restricted to be in their ground states or in excited states
which can be approximated as rotational band members of the ground state SU(3)
representations. The calculations are simplest for such 4n-self-conjugate cluster frag-
ments. Yet, some of the most interesting problems which remain to be investigated by
microscopic cluster model techniques fall precisely into this category. Our prime
example is the 4 = 24 system with cluster decompositions !2C +!2C, ®Be + '*O, and
2+ 2%Ne, all important channels for the so-called quasi-molecular resonances, and all
made up of cluster fragments with internal functions which are approximated well by
functions of good SU(3) symmetry.

Generalization of the present technique to systems made up of more than two 4n-self-
conjugate cluster fragments should be straightforward but will lead to more com-
plicated functions in the several cluster-relative motion variables. The generalization to
systems with more complicated cluster fragments (with A #+ 4n) will be more challeng-
ing since a key feature of the present technique involves the immediate reduction from
A-particle orbital states of space symmetry characterized by 4-columned Young tab-
leaux to }A-particle orbital states of single-column symmetry. In the more general case
the summation over spin-isospin quantum numbers responsible for this reduction can
lead to linear combinations of products of single-column orbital functions which may
contain a large number of terms and will in general involve some two-column functions
which cannot be further reduced or expressed in terms of a convolution of single-
column Fourier transforms. For simple systems (e.g., an a-particle + arbitrary fragment
or a nucleon + arbitrary fragment) such a generalization may be possible. For more
complicated cluster fragments it may be more fruitful to use a reduction of the A4-
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particle problem to the (4 — 2)-particle problem, utilizing known (4 — 2)-particle norm
kernels and a cluster fractional parentage expansion.

Throughout the present investigation it has been assumed that the internal functions
of the cluster fragments are built from harmonic oscillator functions with equal width
parameters for all fragments. The generalization to the case of unequal width para-
meters is straightforward as far as the calculation of the Bargmann transform is
concerned, but the resultant cross terms between relative motion and center-of-mass
excitations require special treatment. Dilatation techniques ' #) or the method of dou-
ble Fourier transformation’) can in principle be used but will greatly complicate the
process of cvaluating the Bargmann transforms in general algebraic form.

The restriction to two-body interactions of gaussian form could also be relaxed.
However, the gaussian form is very convenient, since many effective interactions can be
approximated well by a superposition of a few gaussian terms with different ranges.
Even the Coulomb potential can be included since the Bargmann transform of the
gaussian interaction is given in general algebraic form. The 1/r potential can be
cxpressed in terms of an integral over all values of the gaussian range parameter. Since
the Bargmann transform is known as an algebraic function of the range parameter such
integrals can be performed for the K-space functions.

Throughout this investigation the aim has been the evaluation of the needed
Bargmann transforms in general algebraic form. This is important for the reasons
indicated above and is vital for RGM calculations. It has also been shown how RGM
interaction kernels can be extracted from appropriate expansions of the Bargmann
transform of the interaction. Since the expansions, particularly in the harmonic oscil-
lator basis, may be slowly convergent, it would be advantageous to evaluate RGM
kernels in completely closed algebraic form. Since the Bargmann transform of a gaus-
sian interaction in a particular binary cluster channel is built from a few simple
polynomial and exponential functions in the relative motion K-space variable, it may
be possible to gain such a closed form by performing the inverse of the Bargmann
transformation. This will be the subject of a future investigation.

One of the authors (Y.S.) would like to acknowledge the support of the Nishina
Memorial Foundation and the hospitality of the University of Michigan.

Appendix

TABULATION OF THE SINGLE-COLUMN BARGMANN TRANSFORMS

The full tabulation of the single-column Bargmann transforms Hy and Hy, is given
in ref. ') for the following A4-values and fragment decompositions: A = 12, a +5Be;
A =16, 2+'2C and ®Be+%Be; 4 =20, 2+ !°0 and ®Be+'*C; and A = 24,
12C 412C, 8Be + 'O and a + 2°Ne. To illustrate the nature and scope of the results the
tables for the '2C + '2C and ®Be + '°O fragment decompositions of the A = 24 system
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TaBLE El

HE[l(oo) 1(00)

8
2(10) 2(10)] for o + "Be

(00) ~ tensors: a = (fl-K;) , b= (KI-J?) , b = (fl- x*> .
q-dep | qeinaep | @ (1) | o [ p@n [ p2,2)
a 1 —el —el 2—e:L
Bb" et -el —el
K, B el -el
K* b* el -el
il K;_ 1-et

are included in this appendix along with the simple results for the « + ®Be system, the
latter for ready comparison with the text. Hg and H, give the BS transforms of the
operators € = ) .exp(y/2iq - r)) (Hg), and € =Y, u(r;), with u(r) = exp
(—3Br*) (Hy). The tabulations give the factors needed to construct the single-
column functions

H, <1 (o)

n(4,u,)

where [ =1fin=%A—f), I =4f", n = {(A—f") and (4,) is the SU(3) represen-
tation of the I nucleons in fragment f, etc. The dependence on the relative motion
Bargmann variables K (for bra) and K* (for ket) are given in terms of

A 4 A i
=] —— H* =] - — *
P N R .

Tables E1-E4 give the factors needed to construct the functions

I'(Ai) )

n'(Ani,)

Hg = exp [‘1_1 f_(ﬁ;q__f) 5 _,r*] e 440y peti,
ij

The choicesof /, A —f.f’, A—f" in the bras and kets of the tables are arranged so that the
/" fragment is the smallest of the four fragments when f* # f. The 0(i, j) are defined by

e [-(F)e- (1)} o[-t ]

0(1,2) = iq-l:— (A—_—f)i+ —jl-[*], 02,2) = iq~|:£.)(_+ %.}(f{l,
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TaABLE E2

12 12

{
HE'3(01) 3(01)] for C + C

(3(0o1) [3(01)

*

— * —_— —_ *
(00) - tensors: a = (Klz-Klz), b = (K34'K34), c = (KlZ'K34),
* * — p— _ p— * * *
c = (KlZ-K34), 4 = (K12 X)), d = (Klz x ),
*

- _ * x* = *
e—(K34-x),e =(K34- Y, £ = (XK ).

q-dep g-indep eo(l,l) e0(1,2) e0(2,1) eu(2,2)
ab 3—4el+e2 —2el+2e2 —2e1+2e2 3—4e1+e
— %
cc —2el+2e2 —el+4e2-3e3 —el+4e2-3e3 —2e1+2e2
ge'+paa” 1 1,2
aie*:bdé_ * —2el+e2 —el+Ze2 ~-e +2e2 -2e " +e
-cd e~c de
-k
abfz-aee f
—_ %
-bdd f —2el —el -el —2el
—_k_ *
+dd ee
_*2_*_
cc £7-cd ef
*_ ok
-c de £ e2 2e2 2e2 e2
— _ *_ *
+dd ee
—_ *
Kl2 bd vel-e2 -el+e2
— * *
12 c e —e1+e2 e]‘—e2
_ * *_ %
K12 bd f-d ee -el el
—_ * & *_ *
12 c e f-d ee e2 -e2
* —_
KlZ bd el-ez —el+e2
* -
Kl2 ce —el+e2 el—e2
* - %
K, bdf-dee -l el
* — N
Kl2 cef-dee e2 -e2
. *
K34 ae el—e2 —e1+e2
—_ —__%
K34 cd —el+e2 el—e2
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f34 ae's-3a"e* et el
Ky, da'f-dae” | &2 -e?

K;4 ae el_e? —el+e?

K;4 '3 —el+e? el-e?
K;4 asf-da'e -et el
K;4 c'ge-da’s o2 -e?

x abf-ase” et -e!

X abf-bdd" el el
x Sc't-cd'e _e? &2

x Gc f-c"Te" —e? e?
x* abf-ase et et

x* abf-bdd" el -t
x*. Gcfuc'Te" -e? e?

x* cc'g-ga's -e? e?
_12 KIZ b —1+el el-e? el-e? —elte?
ilz KIZ bf et —e2 -2 el

_ * S 2
K12 K12 ee -e t+e
El2 K;4 e el-e? ~e24e3 —elie? el-e?
Elz K;4 e -t e2 e2 et
Elz K;4 a‘s el-e?

KIZ K:“ c el-e? —elie? —e24e3 el-e?
K;_z K_34 cf el o2 2 -e!
K;.Z i“ de* el-e?
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TaBLE E2 (cont.)
— *
1(34 K34 a 2 e —e2 el—e2 —1+e1
— *
K34 K34 af -e2 —e2 e:L
—_ * * 2
K3g X34 da
— p— *
12 X bd —e1+e2
—_ — * &
K12 x c e el-e2
* *
K12 x bd -e]‘+e2
* * -
Ky k4 ce el_e2
—_ — *
K34 X ae —el+e2
—_— —_%
K34 b cd
* * — 1
K34 X ae -e"+e
* * *_
Kag K cd
X x 2 1.2
x K ab e -e e -e
— * — % 2
N X cc -e +e
(ig-iq) ab -e]'+e2 —el+e l—el
— %
(ig-iq) cc ez—e3 e2—e3 —e1+e
(ig-iq) abf-cc' £ e? e2 —el
-— x* *
Kypx & 1 | pe e
[R],xX )
— * * *
(K% 1 | c*sa’e e?
[K] %X ]
* —
y I
K12**] | ¢ Je e?
[K34xx ]
—_ L] * 1
[K34x3_€ 1l ag-da -e
[K;4x3'[]
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2(10) |2(10) 8 16
HE[4(OO) 4(00)] for "Be + T 0
—_ * —_ * — * —_ *
(00) - tensors: a = (Kl-Kl), b = (Kl-Jt ), b = (K,-X ),
— *
c=(X-X ).
g-dep q-indep QL) Q811,2) Q02,1 o (2,2)
a 2-2el —2el+2e2 -2e1+2e2 4—6e1+292
— %
ac-bb -et —eli2e? —elize? ~3eli2e?
—_—
bb c —el —el -el —3el
Kl b —elie? el-e?
= = 1 1
Kl be e -e
* *
Kl b -e1+e2 el—e2
* *
K b c el —el
x a el—e2 —el+e2
— _ %
x bb el —el
*
x a el—e2 —e1+e
* ]
x b el et
j— *
K. K l—el -e"te —el+e2 el-e2
171
— *
1 K1 [o -el e2 e2 —e2
— * -
Kl K b el—e2 —el+e2
* — *
K1 x> b e —e2 -e +e2
-— * 2
X X a e -e
_ * g 1
x XN bb e
(ig-iq) a 1-2el+e?
— %
(ig-iq) ac-bb —elie?
A = % 1
(ig-iq) bb ¢ -e
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TasLE E4
3408 [269)] for Y2c + 12 | o 4 1o
(00) - tensors: a = ([flzxKM]-KI), b = (Elz-i'), c = (i34-3?),
a= (K], e = (K xRy, 1), £ = (K xk;1- "),
g = ([Ky,xK}1-%7), h = GF-a).
q-dep g-indep e6(1,1) ee(1,2) e0(2,1) e6(2,2)
a 2-2et 1-4el+3e? | —2el+2e? | 3-sel+e?
bg —el —2e]‘+3e2 -el+2e2 —2el+e2
cf Z—el l—2el —el 3-2e1
deh -el -Zel -e:L -2el
ilZ g el_e? —elie?
Ky, £ -1+et 1-et
K* eh el —el
1
(K] yxK, ] dh el et et el
[flzxK;] c —1+el 1-et
[1734xKI] b el-e? —elie?
.ﬁ* de el —e:L
[Klzx x*] cd —et el
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= * 1 1
[K34er 1 bd e —-e
— — * 1, 2
K12 [K34xKl] l-2e +e
K K > 1+2
K34 [KlzxKl] ~1l+2e" -e
T ww * 1 1, 2 1 1
[K12XK34] K, l-e e +e e +e l-e
T % * 1 1
[KlzxK34] Kl h e -e
= Z 1 2
Kl2 b g e -e
K,, & £ ~l+el
34
* —_ .
Kl v 4 e _el el
—_ —_ * l
K12 [K34XJ€' 1 dh -e
K., [K,,xX 1 | an 1
Kyq [Kpx% ] e
—_ * * 1 1
[Klzx.‘lc ] K1 c - e
—_— *
(Kyxx'1 x, | b el e
—_ ¥ * l
[Klzx X1l X cd -e
p— x* * bd l
[K34x ] *® e
(ig-iq) bg —elie?
A 1
(ig-iq) cf l-e
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and where the functions h;,

h; = [] (ig- a,)(iq - ig)™(g-indenendent factor),
k=1

can be constructed from the tables. The first column of the tables (labeled g-dep) lists
the factors a, and (iq - ig)™ (if m = 0). A blank in colomn 1 means that there are no g-
dependent factors. Column 2 (labeled g-indep) gives the g-independent factors of h;;
made up of scalar products of the type (K, - K}), (K, - #*), ... where the K;, K} with
numerical indices refer to cluster-internal variables. For '?C fragments K (e.g. K ;)
refer to the vector products K, = /[K, x K,]. Barred K-variables refer to bra and
starred K-variables refer to ket cluster variables. For H these scalar products are all
SU(3) scalars [ (00) tensors]. Shorthand symbols for these scalar products are given at
the head of each table. A blank in column 2 means that there are no g-independent
terms of this type. Additional g-independent factors of the h;;, built from linear com-
binations of the functions e?, are listed in columns 3-6 under the headings ¢ . Here

ep = exp [_pi‘ ' "x‘*]’ 14 é pmax = min (4117 ifl’ E(A _f)ﬂ %(A _jl))

The integer p counts the number of exchanged nucleons. A blank in one of the columns
3-6 means that there is no e’ term corresponding to the i, j of this column. A
comparison of table E1 and eq. (50) will further illustrate the construction of the H
from the tables.

Tables U1-U4 give the factors needed to construct the functions

Hy = (1 —2g)%exp |} Jy £ _[-:I Z H“eqb(i. P,
ij

with
G, j) = —3g(Ah + jx*Y, (i,j) = (0,0),(1,0),(0,1),(1, 1), (1, = 1),

where g gives the range of the gaussian interaction, exp(—+4fr?), through
g = B/2(1 + B), where B (like r) is dimensionless. The H,; are built from scalar product
factors of the type (K, - K¥), (K¥-5{),... which are given in the first column in terms of
shorthand symbols defined at the head of each table. These scalar products now include
not only SU(3) scalars [(00) tensors], but also SU(3) (20) tensors and SU(3) (02)
tensors. Small Roman letters g, b, .. . are used for the (00) tensors. Capital Roman letters
are used for the (20) and (02) tensors; for the case of identical bra and ket cluster
decompositions the symbols A4, B, ... designate the (20) tensors, while the symbols A*,
B*,...designate the corresponding (02) tensors. With different cluster decompositions
in bra and ket the letters A, B, ... designate the (20) tensors, the letters P, Q, ... the (02)
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TabLe Ul

8

Hu[l(OO) 1(00)] for o + %pe

2(10) [2(10)

—_ —_ * - * —_ *
(00) - tensors: a = (R;“K}), b = (K;X), b = (R;-ot).
(20) - tensor : A = (El-x)
* * *
(02) - tensor : A = (Kl X )
L #(1,0) 280, 1) RIC SO IRTC IS
1 1 1
a (1-2g) (-1+2g)e (-1+2g)e (2-g) (-1-g)e
Bb” (-1+2g) el (-1+2g) el g2 —(1-g) 2et
=% 2 21
AA g -g'e
bA (g-29%) et g (-g+g?el
b*A* (g—Zgz)el g2 (—g+gz)el

tensors. The additional dependence of the functions H;; on g and e dependent factors
are given in columns 2-6 for each e®'"- term (note that e**:® = 1). For some columns
in some tables it is convenient to factor out the function (1 — 2¢) and include it with the
factor e?"? in the table headings.

A comparison of table U1 and eq. (51) will serve to illustrate the construction of the
H, from the tables.

A number of symmetry properties should be noted. With the same cluster decom-
position in bra and ket (f’ = f),the H; and H, are invariant under the interchange
H o A *, K, K for all i (bra-ket interchange). With two identical fragments in
either bra or ket there is an additional symmetry. With two identical !*C fragments in
the bra, e.g, the transformation K, —~ K,,, " — — .4 induces an overall change of
sign in the single-column transform since it corresponds to an interchange of two
identical fragments of odd particle number, ! =n =3. Note, also, that
¢(1,1) > (1, —1) under this transformation, while ¢(1,0) and ¢(0, 1) remain in-
variant in Hy,. In H this transformation leads to (1, 1) & 0(2, 1), and 0(1, 2) < 0(2, 2).
The factor exp([I'n/(I+n)] X - A *)e” is also affected by this transformation and leads
to the interchanges ¢® < e?, e! <> ¢? in tables E2 and U2 with '2C+!2C fragment
decompositions in both bra and ket while it leads to the interchanges e® « e2,e! ¢! in
tables E4 and U4 with '2C+ '2C fragments in bra and ®Be + 1O fragments in ket.
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