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We construct model field theories in which a confining gauge interaction binds massive 
elementary fermions into massless composite particles. The massless composites are either Gold- 
stone bosons or spin-~ fermions. In these models, the manner in which exact chiral symmetries 
are realized changes at a critical value of the elementary fermion mass of order (e2/16rr2)A, 
where A is the confinement scale and e is a weak gauge coupling. 

1. Introduction 

Seek ing  mode l s  of  the  known e l e m e n t a r y  par t i c le  in te rac t ions  which a re  com-  

p le te ly  " n a t u r a l "  and  in which q u a r k  and  l ep ton  masses  a re  ca lculable ,  m a n y  au thors  

have  s tud ied  gauge  theor ie s  wi thou t  e l e m e n t a r y  scalar  fields or  ba r e  f e rmion  masses  

1I -9] .  A real is t ic  t heo ry  of  this type  requ i res  new s t rong  in te rac t ions  which r e spec t  

large ( approx ima te )  f lavor s y m m e t r y  groups .  H e n c e ,  cons t ruc to rs  of  such theor ies  

face  a cent ra l  theore t i ca l  ques t ion :  H o w  does  a given a sympto t i ca l ly  free gauge  

t heo ry  choose  to rea l ize  its g loba l  f lavor symmet r i e s?  

This  ques t ion  has two par ts .  (1) W h a t  subg roup  of the  flavor g roup  escapes  

dynamica l  s p o n t a n e o u s  s y m m e t r y  b r e a k d o w n ?  (2) W h a t  f e rmion  mul t ip le t s  a re  

kep t  massless  by the  u n b r o k e n  f lavor s y m m e t r y ?  

Clea r ly  it is essent ia l  to answer  these  ques t ions  in o r d e r  to d e t e r m i n e  the  

p h e n o m e n o l o g i c a i  consequences  of a p r o p o s e d  model .  C o r r e s p o n d i n g  to each  

s pon t aneous ly  b r o k e n  g e n e r a t o r  of the  f lavor g r o u p  is a c o m p o s i t e  G o l d s t o n e  

boson.  In a real is t ic  theory ,  this G o l d s t o n e  boson  m a y  be  ea ten  by  a gauge  boson ,  

may  rema in  exac t ly  massless,  or  may  b e c o m e  a mass ive  p s e u d o - G o l d s t o n e  boson  
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due to weak flavor-symmetry-breaking perturbations. The pseudo-Goldstone boson 
spectrum is one of the interesting predictions of a theory without elementary scalar 
fields [1, 4]. 

The unbroken flavor symmetry may require that massless fermions occur in the 
spectrum of the theory [9]; if the gauge interaction is confining, these fermions 
must be composite states. They are candidates for quarks and leptons, and, like 
the pseudo-Goldstone bosons, they can acquire small calculable masses from 
flavor-symmetry-breaking perturbations [7, 8]. 

Determining how flavor symmetries are realized in gauge theories is a difficult 
strong-coupling problem for which the general solution is not yet known. However,  
progress has recently been made. In ref. [9]; ' t  Hooft  proposed an algebraic condition 
that must be satisfied by the massless composite fermions in a confining gauge 
theo~:y; namely, that the massless composite fermions and elementary fermions 
produce equal Adler-Bell-Jackiw anomalies for the unbroken flavor group*. Using 
this algebraic condition and a subsidiary condition to be described below, 't Hooft  
concluded that the SU(n )L X SU(n )R x U(1)v flavor symmetry of QCD, with 3 colors 
and n massless flavors must be spontaneously broken for n > 2. 

The subsidiary condition used by 't Hooft  was elaborated in ref. [11], where it 
was called the "persistent-mass condition" (PMC). In brief, this condition requires 
that a composite particle cannot remain exactly massless while the mass of one of 
its constituents varies over a finite range of values. The PMC and its consequences 
will be discussed in more detail in sect. 2. 

The PMC actually leads to a stronger conclusion than that stated by 't Hooft.  
We say that a flavor symmetry group is non-chiral  if it allows masses for all the 
elementary fermions which transform non-trivially under the group. The PMC 
implies that a continuous non-chiral flavor symmetry cannot he spontaneously 
broken [11]. Combining this result with 't Hooft 's  analysis, we can conclude that 
the SU(n)L x SU(n)R x U(1)v flavor symmetry of QCD with n massless flavors must 
be spontaneously broken to SU(n)vXU(1)v  if n > 2 .  (For n = 2  completely 
unbroken SU(2)LXSU(2)Rx U(1)v cannot be excluded by 't Hooft 's  arguments.) 

But is the PMC true? It appears to be based on intuitive notions about bound 
states rather than general principles of quantum field theory. In ref. [11] a non- 
renormalizable model was described, which, in an untrustworthy approximation, 
appeared to violate the PMC. That model had an exactly massless Goldstone boson 
which was a bound state of massive elementary fermions. 

Our main purpose in this paper is to present two more examples of models in 
which the PMC fails. Both models are renormalizable quantum field theories, and 
hence demonstrate that the non-renormalizability of the model in ref. [11] was not 
essential. Our first example contains a massless Goldstone boson, the second a 

* The justification of this condition is further discussed in ref. [10]. 
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massless composite fermion; the second example dispels the notion that the PMC 
may be correct when applied to composite fermions, but not for composite bosons. 

The crucial feature of both examples is a weak gauge interaction which competes 
with the intrinsic mass of an elementary fermion to determine the alignment of the 
vacuum [1, 12]. We will compute and minimize an effective potential to show that 
the symmetry of the vacuum changes at a critical value of the elementary fermion 
mass of order (e2/161r2)A, where e is the weak gauge coupling and A is the 
confinement scale of the strong interaction responsible for the binding. Massless 
composites with massive constituents occur only if the elementary fermion mass is 
smaller than this critical value. 

This paper is organized as follows: In sect. 2, the PMC is discussed, and the 
conclusions of ref. [11] are reviewed. The importance of vacuum alignment in 
determining the massless spectrum of a theory is illustrated by an example in sect. 
3. In sects. 4 and 5, we present our models containing massless composite particles 
with massive constituents; we describe a composite boson in sect. 4, and a composite 
fermion in sect. 5. Details concerning the analysis of these models are discussed 
in two appendices. Sect. 6 contains our conclusions. 

2. The persistent-mass condition 

To demonstrate the PMC, we will consider, for definiteness, n-flavor OCD. If 
all n flavors are massless, this theory is invariant under the flavor group Gf = 
SU(n)Lx SU(n)R × U(1)v. Because the elementary fermions, the quarks, have Gf 
anomalies, the spectrum of QCD must contain massless fermions, unless G~ is 
spontaneously broken [9]. If quarks are confined, these massless fermions must be 
color-singlet composite states. Thus, there are surely massless composite particles 
in QCD; either Goldstone bosons, or massless composite fermions, or both. 

Now suppose that one quark has an intrinsic mass rn, while the other ( n -  1) 
quarks remain massless. Let M be the mass of a composite particle, massless in 
the Gt symmetry limit, which contains the massive quark. How will M behave as 
a function of m ? 

By assumption, M = 0, when m = 0. We also know how M behaves as m-~ oo. 
By the Appelquist-Carazzone theorem [13], the massive quark must decouple as 
m -, co, and any bound state containing it must also become infinitely massive. 

In fig. 1 are shown three possible types of behavior of M as a function of m. In 
fig. l a  M is non-vanishing for arbitrarily small non-zero m. In figs. lb  and c, M 
remains zero up to a critical value of m, The composite mass "turns on"  only when 
the quark mass exceeds the critical value, continuously in fig. lb,  discontinuously 
in fig. lc. (Since the only mass scale in QCD other than m is the confinement scale 
A, we expect, if QCD actually behaves this way, that the critical quark mass is of 
order A.) 
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Fig. 1. Three  possible types of behavior of the composite particle mass  M as a function of the intrinsic 
consti tuent  mass  m. 

In this context, the PMC is the requirement that the behavior sketched in figs. 
lb  and c cannot occur; that M = 0 only if m = 0 [11]. More generally, the PMC 
requires that a composite particle cannot stay massless while the mass of one of 
its constituents varies continuously over a range of values. 

What is the motivation for this assumption? One might argue that it seems 
implausible that the dynamics responsible for binding a massless composite can 
adjust to keep the composite massless as the mass of a constituent varies. But this 
argument is not very persuasive. The chief motivation for the use of the PMC in 
refs. [9, 11] is that it is not unreasonable and has interesting consequences. 

The PMC can be used to reach conclusions about how chiral symmetry is realized 
in two ways; the massless particles to which it is applied can be either spin-½ fermions 
or spin-0 Goldstone bosons*. The application to spin-½ fermions is exemplified by 
ref. [9]. Suppose that the unbroken subgroup Hf of a flavor group Gf requires that 
some multiplets of composite fermions be massless. We can deduce an algebraic 
constraint on the Hf representation content of the massless fermions as follows: 
Imagine that some of the elementary fermions receive intrinsic bare mass which 
leave a subgroup G~< Gf as the exact flavor symmetry. If these intrinsic masses 
are very small, the unbroken exact flavor symmetry will be** G~ c~ Hr. The fermion 
multiplets kept massless by Ht symmetry can be decomposed into G'f c~ Hf multiplets. 

The PMC requires that all composite fermions which contain massive constituents 
can acquire masses invariant under G~ c~ Hr. 

In ref. [9], 't Hoof t  found that this requirement could not be simultaneously 
satisfied with the anomaly condition by any set of massless composite fermion 
multiplets for He = Gf = SU(n)L × SU(n)R x U(1)v in n-flavor QCD, with n > 2. (He 
used G~ = SU(n - 1)L X SU(n - 1)4 × U(1)v × U(1)~,, the subgroup of Gt which sur- 
vives when one quark is massive.) Therefore,  he concluded that G~ must be 
spontaneously broken. 

The PMC can also be applied to composite bosons, as follows [11]: Suppose a 
subgroup Sf c Gt is non-chiral; that is, allows intrinsic masses for all the elementary 
fermions transforming non-trivially under St. (An example is St = SU(n)v×  U(1)v 

* That  these are the only possibilities is shown in ref. [14]. 
** To determine the intersection of O~ and Hf, it is necessary to solve the subgroup al ignment problem 

[12]. 
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in QCD.) Then a consequence of the PMC is that Sf cannot be spontaneously 
broken. For if Sf is spontaneously broken, there is an exactly massless Goldstone 
boson which is a bound state of elementary fermions transforming non-trivially 
under Sf. If the elementary fermions receive small Sf invariant intrinsic masses, this 
Goldstone boson remains exactly massless; as a function of the intrinsic mass m, 
the Goldstone boson mass M must behave as in fig. lb  or lc, contradicting the 
PMC. Therefore,  the PMC implies that non-chiral flavor symmetries cannot be 
spontaneously broken. 

Combining the conclusions of refs. [9, 11] we know that the unbroken flavor 
symmetry group Hf of n-flavor QCD must be a proper  (for n > 2 )  subgroup of 
Gf = SU(n)L × SU(n)R x U(1)v which contains St = SU(n)v x U(1)v. The only possi- 
bility is Hf = St. Hence, assuming the PMC, we can prove that the flavor symmetry 
of n-flavor QCD must be spontaneously broken to SU(n)vX U(1)v, if n > 2 .  (For 
n = 2, we cannot exclude the possibility that SU(2)L  x SU(2)R × U ( 1 ) v  is completely 
unbroken.) 

We should note that, although applying the PMC yields a lot of information 
about how flavor symmetry is realized in QCD, it can be applied only to theories 
in which gauge-invariant mass terms are allowed for some of the elementary 
fermions. Perhaps the most fascinating gauge theories are those with non-real 
fermion representation content in which no gauge-invariant fermion masses are 
possible [5-8]. The PMC can tell us nothing about the realization of flavor symmetry 
in such a theory. 

In the rest of this paper, we will show that it is possible to construct models in 
which the PMC is not valid, models in which massless composite particles contain 
massive constituents. Our examples are entertaining, and support the contention 
in ref. [11] that the PMC is not generally true. However,  we cannot answer the 
question which originally motivated this work; we do not know if the PMC is valid 
in QCD. 

3. Vacuum alignment and Goldstone bosons 

The crucial feature of the models described in sects. 4 and 5 is that an intrinsic 
elementary fermion mass fails to align with a pattern of dynamical symmetry 
breaking. In this section, we present a simpler example which illustrates this idea*. 
The analysis of this example depends critically on the sign of a strong-interaction 
parameter which we cannot determine. Hence, we will proceed in sects. 4 and 5 
to construct examples free of such ambiguities. 

We consider two-flavor QCD, and suppose that when the u and d quarks are 
exactly massless, the SU(2)LXSU(2)a×U(1)v chiral symmetry is spontaneously 

* This example was suggested by Snyderman [19]. We thank him and Sidney Coleman for a helpful 
discussion concerning iL 
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broken to SU(2)vX U(1)v. This pattern of symmetry breaking is specified by a 
bilinear fermion condensate, which, in an appropriate basis, has the form 

=((ULUR ULdR~OC.(1 0 
(3.1) 

\~dLuR dLdR// ~o l J" 

We might naively attempt to construct a theory with massive quarks and a massless 
Goldstone boson as follows: We introduce quark masses of the form 

~ '  = m (t:LdR -- dLU~) + h.c. .  (3.2) 

Equivalently, in the basis in which the quark mass matrix is diagonal, the condensate 
is 

But flavor-diagonal quark masses leave u-number and d-number separately con- 
served. In particular, u-number minus d-number is an exact symmetry which is 
spontaneously broken by this condensate. Hence, there must be an exactly massless 
Goldstone boson which is a bound state of massive u and d quarks. 

This construction actually fails for an obvious reason which becomes particularly 
clear if we think about an analogous ferromagnetic model [12]. If a spontaneous 
magnetization appears in an O(3)-symmetric magnet along the z-axis, 

( M )  = Me~ , (3.4) 

then 0(3)  is spontaneously broken to U(1), and there are massless spin waves. 
Now suppose we turn on an external magnetic field along the x-axis, generating 
an O(3)-breaking perturbation. 

H '  = B M x .  (3.5) 

In the presence of this perturbation, the exact symmetry of the magnet consists of 
rotations about the x-axis, and this symmetry is spontaneously broken by a magnetiz- 
ation along the z-axis. Thus, we might still expect a massless spin wave. 

We have, however, neglected the fact that it is energetically favorable for the 
magnetization to align with the external field. When it does so, the U(1) left invariant 
by the magnetization coincides with the exact U(1) symmetry, so there is no 
spontaneously broken exact symmetry, and no massless spin wave. 

Similarly, both the condensate and the intrinsic masses in our QCD example 
leave unbroken an SU(2) x U(1) group. We should expect these two groups to align, 
so that there are no exactly massless Goldstone bosons [12]. 

Returning to the ferromagnet example, though, we note that it need not be the 
case that the symmetry groups of the perturbation and of the magnetization align. 
For suppose the perturbation actually has the form 

H ' =  (BMx)  2 , (3.6) 
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which is also invariant under rotations about  the x-axis. It is now energetically 
favorable for the magnetization to be perpendicular to the x-axis. Because the 
perturbation and the magnetization fail to align, there is a spontaneously broken 

exact U(1) symmetry,  and a massless spin wave, even in the presence of the 
perturbation. 

Our  task is to generalize this idea to relativistic quantum field theory. It is possible 
for the intrinsic quark masses and the quark condensate to fail to align in QCD,  
so that there is an exactly massless composite Goldstone boson with massive 
constituents? 

The orientation of the quark condensate ~ in Q C D  is chosen to minimize the 
vacuum energy; to determine the correct orientation we must compute the minimum 
of an effective potential V ( ~ )  [12]. When the quarks are exactly massless, this 
potential must be SU(2)LxSU(2)RxU(1)v  invariant. We will assume that the 
vacuum angle 0 of Q C D  is either 0 or ¢r, so that the potential is also invariant 
under P and CP [15]. 

The condensate can be expressed as 

4~ = zro+ ixt" "t+ i ~ 0 + *  ' x ,  (3.7) 

where "t is a 2 x 2 isospin matrix. The scalar fields ¢r and $ are 4-vectors under 

O(4 )=SU(2)LXSU(2)a ;  they can be construed as the degrees of f reedom of a 
low-energy phenomenological  field theory [16]. 

If, in the massless-quark limit, chiral SU(2)L× SU(2)a = 0(4)  is spontaneously 
broken to SU(2)v = O(3), and P and CP are not spontaneously broken,  then either 
zr or ~b, but not both, is non-zero. (The U(1)A transformation which rotates rr into 

is not a symmetry of QCD,  because of the axial anomaly [15].) We assume 
without loss of generality that ~" is non-zero, and, performing an 0(4)  rotation, 
we are free to choose 

~ro ~ 0 ,  ~ = 0 .  (3.8) 

Then ~ represents the Goldstone boson triplet in the phenomenological  field theory. 
Now suppose we introduce a small chiral-symmetry-breaking quark mass term 

of the form 

= m(aLUR - dLdR) • (3.9) 

Treated in lowest order perturbation theory, this perturbation will force d to be 
non-zero and aligned with the quark mass matrix. Will ¢r also align with the quark 
mass matrix? If we (arbitrarily) truncate the potential by ignoring terms of higher 
than quartic order,  then the only term invariant under 0(4)  and CP which depends 
on the relative orientation of & and 7r is (O • ¢r) 2. To lowest order  in the quark 
mass m, the potential has the form 

V($, ,r) = A(~b • ,r) 2 + m~b3 +f(~b 2, ,/,/3) , (3.10) 
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~3 "r3 

Fig. 2. Graph contributing to the mass-squared of the pseudo-Goldstone boson ~'3. 
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where f is minimized at 4,2= 0, I r2# 0. The minimum of V occurs for 4,3 = O(m); 
whether 4, and ,r align depends on the sign of A. If A is positive; V is minimized 
when 4, and 7r are orthogonal 0(4)  vectors. 

Therefore,  if A is positive, the SU(2) isospin symmetry left invariant by the 
perturbation is spontaneously broken to U(1), and ¢rl and ~'2 are exact Goidstone 
bosons with massive constituents. But ¢r3 is a pseudo-Goldstone boson which 
acquires a mass squared of order  m 2 from fig. 2. (Notice that CP is spontaneously 
broken whatever the sign of A;  this is an example of Dashen's phenomenon [12].) 

The precise form of the potential in eq. (3.10) is not an essential feature of this 
example. The point is only that the potential will fix the relative orientation of zr 
and 4, ; either they align or they do not, and if they do not, isospin is spontaneously 
broken. Unfortunately, we do not know how to calculate this potential so we cannot 
say whether isospin can be spontaneously broken in QCD as we have described 
here. In sect. 4 we will construct a similar example in which the potential which 
determines the alignment of the condensate is explicitly computable. 

4. A composite Goldstone boson with massive constituents 

The analysis of the models we construct in this section and in sect. 5 follows the 
pattern established in sect. 3. We will assume a realization of flavor symmetry in 
the flavor-symmetry limit; then we will consider the influence of flavor-symmetry- 
breaking perturbations on the orientation of a condensate. The perturbations will 
be a small fermion bare mass term as before, and also a weak gauge interaction 
which gauges a U(1)w subgroup of the flavor group. We will see that, if the U(1)w 
is chosen appropriately, the weak gauge interaction and fermion bare mass try to 
align the condensate in different directions. If the gauge interaction wins this 
competition, the condensate fails to align with the bare mass term, and there is a 
massless Goldstone boson with massive constituents, as in sect. 3. 

Our first example is a variant of two-flavor QCD. The gauge group is Gs x U(1)w, 
where the Gs interaction is a strong interaction with confinement scale A, and the 
U(1)w interaction is a weak interaction which can be treated perturbatively. The 
fermions in this model are 

o rio d]., d~, ] R (4.1) UL,  , , , 

where u, d are in equivalent complex irreducible representations of Gs, and have 
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the U(1)w charge assignments shown. R stands for a real reducible representation 

of Gs with U(1)w charge assignments chosen so that GsGsU(1)w and U(1)3w 
anomalies cancel. R has been introduced so that we can gauge the U(1)A symmetry 
of the d without encountering anomalies. We will suppose that R self-condenses, 
spontaneously breaking U(1)w. But because the R condensate does not contribute 
to the effective potential we will minimize, it plays no essential role in the following 

discussion. 
The u has an explicit mass, 

Y(m = mfiL UR + h.c. ,  (4.2) 

but in the limit in which m and the U(1) gauge coupling e vanish, this theory 
respects the global flavor symmetry 

Gf = SU(2)L × SU(2)a x U(1)v x U(1)A • (4.3) 

We will assume that Gt is spontaneously broken by the strong Gs interaction to 
the subgroup 

Hr = SU(2)v x U(1)v .  (4.4) 

The orientation of Hr in Gf can be specified by an Hf-invariant fermion condensate. 

In the limit of exact Gf symmetry,  the orientation of the condensate is arbitrary, 
but when m and e are non-zero, the correct orientation is chosen to minimize the 
vacuum energy. We can compute and minimize an effective potential to determine 
how the condensate lines up [1, 12, 17]. 

The orientation of the Hf-invariant condensate is labeled by four parameters ,  

but it is shown in appendix A that the effective potential can be expressed as a 
function of the single angle 0 which defines the linear combination of UR and da, 

u'a(O) = ua cos 0 + da sin 0, (4.5) 

that condenses with ilL. Taking m and e 2 to be small, we will calculate the effective 
potential to lowest order in m and e a. The contribution of order m is easily seen 
to be 

Vm(0) = (~'~¢~) = 2rn Re (fiLUR) = --2mAre COS 0, (4.6) 

where Am is of order A 3 and can be chosen to be positive. Vm is minimized at 
cos 0 = 1. The intrinsic u mass encourages fiL tO condense with ua. 

The contribution to the effective potential of order e 2 is computed in appendix 
A using the methods of ref. [17]. It has the form 

e 2 
Vw(0) = ~ Aw cos 2 0 ,  (4.7) 

where Aw = O(A 4) is expected to be positive*. Vw is minimized when cos 0 = 0. 

* If Aw is actually negative, we can simply change the U(1)w charge assignments to reach the same 
conclusions as below. 
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The U(1)w interaction tries to prevent the doubly charged fermion bilinear dLdR 
from condensing. 

The two perturbations, the intrinsic u mass and the weak gauge interaction, 
compete with each other;  which one wins will depend on the relative strength of 
m and e2A. If m is sufficiently large, the potential 

2 
e 

V(O) = -2mAre cos 0 + 1--6--~2 dw cos 2 0 (4.8) 

is minimized at cos 8 = 1. But if m is smaller than the critical value 

e 2 A w e 2 
mc= 16rr 2 zam 16¢r 2A,  (4.9) 

a non-trivial minimum occurs at 

2 

/ ( ©  ,410, COSO=(mAm) Aw --me" 

For m < me, the U(1)w interaction is strong enough to prevent the condensate from 
aligning with the intrinsic u mass. 

This model has the exact global symmetry u-number minus d-number. When 
cos20 ~ 1, this symmetry is spontaneously broken by the condensate (/~LdR)~ 0, 
and there is an exactly massless Goldstone boson coupling to the current 

j~, = ~lr I y . ySq  cos O + t]7"3yaq sin O, (4.11) 

where q represents the (u, d) doublet. The Goldstone boson is a massless composite 
particle that contains the massive u-quark. 

The Applequist-Carazzone decoupling theorem [13] requires this composite 
Goldstone boson to become massive when m is sufficiently large, which is exactly 
what we have found. When m > me, the minimum of the potential is cos 0 = 1 ; the 
spontaneously broken global U(1) symmetry becomes restored, and the massless 
Goldstone boson becomes a massive pseudo-Goldstone boson. The pseudo-Gold- 
stone boson mass M is given by [17] 

2 4 \ 4 
17---~ A w|  t)rr- / - m~)Am (4.12) M = ~--~(mAm e2 = ~ ( m  . 

The composite mass M turns on continuously, as in fig. lb.  For m <me,  the 
Goldstone boson is a tachyon, signalling the instability of the vacuum in which 
u-number minus d-number  is conserved. 

We have found a composite Goldstone boson which remains exactly massless 
while one of its constituents receives an intrinsic mass, but only by assuming that 
Gt is spontaneously broken to Ht by the strong interaction. However,  our model 
can easily be generalized to the n-flavor case, and we have seen in sect. 2 that 



216 S. Dimopoulos, J. Preskill / Massless composites 

confinement and the PMC imply that the SU(n)L x SU(n)R x U(1)v chiral symmetry 
of QCD is spontaneously broken to SU(n)v x U(1)v. Including the R-fermions does 
not alter this conclusion. Therefore, assuming only confinement, we have proved 
the existence of a renormalizable quantum field theory in which the PMC is not 
satisfied. 

5. A massless composite fermion with a massive constituent 

Now we will apply the ideas of sect. 4 to a model with a massless composite 
fermion. The analysis of this model is based on more speculative assumptions than 
the analysis of the model in sect. 4. 

The gauge group of the model is SU(5)sXU(1)w, where SU(5)s is a strong 
interaction with confinement scale A, and U(1)w is a weak interaction to be treated 
perturbatively. The fermions are in the SU(5)s representations 

10", l0 b , 10-", ~-3b, 15b. (5.1) 

All the fermions are left-handed, and the U(1)w charge assignments are as indicated. 
Note that this model is anomaly-free. There is also an intrinsic mass term 

~m = ml0-" 10" (5.2) 

allowed by the gauge symmetry. 
Before proceeding with the analysis of this model, we review the hypothetical 

behavior of a simpler SU(5) model. Suppose the only fermions are 

10 
Y= 1 -3"  (5.3) 

This model has a global U(1)v symmetry with assignments as shown. How is the 
U(1)y symmetry realized? 

Georgi [18] has argued that it is quite plausible that U(1)v escapes spontaneous 
breakdown. As emphasized in ref. [6], there are two complementary ways of 
describing how this model behaves. In one description, the "Higgs picture", a 
bilinear fermion condensate forms which breaks SU(5) down to SU(4). Condensa- 
tion occurs in the channels 

10x 10--5,  1 0 x 5 - - 5 ,  (5.4) 

and the 3 and 5 condensates are presumed to line up to leave the same SU(4) 
unbroken. There is one uncondensed fermion, the SU(4) singlet contained in the 
5. We can define an unbroken global U(1) generator Y' by combining Y with a 
broken SU(5) generator. The uncondensed fermion carries Y ' = - 5 ,  and is kept 
massless by the unbroken U(1). 

In the complementary "confinement picture", the SU(5) interaction is considered 
to be exactly confining; SU(5) is not spontaneously broken. The massless fermion 
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is construed as a bound state, 

10 5 5 ,  Y = - 5 .  (5.5) 

This massless composite fermion saturates 't Hooft 's  anomaly condition. 
There appears to be no physical distinction between these two descriptions. 

Therefore,  if the U(1)v symmetry is not spontaneously broken, we may interpret 
the resulting massless fermion as a composite state. 

Now we return to the SU(5)s × U(1)w model with fermion content specified in 
(5.1). In the limit m = e -- 0, the flavor group of this model is 

Gf = SU(2) x U(1) x U(1) x U(1).  (5.6) 

It seems plausible to us that the strong SU(5)s interaction spontaneously breaks 
Gf down to the subgroup 

Hf = U(1) x U(1) x U(1).  (5.7) 

We expect the 10 to condense with an arbitrary linear combination of the 10's, 
leaving the orthogonal combination of the 10's to bind with the 3 and produce a 
massless composite fermion. 

When m and e are non-zero, the model still has an exact global U(1 )xU(1)  
symmetry which keeps the composite fermion exactly massless. But the G~ breaking 
perturbations will now determine the linear combination of the 10's, 

10(0) = 10 a cos 0 +  l0  b sin 0, (5.8) 

that condenses with the i-0 -~. We will argue that, for e :  sufficiently large, and an 
appropriate choice of a and b, cos20 ~ 1. Then the 10 which binds with the 
contains a component  of the massive 10n; the massless composite fermion has a 
massive constituent. 

We determine 0 by minimizing the effective potential. The contribution of order 
m to the potential is again of the form 

Vm(O) = -2mAre cos 0. (5.9) 

The order  e. 2 contribution is computed in appendix B, and is found to be of the 
form 

2 
e 4 

Vw(0) = I - - ~ A  [(a - b ) ( A a  +Bb) cos 2 0 + ( a  - b ) 2 C  cos 2 20] ,  (5.10) 

where A, B, and C are numerical factors of order 1, determined by the strong 
SU(5)s dynamics. 

Unfortunately, the arguments of ref. [17] do not suffice to establish the signs of 
A, B, and 6". However,  we are free to choose the U(1)w charge assignments as we 
please. In particular, because there is no reason to expect A = - B ,  we should be 
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able to choose 

(a-b) (Aa+Bb)>O,  IAa+Bbl>>l(a-b)C[. (5.11) 

If a and b satisfy (5.11), then the second term in eq. (5.10) is negligible and the 
coefficient of cos 20 is positive. 

Hence if (5.11) is satisfied, the potential has the same form as eq. (4.7). The 
critical value of the mass is 

e2 A4 e 2 
mc~-- 16~r2 A,, 2 (a -b ) (Aa+Bb) - l - ' ~2A(a -b ) (Aa+Bb)"  (5.12) 

For m > rnc, the minimum of the potential occurs at cos 0 = 1. The exact global 
U(1 )xU(1)  and the weakly gauged U(1)w symmetries are all unbroken. The 
massless composite fermion is a bound state of the massless 10 b and 5 -3b. 

However,  if m < rno the minimum is at cos20 # 1. Because the fermion con- 
densate fails to align with the intrinsic fermion mass, there is an exact Goldstone 
boson containing the massive 10 ~ and 10 -~. This Goldstone boson is eaten by the 
U(1)w gauge boson. An exact global U(1)x  U(1) remains unbroken, and one of 
these U(1)'s enforces the masslessness of the composite fermion which contains 
the massive 10 ~. 

As m increases through me, the U(1)w is restored; the eaten Goldstone boson 
smoothly becomes a pseudo-Goldstone boson, and the mass of the U(1)w gauge 
boson goes smoothly to zero. There is a massless composite fermion in both phases 
of the theory. But only for m < m~ does the massless composite fermion have a 
massive constituent. 

Although we cannot calculate A, B, and C, we should observe that the phase 
transition in this model might be first order, for an appropriate choice of U(1)w 
charges a and b. Provided 

Aa + Bb 
C < 0 ,  O<(a_b)(_C)<5,  (5.13) 

the minimum of the potential V(O)= V,,,(O)+ Vw(0) changes discontinuously at 
m = m~, as illustrated in fig. 3. 

In contrast with the examples cited in ref. [17], we have found that our weakly- 
gauged U(1)w interaction sometimes prefers to align so that it is spontaneously 
broken, rather than unbroken. This result seems less counter-intuitive when we 

V(O) 

0 colO ! 

Fig. 3. A first-order phase transition. 
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recall the "Higgs picture" for this model. The condensates (5.4) carry U(1)w charges 
[even when they are neutral under an appropriately redefined U(1)~v] so we should 
not be astonished if it turns out to be less costly energetically to break the U(1)w 
than to leave it unbroken. 

Our demonstration that it is possible for a massless composite fermion to have 
a massive constituent has relied on the assumption that the global U(1)v symmetry 
of the SU(5) model escapes spontaneous breakdown. There need be no massless 
fermion at all if U(1)v is spontaneously broken. But our general strategy for 
constructing massless composite fermions with massive constituents can be carried 
out in almost any theory in which there are massless composite fermions when the 
elementary fermions are massless. Therefore,  we can be reasonably confident that 
it is possible to construct models in which massless composite fermions have massive 
constituents, if massless composite fermions ever occur at all. 

6. Conclusions 

We have constructed models in which massless bosons or fermions are bound 
states of massive elementary fermions. The crucial ingredient in these models is a 
weak gauge interaction which prevents a fermion condensate from aligning with 
the intrinsic fermion masses. 

In analyzing our models, we have made assumptions about how exact flavor 
symmetries are realized. But we have demonstrated that, given a confining gauge 
theory with a massless composite boson or fermion, it is often possible to modify 
the theory so that the composite remains massless while its constituents receive 
intrinsic masses. 

In our example with a massless composite, fermion, the requirement of decoupling 
is satisfied in an unusual way. As the intrinsic mass rn of the elementary fermion 
increases to infinity, a composite fermion remains massless. But at a critical value 
of m, the "wave function" of the composite changes, so that it no longer contains 
the massive elementary fermion. It would be more interesting if the unbroken 
symmetry actually decreased at the critical value of m, allowing the composite 
fermion to become massive. We do not know how to construct such an example. 

We have shown that the persistent-mass condition is not generally true, but we 
have not shown that it is wrong in QCD, or in other asymptotically free gauge 
theories with a simple gauge group. One should note that the examples constructed 
in this paper and in ref. [11] require auxiliary dimensionless parameters to fix the 
critical value of the elementary fermion mass. In our examples this parameter  is 
the U(1)w gauge coupling e, and the critical mass is mc~(e2/16,r2)A. There is no 
dimensionless free parameter  in QCD. It seems quite possible to us that the 
persistent-mass condition is correct for QCD and other zero-parameter  quantum 
field theories. 
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Appendix A 

Here we compute the order e 2 U(1)w contribution to the effective potential for 
the model described in sect. 4. 

The effective potential depends on the relative orientation of the two subgroups 
of Gf= SU(2)LXSU(2)ax U(1)v x U(1)A, the unbroken subgroup Hf= 
SU(2)v x U(1)v and the weakly gauged U(1)w subgroup. Because only the relative 
orientation matters, we may keep Hf fixed and rotate only U(1)w. The U(1)w 
current, which in a standard basis is 

J~v (9, 9) = dLy"dt . -  dRT~'dR + (R piece) 

----- - - q L ' y " T 3 q L  + q R Y ~ ' T 3 q R  + ( G i  s i n g l e t ) ,  (A. 1) 

becomes, under a Gf rotation 

- t* t 3 - ~ "~ 3 • 
J ~  ( UL, U R )  = - - q L ' Y  UL T ULqL + qR'Y UR T Uaqa + (Gi smglet). 

(A.2) 

Here q represents the (u, d) doublet and UL, UR are arbitrary unitary matrices. 
The contribution to the vacuum energy arising from the exchange of one U(1)w 

gauge boson is 

Vw(UL, UR) = --~zie 2 I d4xD'~(x)(O]T(J~v (x)J~v (0))10). (A.3) 

Because the vacuum 10) is H~ invariant, we extract the Hrinvariant piece of the 
product of two U(1)w currents to obtain [17] 

r 

Vw(U) 4e2tr(T3UT3U,)~i  J 4 , = d xD~,,(x)(O[T(J3L (X)J3R (0)]0) + constant 

2 
e 

= 81r2 Aw tr  ( T  3 UT 3 U*) + constant, (A.4) 

where U = U~.UR and Aw is the spectral integral 

Aw is of order A 4, and according to the arguments of ref. [17], it is reasonable to 
expect that Aw is positive. 
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The matrix U is a 2 x 2 unitary matrix 

ict 
lyre cos0  - e ' a s i n ~ ]  

U = e [e_it 3 sin 0 e -'~ cos ' 
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(A.6) 

(If we had chosen to keep U(1)w fixed and had rotated Hf instead, the fermion 
condensate which specifies Ht would have been proportional to U*.) From (A.4) 
and (A.6) we find 

2 
e 

Vw(0) = ~ Aw cos 20.  (A.7) 

Vw(0) is independent of a, /3, and y because, when cos20 # 1, there are three 
spontaneously broken U(1) symmetries which commute with U(1)w. 

In the model described in sect. 4, the lowest-order contribution to the potential 
due to the mass of the u-quark is 

Vm(O, a + y) = - 2 m A "  cos (a + y) cos 0 ,  (A.8) 

which is minimized for cos (a + y) = +1. We have used our freedom to choose the 
sign of cos (a + y) to make Am positive in eq. (4.6). The parameters a - y  and fl 
are arbitrary, and correspond to two exactly massless Goldstone bosons. One of 
these is eaten by the U(1)w gauge boson, the other is the Goldstone boson discussed 
in sect. 4. 

Appendix B 

Here  we compute the order  e 2 U(1)w contribution to the effective potential for 
the model described in sect. 5. 

As in appendix A, we will keep fixed the orientation of Ht = U(1)x  U(1)× U(1) 
in Gt = SU(2) x U(1) x U(1) x U(1), and rotate U(1)w. In a standard basis, the U(1)w 
current is 

J~v (~) = (a - b )(IL y~'T3 qL + (Gf singlet), (B. 1) 

where qL is the (10 a, 10b)L  doublet. Under  an S U ( 2 ) c  Gt rotation specified by 

[ e i'~ COS 0 - e  io sin 0] 
U = [ e _ i , s i n 0  e - ' ~ c o s 0  ' (B.2) 

T 3 becomes 

T 3'= U ~ T 3 U  = T 3 cos 2 0 - s i n  20[T 1cos (a - / 3 ) +  T 2 sin (a - f l ) ] .  (B.3) 

Again the effective potential in order  e z is given by (A.3), and we must extract 
the Ht-invariant piece of the product of two U(1)w currents. T a and T 2 are an Hf 
doublet, but Ht symmetry cannot prevent the T a component  of J~v from mixing 
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with the Gf-singlet component. Therefore, the most general form of the effective 
potential consistent with Ht symmetry is 

2 
e 

Vw(0) = ~ A4[(a - b)2C cos 2 20 + (a - b ) ( A a  + Bb)  cos 20] + constant, (A2.4) 

where A, B,' and C are numbers of order one determined by the strong SU(5)s 
dynamics. Vw(0) is a function of the single angle 0 because, for cos 2 0 # 1, there 
are two spontaneously broken U(1) symmetries which commute with U(1)w. 

Because of the uncontrolled mixing of the Grtriplet and Gf-singlet currents, the 
arguments of ref. [17] do not suffice to determine the signs of A, B, and C. 
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