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We calculate the two loop correction to the divergence of  the axial current  in N = 1 supersymmetr ic  Yang-Mil ls  theory.  
We find that,  if we use supersymmetr ic  dimensional  regularization, the anomaly is proport ional  to the t3-function, a result 
we interpret  as evidence that  the supermult iplet  nature o f  the trace, axial and supersymmet ry  anomalies persists at the two- 
loop level. Thus  it appears that  the Adle r -Bardeen  theorem is not  valid in supersymmetr ic  theories. 

In 1975 Ferrara and Zumino [1] pointed out that 
in supersymmetric theories the axial current ,/5, the 

P improved energy momentum tensor 0 u and the im- 
proved supersymmetry current S u can be identified 
with the members of  a single supermultiplet. At the 
quantum level one is therefore led to expect that the 
anomalies ~ • j 5 , 0  u and 7 • S are also related by su- 
persymmetry. This has been verified at the one-loop 
order in a number o f  cases [2]. The purpose of  this 
paper is to investigate the two-loop correction to 
~). j 5  in the case o f N  = 1 supersymmetric Yang-  
Mills theory. The Adler-Bardeen (AB) theorem [3], 
as usually stated, asserts that ~ • j 5  is given by 
cFuvFUV where c z kg2 (where k is a pure number) 
and there are no corrections to c of  order g 4  g6 etc. 
On the other hand it is well known that the trace of  
the energy-momentum tensor 0u~ is proportional to 
the t3 function which for the theory under considera- 
tion has a non-vanishing two-loop correction [4]. One 
is therefore forced to conclude that either the multi- 
plet pattern of  the currents somehow ceases to hold 
at higher orders or that the AB theorem is not valid 
for supersymmetric theories. In the latter case, we 
would expect the following equation to be true to 
all orders: 

OuJU5 = 3U(½~3,u@~b) = - 1 [~(g)/glFpo~po ' ( l )  

where Fpo = eoo6rF6r" The factor of  ½ in the 
definition of  the axial current is there because the 
fermions are Majorana. 

We investigate the validity of  (1) by calculating the 
Greens functions 

<01 T O  • ]5(x)A ,(y)Av(z))10> 
and 

(OIT(FF(x)Au(Y)Av(Z))]O) . 

For generality we will perform the calculation for 
Dirac fermions ~b transforming according to an arbi- 
trary representation of  the gauge group, and deter- 
mine r, which we define by the equation 

auJU5 = ~u(~Tu@ if) = r F F .  (2) 

The special case of  Majorana fermions transform- 
ing according to the adjoint representation is then 
easily extracted by judicious choice of  group theory 
factors. 

Thus if we write in momentum space 

(0{O. J5A•(P 1)Av(P2)IO) 

0 o = [Ag2/167r 2 + Bg4/(16~r2) 2 + .. .]4e,vooP1P 2 (3) 

and 

(0 [FFAu(P 1 )A v(P2) [ 0) 

+ a = 2(1 +Cg2/16~ 2 ...)4eu~oo~lP 2 , (4) 

our purpose is to determine A, B and Cin eqs. (3) and 
(4); calculate r from eq. (2), and test the validity of  eq. 
(1) in the supersymmetric case. 
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Consider eq. (3). It is clear that to calculate A and 
B we can differentiate with respect to P~ and then set 
P1 = -P2  = P" This procedure does not introduce any 
infrared divergences (as long p2 ¢ 0), Thus the calcu- 
lation of  A and B becomes a calculation of  the matrix 
elements o f J  5 between gluon states at zero momen- 
tum transfer. At the one-loop level we have compared 
this procedure with the calculation (for both massive 
and massless fermions) for general P1 and P2 and veri- 
fied that the same result is obtained* 1 . At the two- 
loop level the fact that the Feymnan integrals depend 
on only one external momentum simplifies the calcu- 
lation considerably. The same operation on eq. (4) 
leads to a straightforward calculation of  C. 

We perform the calculation using two regulariza- 
tion methods: conventional dimensional regulariza- 
tion (CDR) and supersymmetric dimensional regular- 
ization (SDR) [6]. The SDR method consists of  di- 
mensionally reducing rather than dimensionally con- 
tinuing to n dimensions. For an exposition of  SDR in 
the component field formalism with examples see ref. 
[7]. The method appears to be consistent with super- 
symmetry at low orders; it has recently been pointed 
out, however, that the method will give rise to ano- 
malous terms at sufficiently high orders [8]. We do 
not, however, expect these considerations to affect 
the reliability of  our calculations. 

In the earliest applications of  dimensional regular- 
ization [9] it was recognized that the accomodation 
of  3'5 presents difficulties. For our purposes, however, 
we can avoid the necessity for a general definition of  
3 '5 as follows: we write all fermion traces starting 
with the 3'53'~ vertex and perform the momentum in- 
tegrations and Dirac algebra using no property of  3'5 
other than the n-dimensional identity tr(@ 7a3'~) = 0. 
This enables one to reduce initially (apparently) di- 
vergent expressions to ones finite as n -+ 4, after 
which limit the Dirac trace can be performed with 
impunity *2. The advantage of  this prescription is 
that it gives automatic vector current conservation 
(we have verified this through two loops in QED). 
The usual (indeed inevitable) ambiguity in the posi- 
tion of  the anomaly corresponds to the arbitrariness 
in the choice of  initial position for the 3'5. 

#-I For further details, see ref. [5]. 
#2The one-loop calculation has been frequently performed 

in this spirit: see ref. [10]. 

The results for A, B, C are: 
In CDR 

A = 2T(R) ,  

B = [(12 - 43')C2(G ) + 8 C 2 ( R ) ] T ( R ) ,  

c = (6 - 2 3 ' ) c 2 ( a ) .  (5)  

In SDR 

A = 2T(R) ,  

B = [(12 - 43')C2(G) + 4C2(R)I T ( R ) ,  

C = (6 - 23')C2(G), (6) 

where we use the conventional definitions 

T(R)8 ab = tr RaR b , 

C2(R)I  = R a R  a ' 

C2(G)aab = facd fbcd  , 

for fermions transforming under a representation R 
of  the gauge group, and 3' = 3'E + l n p 2 / p 2  where 3'E 
is Euler's constant, and/2 is the renormalization scale. 

From (5), (6) we obtain 

rCD R = T(R)g2/16rr 2 + 4C2(R)T(R)g4/(16rr2)  2 ,(7) 

rSD R = T(R)g2/16rr 2 + 2C2(R)r(R)g4/(16rr2)  2 , (8) 

N = 1 supersymmetric Yang-Mills theory corresponds 
to C2(R ) = 2T(R) = C2(G ). [2T(R) because of  the 
Majorana nature of  the fermions.] Eq. (8) then yields 

rSD R = 1C2(G)g2/167r2 + [c2(a)2/(16rr2)2]g 4 . (9) 

The/3 function for this theory is [4] 

/3(g) = - (3g3 /16rrZ)C2(G) -  [6g5/(16rr2)2] [C2(G)] 2. 

(10) 
So we see that, in accordance with eq. (1), 

rSD R = -- ~fl(g)/g. (1 1) 

Note that from eq. (7) it is clear that CDR gives a re- 
sult for r which does not obey eq. (1). 

Eq. (11) is our main result. We interpret it as evi- 
dence that the supermultiplet nature of  the axial, su- 
persymmetry and trace anomalies is preserved at the 
two-loop level. (The situation in higher orders is 
unclear in view of  the apparent inherent inconsistency 
of  SDR [8].) Of course to fully substantiate this con- 
clusion we would have to perform the analogous cal- 

450 



Volume 109B, number 6 PHYSICS LETTERS 11 March 1982 

culations for the supersymmetry and trace anomalies. 
With regard to the supersymmetry anomaly, the fol- 
lowing remarks are in order: 

The supersymmetry current in the model under 
consideration is 

S u = oC~T"~F~ . 

Interpreting/a as an n-dimensional index (which is 
the natural procedure in view of  gauge invariance) 
Nicolai and Townsend [10] showed (at the one-loop 
level) that using SDR, 

3uSu=O, 7 " S  =(3/4rr2)o " F ~ .  

It is this result that we would wish to extend to the 
next order. (Of course it is possible to regulate the 
theory in such a way [11] that 7"  S = 0 and the ano- 
maly resides in 3uSU , just as one can regulate the axial 
anomaly in such a way that it is the vector current 
which is not  conserved. It is more natural, however, 
to choose (or impose) a prescription such that the su- 
persymmetry current is conserved, if this dan be done 
consistently.) 

With regard to the Adle r -Bardeen  theorem, note 
that from eqs. (7) and (8) the theorem apparently fails 
even for the case o f  QED (which we can recover by 
setting C2(G ) = 0, C2(R) = T(R) = 1), for both CDR 
and SDR. In the case of  CDR, we can, however, re- 
cover the AB theorem by a redefinition of  the sub- 
traction constant at the ~7u75 ~ vertex, while pre- 
serving vector current conservation. Previously Bardeen 
[12] considered a modification of  CDR with the same 
purpose. Thus in non-supersymmetric theories one 
can choose a gauge invariant regularization procedure 
such that the AB theorem is valid. (For  a recent dis- 
cussion of  the status of  the AB theorem in non-abelian 
gauge theories, see ref. [ 12] .) It is presumably the 
case, however, that the subset o f  regularization proce- 
dures which respect the AB theorem violate supersym- 
metry.  What we require, ideally, is a superfield formu- 
lation of  the anomalies and an unambiguous super- 
symmetric regulator. Piguet and Sibold [14] have re- 
cently made some progress in this direction. 

A necessary condit ion for the renormalizabili ty of  
a gauge theory is the absence of  anomalies. If  the 
Adle r -Bardeen  theorem is valid, it is sufficient to im- 
pose the cancellation of  anomalies at one loop. If the 
AB theorem fails in supersynmaetric theories, as sug- 
gested above, a problem is raised: must one impose an 

infinite set of  anomaly cancellation conditions? If 
that is the case the class of  physically consistent super- 
symmetric theories may be reduced considerably; 
perhaps only to l e f t - r igh t  symmetric ones. For fur- 
ther discussions of  the implications of  our result and 
the details of  our calculation, the reader is referred to 
a forthcoming publication [5]. 

We thank our colleagues at the University of  
Michigan for discussions and M.B. Einhorn for a 
careful reading of  the manuscript. We thank the 
Institute of  Theoretical Physics, Santa Barbara 
(where this work was begun) for its hospitali ty.  
This work was supported in part by the US Depart- 
ment of  Energy. 

Note added in proof. The redefinition of  the subtrac. 
5 = ( ~ 7 ~  v 5 tion constant at the r~, ~) vertex (to give the 

AB theorem) referred to above involves subtracting an 
additional finite piece as well as the pole term. In fact 
this additional finite subtraction is precisely that which 
is obtained if  one uses the non-anticommuting 3, 5 of  
't Hooft and Veltman [91 and imposes the identi ty 

5 r u  = r , 7 5  for the renormalized axial and vector vertice: 
(true at this order). Thus, in CDR, we have verified that 
with this prescription for 75 the AB theorem holds at 
this order in both abelian adn non-abelian theories. In 
SDR, with this procedure, one also obtaines (at least 
formally) the AB theorem. (The significance of  this re- 
sult is unclear, however, since SDR involves continuing 
to n < 4 while the non anti-commuting 75 requires 
n > 4, so it is not obvious that this procedure is consis- 

tent with supersymmetry.)  It seems however that the 
5 is proport ional  to/3(g) can be ob- result (1) that 3 , J ,  

tained only at the expense of  a breakdown of  the 
5 = F . 7 5 .  chiral identi ty F u 

We thank Eric Braaten for conversations which 
stimulated the above observations. 
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