
Suppose the four dimensional torus p acts effectively on a &manifold M so that the orbit 
space Ad* is a ckwd Z-disk, and there exist no exceptional orbits, and the isotropy groups span 
7’! Then the fundamental group of M is a finite abelian group with at most two generatrrs. In 
this paper* we obtain a homology cIassification of manifollds of this type under an addftional 
hypothesis that one of the two generators is trivial. We then use this result to obtain a complete 
classifkation of simply connected &manifolds supporting effective ?-actions. 
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we sha@ be cckernedthroughout with closed orientable smooth manifolds M 
af dimension 6 supportkg snbth ekctive p-actions. 

In [S], we showed that the classifkktion theorem for simply connected 6-manifdds 
with &ective T’-actions in [3] is not valid. The main purpose of this paper is to 
prove the followin 

TWWWB 1.1, Suppostr p acts m a simpiy conrtacted hmnifold M so that the 
mm&r of orb& of tvpe T2 is k, l%en we have 

(k - 4)(S2 x So) # (k -3)(S3 x S3), if wz(M) = 0, 

M*(S2;1S4)#(k-S)(S2xS4)#(k-3)(S3xS3), if w2(M)f:O, 
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. . * . g’, “_ ‘ , I’ ’ : 

~hjs paper is a continuation Of [S] in w&h IY~ studied non-sirnipfy connected 
5-lmanifolds with effective T’-actions u#rdasr sO#e &MTktk3ns a& ubtained a 
complete classification of simply c0nne~kd 5 -ma nif0lds with effectivle T3- a&ions 
For definitions and termin010gy, we refer to [S,& Here we restate the notations 
which are frequently used in this paper: for r&ativefy prime integen’a,’ tr, c, and 
d, G(a, b, c, cl) means the circle subgroup of T’ de%in& by C@, b, E* d) =J 
((af, bc, et, dt) 10 S ! < 11 [EC! I?!“\ Q *‘*nbcp 

compact Lie group G. ‘By Ml 
E*- Omlfl A& are two G-mrsrnifoltdk ‘for a ,’ YIgTp0Vur” L.h’J, r .l 

= M2. we .mean that there exists a weal@ ~q&&&ant 
diffeomorphismf : Ml + A& (that is, there is ~11 E A&G) suclrt&td(g ax) = at(g) *f(x) 
for g E G, x E Ml). We write Ml = A& when they are just tu$010@My eqtivaknt. 

Unless otherwise stated, we shall always use the it~~tqgers Z as coe#iciea~s in 
(co )homology. The first Pontrjagin class of .A# will be &mated by P#kf). Finally, 
we have the trilinear form 

p : H?(M) x H2(M) x H’(M) + Z 

definedI by ~(a, /3, y) = QI u/3 u y f H6(M) = 9, where the isemotphism e(M)-, Z 
is defined by the orientation 0n M. 

2. Pdifminary iiemmas 

Orlik-Raymond [6] proved for a certain 4-manifold M’ with an effective T2- 
action that the orbit map A@ + QM4)* has a cross-seetim. 

By applyins a technique similar to thalt used in [6], we can prove the following. 

Lemma 2.1 [ 51. (Cross-sectioning Theorem). Tke orbit mop M6 + M”/ T4 has a 
mm-section, provided that the orbit space k a 2-manifold with non-empty boundmy 
and there exist no exceptio?tal orbits. 

Example 2.3 [63, Suppose T2 acts on a closed orientable 3*,manifold X SO thaf 
the orbit space X* is a closed interval with both boundary points ~0rresp01~& 
to non-principal orbits whose stability groups are G(m, n) and C(m’, n’) (that is*; 
x’* is G!m,n)as -% Gfpz’, I!‘)). Let r; : it -+ X* = [O, S] be the orbit olrap. Then 
q l([~jl :I) and q ‘([$, I]) arc solid tori. Thus X is the space cmstructed by gluing 
two solid tori ;niong q ~’ f&j*, T2. Hence X is a lens space L(p, q) (Note: It is S3 if 
p=*l andisZ?xS” iff~=O>. by ~h~~~~ug the gluin 
see that p is 



* Let N a S-manifold supporkqg an effective smooth T4-action 
such that the orbit spa= N* is as shown below 

Then N = t(ps q) x T2 for some aens space L(p, 9). Xn fact, we can choose an 
automorphism tx fW TA such that ;u(G(d, b,, C, d)) = G(m, n, 0,O) and 
a(G(a’, ir’, c’, d’)) = G(m’, n’, 0,O). Hence, *NC may mw.rrm IV* is as shown below 

G(m, n,o, 0) *-8 G(mQp d, 0,O). 

If X is 8 3-manifold supporting a T*-action such that the -x=bit space X* is 
Gfm, n) *-* G(m’, n’), then by Example 2.3, X is a iens space. Define a T4-action 
on XX T* by the product of the T*-action on X and the ~u~~.~p~i~atio~ of T2 on 
itself. Then the orbit space (X x T*)* with res sect to the product action is 

am, 4 O,O) 8-8 G(m’, n’, 0,O). 

Since the orbit maps N -+ N* and (X x T2) + (X x F*)* have cross sections, 
Lemma 2-2 gives rise to N = X x T2. 

If the isotropy group3 span Tk for some k e4 (say T3), then I:t follows from an 
argument sirnil& to [S, Remark 1.7] that M is equivariantly diffeomorphic to 
T’ x N for some S-manifold N with an effective T3-action. So in this paper we 
assume that the isotropy groups span T4 unless otherwise stated. This will then 
force the number of orbits of tw T’ to be at least four. c 

Suppose T4 acts effectively on a 6-manifold M so that the orbit space M* is as 
shown below, 

and let 

a1 a1 (-23 a4 

h bz b3 b4 

Cl c2 c3 65 

& & d3 d4 



G(l,O) e-L_, G(9), 1). 

Define a T”-actie>n on S3 xS3 by the product of tHpo c~pios of the %&ion an 
S3. Then the orbit space (S3 :K S3)* is a showa bekw, . . 

If detA=kl, then there is an automorphism LT-* of T4 which maps 

G f a 1, br, cl, dl A Gia2,62, ~2, dd, @(a:,, hi, 0, dd ancf. 8 Gk, k, ~4, &) to 
Gil, O,O, O), G(O,O, 1, O), G(0, l,O, 0) and G/O, 0,0, I), re%peictiveIyr Define a 
T9- action on M by 

r3,Wl, t2, t3, t4), xl = ~(~(h, f2, f3r f4)r x)9 

where 8 is the original TJ-action on M’. Then the orbit space A4* lvith respect to 
& is (weight preserving) diffeom\orphic to (S3 x S3)*. Hence, it f~liows from 
Lemma 2.2 that M is weakly equivariantly diffeomorphic to S3 x S3. 

(2) Wnder the hypothesis, we can choose an automorphism 8-l of p which 
maps Gh, h, cl, 41, GCa2, b2* ~2, dA Gh, b3, ~3, dd and G(m, 64, ~4~41 to 

G ‘1, 0, 0, Oj, G(4), 0, 1, C,), Gfa, pin 0,O) aqd (0, 0, b, pz), respectively. 
Let q1 (and Q) be the unique solution of ax = 1 mod pt (by = 1 mod ~2); Then 

by Example 2.3, X = L(pl, 41) and !Y = L(p2, yz) admit etkctive T”-actions SQ that 
zhc orbit spaces X* and k’* are, respectively, 

G(l,O) e- G(a, pl) and Gfl, 0) +-o G(A, ~2). 

Define a T4-action on Xx Y by the product of the T2-action on X and the 
T2. isl:tion on Y. Then the orbit space (AT x Y)* the product ;tction 
is {weight-preserving) diffeomorphic to the orbit space with respect to 9 
. 

by at] autom~r~hism and the original action 4k 
: x a 

$5 0 
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corresponds to an orbit of typlcs 



Thus it foilows from Example 2.4 that the arc L* corresponds to L = S3 x T’. 
Cutting along L and attaching D4 x T’! equivariantly to the boundary of each 

piece results in two manifolds A81 and Mz with the ot*bit spaces as shown below. 

By applying Lemma 2.2 and [S, Lemma 3.11, we have A& = S5 x T’ and R3, = 
L(p) x T’, where. C(p) is a five dimensional lens space. Stince by Lemma 2.7, an 
orbit of type ‘r”’ is a generator of n#,(p)) = H, it fslloanvs from the Van Kampen 
theorem that AUp) - (D’ y T’)) = rG(p)) and Hn(S3X T’)--a 
HI&(p) - (D” x T’)) is surjective. From the Mayer-Vietoris sequence for (E(p), 
D4 x T”, L(p) - (,?I4 x T’)), we have F&(L( 13) - (D4 x T’)) -= F&W(p)) = 0. 

&et 

and 

then Nl nN2 .;= (S3 x T’) x T1 and by the unneth formula we have the hollowing 
commutative diagram: 



Since a, is surjective, H&W) is a subgroup of Z@Z and hence it is torsion tiw. 
If we use rational coeffkients in the exact sequence above, WG+ have 

Hence we have Hz(M; Z) = 0. Cl x 

In [5] we showed that the only possible isotropy groups &x 7’4e an @ are T’, 
T’, Z/H, and the identity. Furthermore , the bmmdary c;k the orbit slgace M* 
corresponds to the sihguk orbits and the interior of M* corresponds to the pritacipat 
orbits and the exceptions! orbits. 

In the following we provide a modified version of [S, Theorem 2.13 so that it can 
be usabk: in subsequent arguments. 

Lemma M. If T4 acts on a (i-manifold A4 so that the ~rh’t spuce M* is Q clmed 
2-disk and the exist no exceptional orbits9 then the fundamentuf group @f fcf is a 
finite tnbdian grokp‘ with at most two genersrturs, 

Proof. If Q is an element of s,(M), then by thta Whitney embedziing theorem, 
there is fin embedding f : 51’ -)I A4 which represents ar, 

Let q : dd + M* be the orbit map and F = q-‘(int M”). Then P is the ur&n of 
principai ~~abits. By the general position theorem, f is homaltopic to an eh>bMQing 
g : s’ --p P. Hencz 

is surjective, where i# is a homomorphism induced by the inclusion. 
Define h” : (T4, l:,+ (M, x) by h”((tl, tzr t3, t4)j = (tl, t,!, ~3, t&x and kt 

h*, : wt(T4, I)+ wl(M, x) be the induced map. I-Me x isI a a;Mtint in R Since we 



Throughout this section, we assume that the arbit space M* for a P-action on 
M6 is a c10sed 2wdisk and that there.exist no exceptional orbits. We recall that aSi 

actions are assumed to be smoati and @active. 
By the slice theorem, an invariant tubular neighborhood of an orbit of type T2 

is I&bundle over 2?/?‘” with the structure group T2, By applying Lemma 2.2, 
we can show that this bundle is trfviai (that is, D4 x T2). 

LeRMmna 3.1. Suppose T”; n ~4, acts otl a rmmifdd M of dimension (n + 2) so that 

the nu.w~e;l of orbits of 1ype rns2 is k. T%era we 4x232 properly choose an orbit T”(x) 
QftypQ”L2 so that if M+ is obtainad fmm M by eqtl ivariantly repkzcing the invariant 
t&&z~ ndghb~rk~od of Tn (x) with S” x D2 x Tne3, then M+ is obtained fbrn an 
(a +2)-manifold iW_. with (k - 1) orbits of type T”“2 by equivarian tly replacing two 
copiles of LP x Tr2 with two q&s of S3.xD2 x Tn-3. 

pN)of. We prove it for k = 5 and N = 4, but the gc,neral case can be proved in the 
same way as this case, 

We may assuage that A#* is as shown below and the four circle isctropy groups 
G(U, 1, 0, I)), G(al, BI, cl9 O), G(a2, k, ~2, &I, G(I13, k, 0, &I span T4- 
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we can &oose relatively 

I’ 0 B 

det 
, 

= -1 for any integer X 

I’.. 

Then the orbit space (S’ x T’)/p is as shown below, 

Gluing (S” x T’) - (D4 x 7”) and A4 - (D4 x T*) together along their boundary 
” 

resuhs :rr /W, l ~-tiiis~ orbit space pva A1T is 8s shown below. 

From the choice of p and q, we have 

==*l. 



This is the same as ending integers X, Y, Z9 V, such that 

b&$K!Z)-c3(XU- Y)+d3(XZ-yY)= 1, 

Hf d3 = 0, then $a& ~3, d3) = 1 makes it possible to select Y and 2 such that 
-432 + ~3 Y = 1, Thus these &&es for Y and 2 and U = 0 yield the desired 
determinant, Hence we assume d3 # 0. 

Let gcd(b3,d+d, then -b+d3X=d(-bk +d$X) wheregcd(b;,d$)= 1. Since 

gcd(b ~39 &I= 1, c3 - d3q and d have no common factors. By applying the Chinese 
Retiainder Thearena as Lwe did in [S, Section S’J we can choose an integer X so 
that X is greatsr bthan any given irateger and no factor of ~3 - d3q is a divienr of 
41; +d;X. 

Hence c3 -d3q and -43 + d3X are relatively prime for some integer X. So we 
&o&i in’tegers X& Yo, &, Uo, and V. = 1 so that the determinant is 1. 

Equivariantty replacing IV?, which is homeomorphic to S” x D2 x T’ by the choice 
of integer X, with D” x T”, rue have a 6-manifold AL with the orbit space Mf! as 
shown below. 

q 
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Re k 3.2. (I) The integer X can be ch:osen so that nr(M.) is fkaite. In fact, we 
fib9 qvume 

in the proof of Lemma 3.1. Hence 

The determinant of G(p, X, 4, l), G(uI, bt, cl9 O), G&, b2, car 62) and 
GIal, b3, CJ, d3) is -XKO + to for some integer I,*. Hence --4K&+L~ is not zero 
fo1° a sufficiently large number X This implies W&C) is finite. _ 

(2) 

T’ 
Lemma 3.1 implies that an equivariant replacement ofD4 x T” with S3 x o2 X 

can be chosen properly so that the replacement produces three a.rcs in the orbit 
space which correspond to S3 x T’, 

(3) The fo*l-c-*’ a wmg are schematic interpretations of what we shah api !y Lemma 3.1 
to in the subsequent arguments. 

G#I G1 

M*:G,=G(l,O,O,O), 62=G(O,l,O,O), G3=G(al,bt,ct,dl)..., CC= 
G(a,-2, k-2, ~~-2, ,A d 
T’ is n, n 2 Cr. 

). det(G2, G,, C&, Gj) ii: 0, and the number of orbits of type 

MT : The number of orbits of type T2 is n + 1, Ry Lemma 3.1, we can choose 
an intqx li’ SC) that 

(i) det(;jy G3, G, Gi) + 0, G = G(p, X, q, l), 
(ii) G, ) GI x G = T’, 

(iii) L ==S’A T’. 
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Mb : The number of orbits af type T2 :iis n, There is 8 cirde isotropy grsuy! Gk 
sucltthz&t ckt(e& %A, Gl, G( pt 3& f& 1)) f 0 (Brmf: we canchoose an automorpbi?m 
tr which maps Gn, G,, and G(p,X,qJ) to (3(1,0,0,0), G(D,l,O,Ci) and 
G(Ef, 0, 1, O>, respectively. Supps~ for each C&, den@*, Gt, G,. G& = 0. Thap,n the 
fourth cotiponent of ar@) is 0 kr e&h i. This is a contradktion, since the isotropy 
g?oup!4 c;pan P.) ’ 

(M&: Here G: is the: image: of Gi under an automor-phism (3 of T” that. maps 
Gker and Gk to G:-J z= G&O, Q, 0) and Gi = G(O, I,@, O), respectively. Since 
det(C?& G:, G!, G’)+O, we can choose integers $, q’, X’, so that 
det(G(p’, X’, g’, l), G:., Gi, G”) = 0 (by using an ar smelt si~~i~a~ to that used hi 

(1) o? the remark). 

* l * (, . . 

(A&)$: The number of orbits of type T* is rt. det(G”, Gk, G;, G’) # 0 and hence 
n~&M..~) is finite cyclic. Here W’ = G(p’, X’, g’, 1). 

(M,,)?: The number of orbits of type T2 is n -- 1. Since detW’, Gk, G;, 6;‘) f 0 
and L = S3 x T’, ?r&kf&) Hs finite cyclic. 

Note that alf of these manifolds can be constructed so that the isotropy groqx 
span T* and except for .M, the fundamental groups are generat~~d by at most one 
generator of finite order, which means that one of the two generators is trivial. 

Lemma 3.3. Let M be a 6-manifold with a T4-action and k be rhe rzumber of orbits 
of type T2 Suppose rr&W) is a finite cyclic group (ihat is, it has at west one genera tar) 
and Ml is obtained from A4 by quivariantly replacing D4 x T*, an invariant tubular 
neighborhood of an orbit of type T2, with S3 xD’ x T’. Then dcr,(M,) = ii?+’ if and 
only if Hi(M) = Zk. 



W(T*)@ MT’) A- &(p2) 

H,(U)OHW) x H*(U x U) 

We may assume that the isotropy group of p at y is G(l, O,O, 0) X G(O,, 1,0,0). 
Let x be a point in the union of principal orbits. Then by L;emma 2.7, 
h”,(G(O, 0, 1,O)) and h$(GfO, O,O, 1)) are the generators of n&@. Since T1 X 1 
and 1 x T’ are homotopic to h”(G(O,O, 1,O)) and k”(G(O,O, 0, l)), respectively, it 
follows from the hypothesis that T’ x 1 or 1 x T’ is homotopi&y &iv&l. By the 
Van Kampeti Theorem, a homomorphism WI(U) + W&W), induced by the iriclusion, 
is an isomorphism. Thus we have (f x g)*(t) = 0, where 6 is a generator of H;l(T*). 
The left half of the following diagram is homotopy commutative by a homotopy 
defined by 

H(x, yfa t) = j&x, ! + (1 - t)y ) X jz( t + (1 - t)x, y). 

where d is the diagonal map. Since d,jz,([$ ‘= U and d* is injective, j2&) = 0. 
Hence 

is triviai. Thus we have H*(U) - H&W) from the short sequence above. 
ram t ayeT-Vietoris 



3.4. Sqpose p acts on a 6-manifold AN so that the number Ipf orbits q,f 
type T2 is k, and WI(M) is generated by at most one generator of finite order. Thelr 
Hz(M) = Z’-*. 

PM& If k = 4, then M* is as shown below. 

The determinant of isotropy groups was assumed to be won-zero. 
By applying Lemma 3.1, we can select inte xs ~2, X, 4, so that an equivziriant 

replacement of D’ x T2 with S3 xD' x T’ prodaces A& with the orbit space: MT 
as shown below. 

Replacing AT with D’ x T* equivariantly results in A+& with Mt as shown below. 



We may assume G1 = G(I, 0, 0, O), G2 = C?(O, 1,0, 0), GS = G(at, bl, ~1~0) and the 
determinant of G2, Gig Gi, Gk is not zero for some i, j, and k. 

By Lemma 3.1, we have a 6-manifoid Ih’+ with MT as shown below. 

MO obtained from M+ by equivariantly replacing N1 with D4 x T” has a finite 
fundamental group generated by at most !*)ne generator. In fact, A&$ has one arc 
L* ccrresponding to S3 x T’ and hence G(p, X, ;4, I), G2* and 03 represent three 
generators out of four of nl( g) = Z4. Qrr the other hand, all of these Uwee circle 
groups are mapped to 1 by the homomor4k+m h”, defined is Lemma E.?. It follows 

Lemma 2.7 that rrl(Mo) = 4/(hz?(1) has only one generator, 



By the choice of X’, n~((M&.) is generated by at most one generator of finite order. 
By the inductionShypothesis, H’((.A&)_) == Zn? By Lemma 3.3, &&MO)+) = 2T3 

and hence H#&) = Z”-!. By applying Lemma 3,3 again to MO, M.,., and M, we 
havk &f&+) = Zne3 and H&%4) = Pm-‘. Cl 

w &S. Suppose p acts smootthl~ and t#ectiuely on a simply connected 

6-manifold M so that the namber of orbits of type T” .k k. Then we have 

Hi,(M) = Ha(M) = 1, H,(.M) = H&&I) = 0, 

H2(M) = H4(M) = Lk-4, H&M) = k2’k-3’h 

PNMlf. By the Poincar6 duality, HI(M) = H’(M) = 0. By the universal coefficient 
theorem, H’(M) = Hom(HS(M), Z)@Ext( E&(M), Z). Eence H.&W) is torsion-free. 
The torsion of H3(M) is Ext(Hz(M), Z) aU\d Hz(M) is free by Lemma 3.4. Hence 
H”(M) = H3(M) i:g also torsion-free. 

Suppose T = G(a, b, c, d) is a circle sub?group of T4 which is different from any 
circle isotropy groups. Then the action restrzted to T does not havr any fixed 
point. Fence x(M) = x(F(?‘, M)) = 0. 

Thus we hav x(M) s= -rank H3(M) + rank #I*(M) + rank Hd(M) + 2 = 0. Hence 
rank H&W) = 2(k -4) -t 2 = 2(k - 3). 0 

is CI &manifold with m &e&ce T%ction tmd n#4) is 
one generator of finite order. Tim the’ first Pontrjagin ck.us, 



By Remark 3.2, we can choose an integer X so that B&W+) and n#40) are 
generated by at most one generator of finite order, respectitpz!y. , ) 

Applying Lemma 3. I, as we oi: .S:aa A ’ 2 :‘I the proofpf Lemma 3*4, we havh 75k?nifc$ds 
of dimension 6, (MO)+ and (M& such that ?rt((M’)-) is generated by’$t @$ohe 
generator of finite order, and (A&)+ 6s 0btGned from (M& I$ “*&$u$y+$&y 
teplaciqg two copies of (D4 x T”) with two copies of (s3 X &‘X Tf) 

By the induction hypotiresis, p~((M&) = ct. By Lemma 3.4, H2:flw,)J, 
Hz((Mo)+), H;(Mo), H&@+), $lnd H@f) are all torsion free. SC) the thi& homology 
groups of these manifolds are torsion-free. 

Hence the first Pontrjagin class p1 can be regarded as a homomorphism 
p,(M) : H4(M) + Z.. 

Since pl((M&) and pl(S’ xS’) are zero, pl’il* and ~lois* are zero in the 
following diagram: 

. 
i** 

H4(9 x D2 x T ‘) tl’ H4((M&,) rc1------- H4((MO)_ v (P4 x T*]) 

From the Mayer-Vietoris sequence of (.!? X T’) - (n4 x 7”) and (Mu)-e - (04X T2), 

~,(a# x 0’ x T’)) =+ H3(S3 x D2 x Tp)@Hs((Mo)- c CD4 x T’!) 

is injective. Hence 

H,(S3 x D” x T’)@ H4((Ma)- - (D4 x T’)) .A H4(QI 

imce a! = i 1% + i2*, for a10 y E H4(( 



-._: By..C apglyi%g this &ick and by using the naturaiity of Pontrjagin class, wt: have 
p&W) = 0. cl 

a 3.7. If Mis a 6wanifold srppwtinp an effective T4-action such that We 
i#*sgenerated by at most one generato? of finite order; then the trllinear form 

p : H*(M) x H”(M) x H’(M -+ 2! 

is zero. 

Pmaf. Since @(xl, x2, xj) = U if one 0.: xi is a torsiqn ekment, it is sufficient to 
prove for rational coefficiefP 

If the number of orbits of type 7”’ is k =4, then H”(M; Z) = E, aDd hence 
H*(M; Q) = 0. So p =i. 

Suppose the lemma is true for some k 34 and M has (k + 1) orbits of type Ta. 
By applying Lemma 3.1, we have p-manifolds of dimensicq 6, M+, MO, (MO).,, 
(MO)*, (MO)_ such that the fundamental groups of all these manifolds are generated 
by at most one generator of finite order. 

Let 

V,=D’xT”, v~=s3xD2xT1, 

W = (M&v - ( D4 x T2), (M&j = U u Vz. 

In the proof of Lemma 3.3, the inclusion i : U A V2 = S” x T2 + U induces a trivial 
homomorphism i*:H~(UnV~;ag)~H~(er;Q9) and hence H*W; Cl)+ 
H2(U n V2; Q) is trivial. 

Thus the composition of inclusions j : U n Vt -, U + U u Vz = (Ad,& induces a 
trivial homomorphism j* :H2(UuV*;Q)-,H2(Wn*v2;‘l;y;. 

By the Mayer-Vietoris sequence for U a!zd Vz, we have 

ence we get a short exact sequence 

Q-+ image 8* = kernel k* + H2(h V2)-, H2(U)+0. 

U)-i- - * 
k ere Ck!i and /S are 

basis of the vwto ce I8Q.J v V2; 



Hence @*(ai, aj, 8) = 0 for any ai, aj E H2((Mdo; Q). 
By the induction hwthesis, PO--. *H2(U)xH2(U)~H2(U)-,Q is zero. The 

following diagram is commutative: 

~2(UKM x H2((&)*) x ~fMGo) a Q 

It follows from the same argument that the trilinear form NO+ on (MO)+ is zero. 
By applying the above diagram and the short exact sequence for MO, and MO, we 
have pO = 0. For a similar reason this fact implies p+ 88 0 and hence p = 0. Cl 

Proof of Theorem 1.1. With the results of ‘Theorem 3.5, L,emma 3.6 and 
Lemma 3.7, Wall [8j and Jupp’s [2) classification theorems can be applied to 
complete this proof. 
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