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Suppose the four dimensional torus 7 acts effectively on a 6-manifold M so that the orbit

. space M* is a closed 2-disk, and there exist no exceptional orbits, and the isotropy groups span

T Then the fundamemal group of M is a finite abelian group with at most two generat~rs. In

this paper, we obtain a homology classification of manifolds of this type under an additional

hypothesis that one of the two generators is trivial. We then use this result to obtain a complete
classification of simply connected 6-manifolds supporting effective T"-actions.
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" manifold ‘ gfoup action orbit space
isotropy group - équivariantly diffeorsorphic trilinear form
Stiefel-Whitney class  Pontrjagin class

1. Introduction

We shall be conoerned throughout with closed orientable smooth manifolds M
of dlmensmn 6 supporting smooth effective T*-actions.

" In[5), we showed that the classification theorem for simply connected 6-mamfolds
with effective T*-actions in [3] is not valid. The main purpose of this paper is to
prove the following.

Theorem i.l.v Suppose T* acts on a simply connected 6-manifold M so that the
number of orbits of type T? is k. Then we have

M = #(k —4)(S* x§*) # (k ~3)(§’x S’), if walM) =0,

M ~(S?XS*) #(k —5)(S>x §*) # (k —3)(S>x §?), if wa(M)#0,

where wy(M) is the second Stiefel-Whitney class and S§x8* is the non-trivial
S*-bundle over §°.
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This paper is a continuation of [51in winrh we studled non~smply connected‘

S.manifolds with effective T -actions under some restrictions and obtained a
complete classification of simply connected 5-ma nifolds with effective T°-actions
For definitions and terminology, we refer to [5]. Here we restate the notations
which are frequently used in this paper: for rciatively prime mtegers a, b, ¢, and
d, G(a,b,c,d) means the circle subgroup of T* defined by G(a, b, ¢ d)=
{(at, bi, ct, dt)|0<1< 1} (mod 7 Suppose M, znd M, are two G-manifolds for a
compact Lie group G. By M, = M,, we mean that there exists a weakly equivariant
diffeomorphism f : M, -» M, (that is, there is & € Aut(G) such that f(g - x) = a(g) - f(x)
for g € G, x € M)). We write M, =M, when they are just topologicaly equivalent.

Unless otherwise stated, we shall always use the integers Z as coeflicients in

(co)homology. The first Pontrjagin class of M will be denoted by P;(M ). Finally,
we have the trilinear form

w H (M) x H*M)xH M)~ Z

defined by u(a, B, v)=a uBuye H*(M)=Z, where the isomorphism HG(M)-* z
is defined by the orientation on M.

2. Preiiminary iemmas

Orlik-Raymond [6] proved for a certain 4-manifold M* with an effective 72-
action that the orbit map M* > (M*)* has a cross-section.

By applying a technique similar to that used in [6), we can prove the following.

Lemma 2.1 {5]. (Cross-sectioning Theorem). The orbit map M®->M®/T* has a
crcss-section, provided that the orbit space is a 2-manifold with non-empty boundary
and there exist no exceptional orbits.

Lemma 2.2 [5]. (Equivalent Classification Theorem). Suppose the orbit maps M, >
M7 and M, > M3 have cross secticns. Then M, is weakly equivariantly diffeomorphic
to M, if and only if there exists a weight-preserving diffeomorphism from MY onto M.

Example 2.3 [6]. Suppose T? acts on a closed orientable 3-manifold X so tha
the orbit spacc X™ is a closed interval with both boundary points correspondin,,
to non-principal orbits whose stability groups are G(m, n) and G(m', n') (that is,
X*is Gim,nYe"=s G(r',1"). Let g: X X*=[0,1] be the orbit map. Then
a '([0.3) and q (3, 1]) are solid tori. Thus X is the space constructed by glmng
two solid tori along q 'G) = .T?. Hence X is a lens space L(p, g) (Note: It is s?if

p==1andis S’x§"' if p =0). Furthermore, by checking the gluing map, we can
see that p is

m m' , . \
det( > and mg=m {modp) and ng=n'(modp.
L n
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Example 4. Let N be a 5-manifold supporting an effective smooth T*-action
such that the orbit space N* is as shown below

Gla, b, c,d)s»—e G(a',b',c', d).

Then N =L(p,q)x T? for some iens space L(p, q). In fact, we can choose an
automorphism o for T such that «(G(a,b,¢,d))=G(m,n,0,0) and
a(Ga', b, c',d")= G(m', n', 0, 0). Hence, we may assumc N* is as shown below

~ G(m, n.0,0) e—e G(m', ', 0,0).

If X is a 3-manifold supporting a T>-acticn such that the ~rbit space X* is
G(m, n) e—e G(m', n'), then by Example 2.3, X is a lens space. Define a T*-action
on X xT? by the product of the T>-action on X and the mul:iplication of T7 on
itself. Then the orbit space (X x T2)* with ressect to the product action is

G(m, n,0,0) e—e G(m', n', 0, 0).

Since the orbit maps N->N* and (X x T?)-» (X x"5)* have cross sections,
Lemma 2.2 gives rise to N = X x T2,

If the isotropy group. span T for some k <4 (say T>), then it follows from an
argument simila. to [5, Remark 1.7] that M is equivariantly diffeomorphic to
T'x N for some 5-manifold N with an effective T"-action. So in this paper we
assume that the isotropy groups span T unless otherwise stated. This will then
force the number of orbits of type T~ to be at least four.

Suppose T* acts effectively on a 6-manifold M so that the orbit space M* is as
shown below,

G(ag, b3, Cj, d3) G(ﬂz, b], C2s dz)

G(a,, by, cqrdy) Gia,. by, ¢y, d,)

and let

a, a, a3 a,
by by bs b,
¢y €y Cy Cs '
di dy dy d,

Then we have the following.
Theorem 2.5, (1) If det A= <1, then M is equivariantly diffeomoiphic to S 3% §3,

(1) If the subgroup spanned by the circte isotropy groups Glaa, by, ¢, d1) and
Glas, bs, ¢4, d3) has a trivial intersection with the subgroup spanned by the circle
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isotropy groups Gla,, b, c2,d2) and Glas, b4, Cay .,), then M is cqumanantly
diffeomorphic to the product of two lens spaces, L{py, q1) X L(p2, q2).

Proof. (1) Define a T -action on §° —{(zl,zz)( lz1]4 {z2] =1} by (4, t’) (z;, ‘)'-'-f
(z:6*™, z,6*™"). Then the orbit space (S H* is as shown below. E

G(1,0) o—-—o G0, 1).

Define a T*-acti>n on $>x $° by the product of two copies of tlle T’-actton on
$>. Then the orbit space (§° x $°)* is as shown below. _

70,0, 1,0) W 5(1,0,0,0)

G(0,1,0,0) \’_/G(O, 0,0.1)

If detd =1, then there is an automorphism « ' of T' which maps

G(G], bla Ci, dl), G(“Zy bz, C2, d2); G(a 3s b"\; C3, d!) and G(“«h b4, €ay d4) to
Gi1,0,0,0), G(0,0,1,0), G(0,1,0,0) and G(0,0,0,1), re~peutnelye Define a
T*-action on M by

aa(({h 12, 13, ’4)) X) = 0((1(‘1, t2, f3, t4)1 X),

where 4 is the original T*-action on M. Then the orbit space M* with respect to
€, is (weight-preserving) diffeomorphic to (8*x $%*. Hence, it tollows from
Lemma 2.2 thut M is weakly equivariantly diffeomorphic to §°x §°.

(2) Under the hypothesis, we can choose an automorphism 8~ of T* which
maps G(al, b], C1, dl), G(az, bz. Ca, dz), G(a3, ba, C3, d3) and G(a.;, b4, C4y d‘c) to
G'1,0,0,0), G(0,0,1,0), G(a, p1, 0, 0) and (0, 0, b, p), respectively.

Let g1 (and g,) be the unique solution of ax =1mod p; (by =1 mod p,). Then
by Example 2.3, X = L(p;, q1) and Y = L(p,, q.) admit effective T2-actions so that
the orbit spaces X* and Y* are, respectively,

G(1,0)e—e G(a,p;) and G(1,0) e—e G(b, po).

Define a T*-action on X x Y by the product of the TZ-action on X and the
T’ action on Y. Then the orbit space (X x Y)* with respect to the product action
s {weight-preserving) diffeomorphic to the orbit space M* with respect to a
T*-action f, defined by an automorphism B and the original action 8. By Lemma
2.2, M is weakly equivarizntly diffeomorphicto X x Y. (0

In the orbit space M* specified above, the boundary of M* is divide.i into four
arcs by four points y¥, i = 1.2, 3, 4, each of which corresponds to an arbit of type
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'[‘2 By an argnment similar to that used in Example 2.4, we can see that each of
"four arcs in aM* corresponds to L(r,s)xT".

cts effectwely and smoothiy on a ¢-manifold M so that
, er-o of type. T2 is four, and the orbit space M* is a 2-disk, and there
is at !east arw arc m M* carrespondmg 10 8> T'. Then Hy(M, Z) = 0.

Proaf. From the hypothesxs, we may -assume that M™* is as shown below and G|,
G, and Gs generate T2, Hence, G, and G have a trivial intersection.

Thus it follows from Example 2.4 that the arc L* corresponds to L = $>x T2
Cutting along L and attaching D*x T* equivariantly to the boundary of each
piece results in two manifolds M, and M, with the orbit spaces as shown below.

Gg G!

By applying Lemma 2.2 and [5, Lemma 3.1}, we have M;=S°xT' and M, =
L(p)xT*, where L(p) is a five dimensional lens space. Since by Lemma 2.7, an
orbit of type 7" is a generator of m1(L(p)) = Z,, it follows from the Van Kampen
theorem  that m(L(p)—D*>*TH)=m(L(p) and  H(S’xT"H->
Hy(L(p)—(D*x T") is surjective. From the Mayer~Vietoris sequence for (L(p),
D*xT!, L(p)-(D*x T"), we have Ha(L(p)—(D*x T")) = Hy{L(p)) =0.

Let
Ni=M~-D**xTH) =S ~(D**xTYxT'
and
Ny=N, ~(D*xTH=(L{p) -(D*xT' ) x T’

then Ny AN, =(8*x T!) % T! and by the Kiinneth formula we have the following
commutative diagram: .
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H(S X THOH(T) -
v

H(L(p)~(D* X THOHY(T;) ——————» H:()

fx

where f ar.d a are appropriate inclusion maps. Smce f* is surje
From the Mayer-Vietoris sequence for (M, Nl,f: :

o Hy(S? % T —> Hy(S* x D* X Tl)@Hz(Mz (D‘ X 'r'*‘))a HZ(M)

- H\(S*x T} > H(S’x D*x T @ H\(M - (D‘x Tz))-»H (M)

Since a, is surjective, H,(M) is a subgroup of Z®Z and hence it is torsnon frae
If we use rational coefficients in the exact sequence above, we have

0-HM;Q)»Q20-Q®Q-0.
Hencc we have H,(M; Z)=0. O

In [5] we showed that the only possible isotropy groups for T* én’eM? are T°,
T', Z/kZ, and the identity. Furthermore, the boundary cf the orbit space M*
corresponds to the singular orbits and the interior of M* corre sponds to the principal
orbits and the exceptiona! orbits.

In the following we provide a modified version of [5, Theorem 2.1] so that it can
be usable in subsequent arguments.

Lemma 2.7. If T* acts on a 6-manifold M so that the orbit space M* is a closed
2-disk and there exist no exceptional orbits, then the fundamental group of M is a
finite abelian group with at most two generators. :

Proof. If a is an element of (M), then by the Whitney embeddmg theorem.
there is an embedding f: S' -» M which represents a.
Let g : M - M* be the orbit map and P =q '(int M*). Then P is the union oi

principal orbits. By the general position theorem, f is homotopic to an embedding
1
g:8 - P Hence

m(P) = m(D? X T*) =2 7 (M)

is surjective, where j, is a homomorphism induced by the inclusion.

Define A* (T, 1)>(M,x) by A ((t1, t2, t3, ta)) = (t1, 1, £3, £a)-x and let
hy:mi(Ts, 1)—> m1{M, x) be the induced map. Here x is a point in P. Since we
assumed the isotropy groups span T*, there are four circle is otropy groups G, =
G(l 0, 0 ), Gz = G(O 1 0 O), ‘G;;—- G(Qg, [)3, C3, d;z) and (v4-G(t24, ;)4, £as d@)
whose determinant is not zero.
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. __pomt yeM Wlth (T"},mG;, h’(G,)#{y}, we have h,g(Gl) =1 for
} ‘2-:3,;:&;164 chce AR

- men=Z /Kernel j,< z’/m(us) h (&»
‘Vv‘"‘Smce the mrcle groups span T‘ the quotaent group must be ﬂmte E]

en ma2 7 mm Gs and G4 are G(0,0, 1,0) and
L #(Gs)g k# (04)) is tnvxal Thus we have

(nm 5% Under the hypotheszs af Lemma 2. 7 M is szmply connected,
"pummded that there are four circle isotmpy groups whose derermmant is +1.

3. The proof of main theorem

Throughout this section, we assume that the orbit space M™ for a T*-ac:ion on
M?® is a closed 2~d1sk and that therc exist no exceptional orbits. We recall that alt
actions are assumed to be smooth and effective.

By the slice theorem, an invariant tubular nelg*xborhood of an orbit of type T
is D*- -bundle over T*/T?* with the structure group T2, By applying Lemma 2.2,
we can show that this bundle is trivial (that is, D* % T?).

Lemma 3.1. Suppose T", n =4, acts on a manifold M of dimension (n +2) so that
the number of orbits of type T""2 is k. Then we can properly choose an orbit T" (x)
of type ' T2 50 that if M., is obtained from M by equivariantly replacing the invariant
tubular nelghborhood of T" (x) with 8> xD>xT"">, then M. is obtained from an
(7 +2)-manifold M_ with (k —1) orbits of type T" ? by equivariantly replacing two
copies of D* x T2 with two copies of $° x D*x T" >,

Proof. We prove it for k =5 and » =4, but the general case can be proved in the

same way as this case.
We may assume that M™ is as shown below and the four cnrcle 1sctropy groups

G(O: 1) 0 O); G(ah bh Cis 0)’ G(a27 bZ! Cay d2)$ G( 13, b.ﬂ Ci, d3) SPa“ T
G(aI’ bl’CZ’ dZ) G(”h bh Cys 0)
{7(0,1,0,0)
G(ag. bg. (1 d:)

N\

/v 4 Z %
.) X
6(1,0,0,0) )

- Rince G(a;, b:, C1, (})f\G(n 1 0. 9) 1 and G(a:;, 23, €13y d‘g)f’\(t(l 0,0,0)=1,
it follows from [3, Corollary :.3] that ged{ay, ¢4 =1 and ged(bs, ¢3. d3) = 1. Hence
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we can choose relatively prime ﬁntegers pand qsu htha;t _

1 0 p 0\
det g (1) ? (1) =1 er any integer X
00 10

Define a T*-action on $°x T ={(z,, 22, 23, W)“21l+3291+|1.3l«- 1, le 1} by
(a’ﬁ Y»a)x(zhzzgza, W)"’(Zte ;ZZe "§,Z3e 21'55)’

where

ploo“a\
|x o 1 0} (B
- 00

q 1) ly)
/[ \1 0 0 o/ \s

Then the orbit space ($°x T*)/T* is as shown below. |

O ™ A

G‘.:" X! qr l) X
G(,1,0,0)

G(1,0,0,0) ™~ (D XT)*

Glumg <s xT') - (D"x 7"2) and M- (D‘x T? mgetrer along their boundary

7Y N

G(a,, by, ¢c,,0) G(0,1,0,0)

G(azs bz, C2, dz) G(P' X‘ 4 l)

G(a:‘, b3.C3. d:’) G("IO‘ 0) 0)

From the choice of p and ¢, we have

0 a, » O
1 b] .IY O

det =%],
¢ 0 [ q 0
W0 0 1 1

Hence N, =~8"xD?x T'. By equivariantly replacing N; with D*x T2, we obtain
M, whose orbit space is as shown below.
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L Olasbyesid) At~ g, s
‘ ‘ 2)‘ 242,43

G(1,0,0,0) | |
/ G(ah bl! clv 0)

G(p X a1

Next we want to find integers X, Y, Z, U, V, such iliat 4

~as p
bs X
. €3 . q

1

ds

This is the same as finding integers X, Y, Z, U, such that
[bs X Y

detfcs q Z|=1,

bs(qU ~Z) - c3(XU - Y)+d5(XZ —qY) =1,
(63— €3 XU +(d:sX —b3)Z +(c3~dsq) Y =1,

If d3=0, then ged(bs, ¢3, d3) =1 makes it possible to select Y and Z such that
~b3Z +¢3Y =1. Thus these choices for Y and Z and U =0 yield the desired
determinant. Hence we assume ds#0.

Let gcd(bs, da) = d, then —b3+d3X d(—b3 +d3X) where ged(b3, d3) =1. Since
ged(ds, ¢3, d3) = 1, ¢3—d3q and d have no common factors. By applying the Chinese
Remainder Theorem as we did in [$, Section 5], we can choose an integer X so
that X is greater than any given integer and no factor of c3—daq is a divisor of
—'ba +d 3X

Hence ¢3—dsq and b3+d3X are relatively prime for some integer X. So we
choose integers Xo, Yo, Z,, Uy, and V=1 so that the determinant i is 1.

Equivariantly replacing N-, which is homeomorphic to §*x D*x T by the choice
of integer X, with D*x T?, ‘ve have a 6-manifold M. with the orbit space M* as
shown below.

Glaz, b,, ¢y, d>) Glay, by, cy,0)

G(ﬂ;, biv CSs dj) G(P; X1 q; 1) D
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Remark 3.2. (1) The integer X can be chosen so that m;(M.) is finite. In fact, we.
~Aan 3°sume

JO ay ay Qs
det 1 b, by by £0,

0 cy €3 (3
\0 0 d, d,
in the proof of Lemma 3.1. Hence
{01 ax das
deticy c2 c3|=Kp#0.
\0 d d,

The determinant of G(p,X,q,1), G(ay, b1, ¢1,0), G(az bz, c2,d2) and
Glas, bs, c3, d3) is ~XKo+ L, for some integer Lo. Hence ——X¥o+Lo is not zero
for a sufficiently large number X. This implies 7 (M_) is finite. -

(2 ) Lemma 3.1 implies that an equivariant replacement of D*x T? with §° x 92
T' can be chosen properly so that the replacement produces three arcs in the orbit
space which correspond to §°x T,

(3) The following are schematic interpretations of what we shali ap;, 'y Lemma 3.1
to in the subsequent arguments.

. G;
°o ® Gz
G,. G(Ps« Xl 9. 1)
G, _
M*: G, G{1,0, 0 0), G:=G(0,1,0,0), G3=Glay b, cr,d)..., Ca=

G(a,, 2y bn-2, Cn-2, ds-2). det(G3, Gs, G, G;) # 0, and the number of orblts of type
T isn, n=

M’ : The number of orbits of type T2 is n +1. By Lemma 3.1, we can choose
an integer A S0 that
(i) det(¢5, G5, G, G))#0, G =G(p, X, q. 1),
(it) G, > (",XG"‘"T1
(iiiy L=~8'xT",
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M o : The number of orbits of type ‘T2 is n. There is a circle isotropy group Gy
‘such that clet(Gk, G, G, G(p, X, 1q, 1)) # 0 (Proof: We can choose an automorpbism
a whxch maps G,, G, ani G(p,X 9,1) to G(1,0,0,9), G(0,1,0,0) and
G(0,0,1,0), tespectwely Supnose for each G, det(Gy, G1, G, G;)=0. Then the
V‘fourth component of a((z,) is 0 for each i. This is a contradiction, smce the isotropy
gxonps,panT‘) Pk S el f :

(Mo)* Here G s the image: of G; under an automoxphnsm ﬂ of T* that. maps
Gk , and Gk to Gh_ 1-- G(l 0 0, 0) and Gk-«G(O 1,0,0), respectxvely Since
det(Gy, G, G, G’ )#0, we can choose integers p’, q', X', so that
det(G(p'. X', ¢, 1), G.. G}, G') =0 (by using an argument similar to that used in
(1) of the remark).

TN < 4
G, ,
k-2 L* G‘
G (Mo)* G
G‘c+l

(Mo)¥: The number of orbits of type T2 is n. det(G”, G, G, G') # 0 and hence
m1((Mo)o) is finite cyclic. Here G"=G(p', X', q', 1).

(My)*: The number of orbits of type T? is n - 1. Since det(G", G, G}, G') #0
and L=S8*x T, = ((My)-) is finiie cyclic.

Note that all of these manifolds can be constructed so that the isotropy groups
span T* and except for M, the fundamental groups are generatcd by at most one
generator of finite order, which means that one of the two generators is irivial.

Lemma 3.3. Let M be a 6-manifold with a T*-action and k be the number of orbits
of type T* Suppose (M) is a finite cyclic group (ihat is, it hav at wost one generator)
and M, is obtained from M by equwanantly replacmg D*x T2, an invariant tubular
neighborhood of an orbit of type T?, with §>x D* < T". Then Hy(My)=Z""" if and
only if Hy(M)=Z".

Proof. Let V, = D*x T? be an invariant tubular neighborhood of an orbit through
yeEM,Va=8xD*xT' andU =M ~(D*xT?).Then V,nU =8$’x T, UL Vi =
Mand Uu Vz“—’-Ml.

Let j1:8°%xT?> V; and jp: 8% x 7 25 U be inclusions. The mduced maps Hi(j1)
and H,(/,) are injective.

By the Mayer-Vietoris sequence of U and V), we have

HoU A V) —— H( U@ HHV)) > Hy(M) >

> Hy(ViA D) —— H(U)®H\( V1) > Z,



Here a =(ja2u ~m)zandﬁ b ~fade |
Since (a1 =Hi{ji) and ( ;1*)251‘{;(1;) nre mjectwe, « and ﬁ are m;eetwe :
Hence we have a short exact sequence fs A :

O»Hz(ss X T’)-’Hz(U)GBZ-»Hz(M)-»0.""; i it o8

and T2 ={(x, y)l0<x.y<1} .
Let f=j,|T' x1, g = jo|1 X T" be the restn”'

by the Kiinneth formula, we have a commutatlve diagram | o
H(TH®H(T") —=— H(T‘ |
f+® 8x (Fxgh

H\(U)®H(U) —— Hz(UXU)

We may assume that the isotropy group of T! at y 1s G(l 0 0 0)x G(0.1,0,0).
Let x be a point in the union of principal orbits. Then by ‘Lemma 2.7,

h%(G(0,0,1,0)) and h%(G(0,0,0, 1)) are the generators of m(M). Since T'x 1
and 1% T" are homotopic to h*(G(0, 0, 1, 0)) and h*(G(0, 0, 0, 1)), respectively, it
follows from the hypothesis that 7' x 1 or 1 x T is homotopically trivial. By the
Van Kampen Theorem, a homomorphism 7, (U) » 71 (M), induced by the inclusion,
is an isomorphism. Thus we have (f X g),(£) =0, where £ is a generator of Hy(T?).
The left half of the following diagram is homotopy commutatlve by a homotopy
defined by

H(x, y. 1) =jax, t+ (1 =t)y) X jalt + (1 = )x, y).

TxT—.'{.f_g._.)UxU—_.P-r-o.l._;U

h.c.

where 4 is the diagonal map. Since dyj2,(£) =L, and 4, is injective, ja,.(£)=0.
Hence o

Hy(T?x §%) 2% g1

is triviai. Thus we have Hy(U)= H,(M) from the short sequence above.
From the Mayer-Vietoris sequence for (M, U, V), we have

> Ho U A Vy) = Hy(U)YD Hai Va)-> Hy(My) ~

> Hy(U A Vi) —— Hy(U)@H\(V3) > Z,.
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kHlenoe H;(M ) “Z@HQ(U ) l==tZ@I-Iz(M ) So Hz(M )= Z" xf and only xt Hz(Ml) =
" o e

Lemma 3.4. Suppose T* acts on a 6-manifold M so that the number of orbits of

type T? is k, and m,(M) is generated by at most one generator of finite crder. Then
H,(M)=~Z*"*,

Proot. If k =4, thén M* is as shown below.

G(‘l' bh C19 0) G(o) 1 ’ 0, 0)

(D*x TY*

G(1,9,0,0
G‘az, bb €2 dz) ( )

The determinant of isotropy groups was assumed to be non-zero.

By applying Lemma 3.1, we can select integers g, X, ¢, so that an equivariant
replacement of D*x T? with §>xD?*x T' produces M, with the orbit spacc M7
as shown below.

G(0,1,0,0)

G(al! bh Chy 0)

( 3xD2x Tl)*
w
G(1,0,0,0)

Replacing N with D* x T? equivariantly results in M; with M3 as shown below.

G(ﬁz‘ ba- Cz, d!)

G(ah bh C1» 0)

Gip, X,q,1)

S3 X TZ)*

Glay, by, c2,d2) 3% T!)*
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Since the determinant of G(1,0,0,0), G(0,1,0,0
G(aa, by, c2,a;) is not zero, the determmant of G(p G,
G(ay, by, c1, 0) and G(aa, b-, ¢2, d3) is also non.zro for a sufﬁ-‘ently large X. Hence
mi(M>) is finite.

By Lemma 2.6, 've have Hz(Mz) 0. It foilows from Lemma 3.3 that H«(Ma) = l
and H(M) =0.
Suppose the Lemmaz is true for k <n, and M has n orbxts of type T"

'G.‘ = G(a;, bi, C;y d,)

We may assume G, = G(1, 0,0, 0), G, = G(0, 1, 0, 0), Gs = G(a,, b, ¢1, 0) and the
determinant of G2, G, G;, Gy is not zero for some i, j, and k.
By Lemma 3.1, we have a 6-manifold M’, with M as shown below.

G,

— (&< Ty
G(p’ Xi q, 1’)

M, obtained from M. by equivariantly replacing N, with D*x T2 hes a finite
fundamental group generated by at most one generator. In fact, M§ has one arc
L* ccrresponding to $*x T' and hence G(p, X, q, 1), G2, and G, represent three
generators out of four of ,(T*) = Z°. On the other hand, all of these three circie
groups are mapped to 1 by the hemomor« rmm h % defined in Lemma 2.7, It follows
from Lemma 2.7 that 7,(Mo) = Z*/(h%) (1) has only one generator.

'/;‘\ G,
G,
/ N[?; Lt GZ

C=0(p. X, q,})
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Wecan assumedat(G Gi, G, G)#0,80d Gy = G(1,0,0,0),G; =
and 80 ofi. Bv armlvmz Lemma 3.1, we have T*-manifolds gf dimen
(Mn).. such that the orbit space (! M) ¥ is shown below.

nliadiad = NSRS bt

23 25 . z 5

s D Jo. T
\ , (s3x Tl)ﬁ
Gu-xUG

seps?®

By the choice of X, m1((Mb)-) is generatec by at most one generator of finite order.

By the mducuon hypothesis, H;((Mo) )=:Z""°. By Lemma 3.3, Ho(Mo),)=2Z""*
and hence Hz(Mo) 2"*. By applying Lemma 3.3 again to Mo, M., and M, we
have HJ(M;) Z"“3 and Hy(M)=2""*, ]

Ly ) PO | s na ante ommnnthl s A affortinaly nm o cimnly sommnontsd
ANCVITHR  JeaTs 4, 3¢ X CLEY JITIVUIIEL ) WItG Tl avtry Uit U oy cuninciicu
£ cormundfnld AL on shnt than s2sisnehos Anf nshite Af tumoa T~ ‘o i Thosw wo hase
U""l“"‘]u‘“ AVE U UL ITIT TeRTIIUTT U UtV ) s ypc A YN ARCTE VWO TTRUS

Proof. By the Poincaré duality, H,(M)= H>(M) = 0. By the universal coefficient
theorem, HS(M) =Hom(H(M), Z)DExt(Hs(M), Z). lHence H,(M) is torsion-free.
The torsion of HS{M) is Ext(H,(M), Z) aad H>(M) is free by Lemma 3.4. Hence

H*(M) = H3(M) is also torsion-free.

TEANTTE g it R

Suppose T = Gla, b, ¢, d) is a circle sut.gcoup of T* which is different from any
circle isotropy groups. Then the action restricted to T does not have any fixed
point. Hence x(M) = x(F(T, M))=0

Lemma 3.8. Supnose M is a 6-manifold with an cffective T *_action and = (M) is
generated by at most one generator of finite order. Then the first Pontriagin class,
p1(M), is zero.

Proof. Let k be the number of orbits of type T” in M. Then k = and if k =4,
then H;{M) =0 by Lemma 3.4. Heace p,(M)=0.

Suppose the lemma is true for some k>4, and T * acts on M spoothly and
effectively so that the number of orbits of type T Zisk+1.



Applying Lemma 3 1, we obtam T‘-mamfalds M-« ‘
as shown below. : ; ,

G(p. X, q. 1)
(83‘)( nﬁml)*

Gkﬂ

By Remark 3.2, we can choose an integer X so that r.(M+) and m(Mo) are
generated by at most one generator of finite order, respect wely ‘

Applying Lemma 3.1, as we ¢ in the proof of Lemma 3.4, we have T‘-mamfoids'
of dimension 6, (Mp). and (Mpy)- such that m((Mo) ) is generated by at most one
generator of finite order, and (Mp). is ebtamed from (Mo)u by equwanantly
replacing two copies of (D* » T*) with two copies of (S*xD*xTY.

By the induction hypothesis, p,((Mo) )=0. By Lemma34, H{(M,).),
H,((My).), H:(My), Hy(M.,), and H>(M ) are all torsion free. So the tlm’d homology
groups of these manifolds are torsion-free.

Hence the firsi Pontrjagin class p, can be regarded as a homomorphlsm
p1(M):HiM)-£.

Since p1((Mo)-) and pi(S°xS") are zero, py-ii, and pyoiz. are zero in the
following diagram:

Ho(S*X D* X T') — s Hy(Mo)o) ——2— Ha((Mg)_—(D*XT?)

\ /»
p.(s’x\ b pr((Mo).)
y4 -~

From the Mayer-Vietoris sequence of (§* x T')—(D* x T?) and (Mo).— (D*x T?),
H3(3(8* x D* x TY)» Hy(§* x D* x T Y@ H3((Mo)- - (D*x T?))

is injective. Hence
Hy(S*x D> x THY® Hy((My)- — (D* X T?)) — Ha((IMo)o) = 0.

Since o =iy, + iy, for all y € Hy((Mo)o),
prllMp)oity) = Piolitg +ig ) (V14 V)
= pi(8° X T (1) + prl(Mo)-)(F2) = 0.
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| By applymg this trick and by using the naturality cf Pontrjagin class, we have
m(M )=0. O

Lemma3.7. IfMisa 6- mamfold svpporting an effective ™ -acuan such that m (M)
is generated by at most one generator of finite order, then the trilinear form

Py H’(M)tz(M)xH‘(M >Z
is zerq.

Pidof. Since p(x), x2, ¥3) =0 if one o’ x; is a torsion eiement, it is sufficient to
prove for rational coefficie*

If the number cf orbits of type T~ is k =4, then H*(M;Z)=2, aad hence
H*(M;Q)=0.So u=0.

Suppose the lemma is true for some k =4 and M has (k +1) orbits of type T2
By applying Lemma 3.1, we have T*-manifolds of dimensicn 6, M., Moy, (My).,
(Mo)o, (Mo)- such that the fundamental groups of all these manifolds are generated
by at most one generator of finite order.

Let

=D4XT2, V2=S3XD2)<T1,
U = (My)-~(D*x T?), (Mo)o=U v V.

In the proof of Lemma 3.3, the inclusion i: U NV, = $*x T?- U induces a trivial
homomorphlsm i H{UAVy3;Q>Hy(U;Q) and hence H*(U;Q)-
H*(U n V3; Q) is trivial.

Thus the composition of inclusions j: U V,-> {J - U u V,= (M), induces a
trivial homomorphism j*: H3(U U V,; Q)» HX(U N v 2; Q).

By the Mayer-Vietoris sequence for U and V,, we have

0 —sH'((Mo)o; Q) — HY(U; Q)@H(V,; Q) = H' (U N V,; Q)
b q i &
¢ 0 Q 0BQ

—2 H3((Mg)o; Q) —— HX(U; Q)@ H3(V,; @)— 0.

R
0

Hence we get a short 2xact sequence
0- image 8* =kernel k* > H3(U u V) » H*(U) 0.
i
Q

So HY (U w Vy) = HX(U)+kernel k* ={a)+ - - +{ax-s) +{B) where a; and B are
basis of the vector space H(U u Vs; Q). o



Hence bmmﬁ.. &, tn) :0. So unn=0

i
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1
o
i
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4
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3
[
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[}
¢
-«
{

y appl ing the ahow dmrzram (_i the_e short e
ave ugo=0. For a similar reaso this fact imnhi

hav reason this fact im --Smaﬂandheacgun) O
Ll | of Ladas ~
Proof of Theorem 1.1. With the results of Theorem 3.5, Lemma3.6 and
Lemma 3.7, Wall [8] and Junn’s [2] classification theorems can be annlied to
LY. Sess WWPpP U &) WIRRUUIGIWRANUI MUEWWE WAEY WA VW W AIW W B
complete this proof.
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