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We describe the general structure of duality transformations for a very broad set of abelian 
statistical and field theoretic systems. This includes theories with many different types of fields and 
a large variety of kinds of interactions including, but not limited to nearest neighbor, next nearest 
neighbor, multi-spin interactions, etc. We find that the dual form of a theory does not depend 
directly on the dimensionality of the theory, but rather on the number of fields and number of 
different kinds of interactions. The dual forms we find have a generalized gauge symmetry and 
possess the usual property of having a temperature (or coupling constant) which is inverted from 
that of the original theory. Our results reduce to the well-known results in those particular cases 
that have heretofore been studied. Our procedure also suggests variations capable of generating 
other forms of the dual theory which may be useful in various specific cases. 

1. Introduction 

Dual i ty  t r ans fo rmat ions  have been very helpful  in e lucidat ing  the proper t ies  of a 

large n u m b e r  of  s ta t is t ical  and  field theoret ic  systems [ 1]. These (exact)  t rans forma-  

t ions m a p  the high (low) t empera tu re  region of  a theory  into  the low (high) 

t empera tu re  region of  another ,  dual  theory*.  The  dual  theory  is expressed in terms 

of  dual  or  d i so rde r  variables.  P roper ly  def ined expec ta t ion  values and  corre la t ion  

funct ions  of  these d i sorder  var iables  measure  the d i sorder  of the or iginal  theory  (or 

the o rder  of  the dua l  theory)  in the same way that  funct ions  of the or iginal  var iables  

const i tu te  measures  of  the o rder  of  the theory.  In te l l igent  and  jud ic ious  use of  the 

dual  form of  a theory  can reveal  much  abou t  the na ture  of  its high and low 

t empera tu re  regions and  its phase  s t ructure  and  can p rov ide  much in fo rmat ion  that  

is in t r ins ica l ly  non-per tu rba t ive .  

lvtost of  the  theories  that  have been s tudied with the a id  of dual i ty  t rans forma-  

t ions are of  the usual  type  of  abe l ian  spin or gauge theories.  F o r  instance,  for a 

scalar  field the kinet ic  energy terms (in the field theoret ic  sense) involve the usual  

laplacian.  I f  gauge fields are involved the kinet ic  energy has  the usual  field s t rength 

* In the body of the paper we will usually use the nomenclature appropriate to statistical mechanics. 
The field theorist should replace "hamiltonian" by "lagrangian", "space dimensions" by "space-time 
dimensions", and "high (low) temperature" by "strong (weak) coupling". 
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form or some straightforward generalization thereof, such as the Wilson action [2]. 
However, there are large numbers of abelian theories of statistical (and perhaps field 
theoretic) interest that are somewhat more complicated and do not fall into the 
above categories. Statistical theories with next nearest neighbor as well as nearest 
neighbor interactions, or field theories with propagators which have behavior other 
than the usual k -  2 are examples of such systems. It is the purpose of this paper to 
generalize the formalism of duality transformations to include these other theories. 

Actually, the generalization is quite straightforward, but the mathematical struc- 
ture that emerges is cute and there are some important lessons to be learned from 
the investigation. In our more general case we find that duality transformations still 
map high to low temperature regions, and vice versa. On the other hand, we learn 
that the form of the dual theory does not depend on the number of space (or, for a 
field theory space-time) dimensions. Rather, the form of the dual theory depends 
only on the number of independent fields and the number of different kinds of 
interactions in the original Hamilton. (This latter concept will be made more precise 
in the next section.) In most standard theories heretofore studied, the number of 
different kinds of interactions (for instance, the number of terms in a kinetic energy 
laplacian) was a simple function of the dimension and led to the understanding that 
the form of a dual theory depended on dimension. (For example, a spin theory is 
dual to a spin theory in two dimensions and dual to a gauge theory in three 
dimensions.) In the more general theories discussed in this paper this is not 
necessarily the case, and the form of the dual theory is not a direct function of 
dimension. (For instance, ref. [3] discusses a three-dimensional self-dual scalar 
theory in some detail.) 

To arrive at the dual form of a general abelian theory we must solve a set of rn 
linear homogenous equations in n unknowns with n/> m, where n is the number of 
kinds of interactions and m is the number of independent fields in the original 
hamiltonian. The solution is expressed in terms of n - m  independent functions 
which become the dual fields. Since the equations are linear and homogeneous there 
is a good deal of freedom in the form of the solution which one is allowed to choose. 
Our solutions are normalized in such a way that the dual form of the hamiltonian 
contains no explicit inverses of the operators which appear in the original hamilto- 
nian. Thus, if the original hamiltonian contains only short-range interactions, then 
so does the dual hamiltonian. Furthermore, for n - r n  1> 2, the solutions to the 
equations cry out for the addition of certain dependent fields to render the solutions 
symmetric and aesthetic. The dual form of the theory then has the form of a 
generalized gauge theory with a local gauge symmetry. When we apply our for- 
malism to the standard theories studied previously we recover the usual results. 

Because of the very general nature of our results, much of the paper is, unfor- 
tunately, rather formal. At first sight the formalism appears somewhat complex. 
However, it really has quite a simple structure. Moreover, in specific problems the 
results usually simplify considerably and the content and usefulness of the procedure 



R. Savit / Duality transformations 235 

becomes more transparent. In the paper we briefly describe a couple such examples. 
Another specific application of our results can be found in ref. [3]. 

The rest of the paper is organized as follows: Sect. 2 first describes the general 
class of theories we shall consider and outlines the strategy for carrying out the 
duality transformations. After a brief discussion of some simple examples, the 
general solution of the linear equations needed to complete the duality transforma- 
tion is presented. A discussion of the gauge invariance of the solutions follows and 
the section concludes with a brief mathematical digression. Sect. 3 addresses the 
problem of the geometric interpretation of the dual theory. Unlike in the more 
garden variety theories, in the general case this interpretation is not always so 
straightforward. Sect. 4 contains comments and a summary of our results. 

2. General structure of the dual form 

2.1. STRATEGY AND DEFINITION OF THE THEORIES 

Consider a statistical system described by a hamiltonian of the form 

i=1 j = l  
(2.1) 

That  is, there are n different kinds of potentials in the hamiltonian each one of 
which is a function of a linear combination of a set of m different fields, (~}. These 
fields may be, for example, scalar fields, vector or tensor fields with various 
directional indices or some combination thereof. The sum over x represents a sum 
over d-dimensional (euclidean) space (or space-time). The/~{ are a set of operators 
acting on the e s .  As will become clear later, the R ' s  should commute, certain 
combinations of them should be invertible, and they should also satisfy a certain 
"integration by parts" criterion. We have in mind that the R-'s are short-range 
derivative-like or difference operators. However, this may not be necessary and 
many of our results should, in principle, generalize to systems with explicit long-range 
interactions. 

The partition function for the system (2.1) is 

Z = ~ e - / ~ .  (2.2) 

We assume that our system is abehan. There are well-known difficulties in applying 
duality transformations to most non-abelian theories, and these difficulties will be 
present also in non-abelian versions of the cases we wish to discuss. 

Two comments should be made about the set of fields {~). First, their measure 
depends on the symmetry of the theory. For abelian theories they may be either 
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discrete or continuous fields in ( -  oo, oo) or angles. We will discuss this point further 
in a moment. Second, the set of fields, {¢}, for our purposes does not include the 
auxiliary fields which are sometimes introduced into a theory to enforce a certain 
symmetry. An example of these auxiliary fields are the link variables which appear 
in the Villain approximation to the x-y model [4]. Any auxiliary fields of this type 
can be taken into account by modifying (2.1) and (2.2) to read 

- - ~ =  ~X Vi RJqJj(x) -~- t i , 
i = 1  j 1 

(2.1a) 

Z = ~ ~ e -a%, (2.2a) 
(t} {~) 

where the measure of the t~'s depends on the symmetry of the theory. From the point 
of view of duality transformations, these auxiliary fields have the effect of modifying 
the measure of the dual variables. They do not affect the form of the dual 
hamiltonian which is our main concern in this paper. Therefore, in what follows we 
shall not explicitly include them. For some specific examples of the effect of these 
auxiliary fields, the reader should consult refs. [1, 3, 4]. 

To derive the dual form of (2.2) we introduce a Fourier conjugate variable, li(x ) 
for each term in the hamiltonian (2.1) and write 

n _1I - {l} {,} ~ i exp (2.3) 

where 

eVi~ s) oc ~ e~(O+m, (2.4) 
1 

and C denotes a collection of field-independent factors which are irrelevant for our 
purposes. The measure of the l i is determined by the symmetry of the V~'s in the 
usual way for Fourier transforms. Typically the l 's  will be continuous or discrete 
valued in ( - oo, oo) or will be continuous or discrete value angles. 

We now integrate by parts the last terms in (2.3). We assume that the /~{ are 
operators such that 

£ ~ ~ liRT~Jj = £ ~ ~j ~ RJili . ( 2 . 5 )  
x i = 1  j = l  x j = l  i = l  

The R's will usually be simply related to the/~'s,  such as differing from them by a 
sign (as would be the case for a simple difference.) But more complex relationships 
are also allowed. For instance, if A x is a difference operator and if/~{ = aA~ + flax, 
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then R{ = aA 2 -- flA x. In writing (2.5) we have assumed certain boundary conditions 
such that no surface terms appear. The specific nature of the necessary boundary 
conditions depends on the set of operators, R. The general solutions to (2.7) which 
we shall present below also imply certain conditions on the behavior of the l~'s at 
infinity, and our choice of boundary condition should also be consistent with this 
behavior. A specific simple example is discussed near the end of sect. 3. (See also 
refs. [3, 1] and references therein for more examples.) 

Having found a set {R~} satisfying (2.5), we rewrite (2.3) as 

Z=C~ ~ e x p  ~(l~) f i  ~ exp iepj(x) ~ R{l i 
{1) i 1 j =  1 d~i(x) [ i= l 

=C~exp[~ ~ Vii(li)]O fiS[ ~R{li] 
(1) t x i=l i=~ 

(2.6) 

where the delta functions in (2.6) are the ones appropriate to the group structure of 
the theory. For instance, if the V's  were periodic functions of continuous valued 
angles, ~, then the l ' s  would be integers and the delta functions would be Kronecker 
delta functions. Clearly, in this example it would also be advantageous [for simplic- 
ity in (2.6)] if the operators R~ ~ were such that the linear combination Y~iR~l~ were 
also integer valued. Such things can usually be arranged. 

We now want to find a representation for the l~ in terms of another set of variables 
which automatically satisfies the delta functions in (2.6). In what follows we will 
consider the case in which l ' s  can range continuously in ( - o o , o o )  and the delta 
functions in (2.6) are ordinary Dirac delta functions. In most other abelian cases in 
which the li 's have a different measure the form of the solution to (2.7) which we 
shall present should also be applicable. (See, for example, ref. [3].) However, 
depending on the R{'s this may not always be the case, and modifications may be 
necessary in particular cases. 

With this caveat in mind, we seek a solution of the set of linear homogenous 
equations 

Rill=O, j= 1 ..... m, ( r e < n ) .  (2.7) 
i=1 

Since we have m constraints and n unknowns, we expect that the solution will be 
expressible in terms of n - m arbitrary independent fields. (From our point of view, 
the case n = m is trivial; (2.2) then contains no dynamics.) Furthermore, because the 
equations are homogeneous we may multiply any solution by a uniform factor to 
obtain another solution. Now, we shall often be faced with a system in which the R ' s  
are short range, and so, to avoid explicit long-range interactions in the dual theory, 
we shall seek a solution in which the l ' s  are expressed in a form which contains no 
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factors of  inverses of the R 's .  Finally, the solutions we find will, when n - m > 1, 
have various kinds of gauge symmetries .  For  example,  when n = rn + 2 our solution 
will be expressed in terms of a th ree-component  ' "vec tor"  field with a local gauge 
symmet ry  so that  there are only two independent  degrees of  freedom. 

Our  procedure  for solving (2.7) is as follows: We use the equat ion with j = k to 
el iminate I k in the remaining equat ions starting with k = 1 and proceeding sequen- 
tially to k = m -  1. We then solve the remaining one equat ion in n - m  + 1 un- 
knowns  by  regarding it as a kind of generalized divergenceless condit ion and 
expressing ( l , ,  l ,_  1 . . . . .  lm) as a generalized curl. This solution is subst i tuted in the 
other  equations and a solution for l~, l 2 . . . .  l m 1 is obtained.  

2,2. S O M E  S I M P L E  E X A M P L E S  

Before writing down the general solution, it may  be useful to present  a couple of 
s imple examples.  Suppose first that  n = 2, m = 1. Then we have 

R~ll, + R1212 = O. (2.8) 

Assuming the appropr ia te  boundary  conditions, that  (Rt~)-1 exists, and that  the R ' s  
commute ,  we have 

l, = -- (R l l ) - IRIz l z  = R~[ - -  (Rll) 112] = Rt2 A ,  

l 2 - - -R l lA .  (2.9) 

A lightning review of the steps leading to (2.6) indicates that  in this case the theory 
has a self-dual character  in that  the original hamil tonian  was a funct ion of 
(Rt¢~, R~q,), while the dual hamil tonian  is a function of (R~2 A, RigA). Note  that  this 
feature is absolutely independent  of  the number  of spatial  dimensions but  depends  
only on the fact that  the original hamil tonian has two terms involving one field. 

As a second example,  consider the case n = 4, m = 2. If  (RI1) 1 exists, we can use 
t h e j  = 1 equat ion to eliminate It in t h e j  = 2 equat ion and we have 

4 

, 2 _  (2.10) Rl i l  i -- O, 
i = 2  

where R ~  = R~R~ - RTR ~. Assuming appropr ia te  behavior  at infinity, (2.10)is then 

solved by 

1 h i 2 *  li= --~eijkl~ljak, i , j , k = 2 , 3 , 4 ,  (2.1 la)  

where e234 z q- 1 and changes sign under  an interchange of the indices. This is easily 
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recognized as a generalization of the usual expression for a gauge theory field 
12 playing strength tensor in three dimensions in terms of the vector potential with Rlj 

the role of the covariant derivative. Finally, using (2.11 a) and the j = 1 equation we 
find 

I - n 1 2 , d  l I ~ - -~ l f i j k lX i jA lk ,  i , j , k = 2 , 3 , 4 .  (2.1 lb) 

(2.1 la) and (2.1 lb) can be combined into a more symmetric form which can also be 
generalized to arbitrary m and n. Before discussing that, however, we point out that 
the solutions (2.11) are invariant under a gauge transformation on the A i, namely 

12 ( 2 . 1 2 1  Ai ~ Ai + R]iA, 

where A is an arbitrary scalar function. For later purposes it is important to note 
that we may also define a fourth component  of A i, A 1 which we will take to be zero. 
Then, A] remains zero under the transformation (2.12) since R]] 2 = 0. 

2.3. G E N E R A L  S O L U T I O N  TO T H E  C O N S T R A I N T  E Q U A T I O N S  

We proceed now to describe a general (gauge invariant) solution to the set of 
equations (2.7). This section contains no proofs. But, after sufficient rumination it 
should be fairly clear that the form we present does constitute a correct solution. 
First some definitions are in order. We define a sequence of operators with 2 p 
superscripts and subscripts composed of the R~: 

RaB = R a R B  -- R a R  B zj --:'i*'j : ' j : ' i  ' 

R a B v ~  = l ? a B D ~ ' 6  _ _  D a B D v ~  
i j k l  - -  * ' i j  *~kl a ' k l X ~ i j ,  

RaBYrt4~oo = l~?aBvsl~t4~oo _ l~aB'/8 R e ~ p o  
i j k l m n o p  *~ i j k l  L~mnop . . m n o p . . i j k l  , etc .  (2.13) 

Next we define a sequence of 2 e integers, which we shall call the "standard 
sequence", as follows: The standard sequence of 2 p integers is generated from the 
standard sequence with 2 v I integers by first listing the sequence with 2 e -  ~ integers, 
then repeating the list adding one to the final integer. The standard sequence with 
P = 0 is 1. The first few standard sequences are 

1 
12 
12 13 
12 13 12 14 
12 13 12 14 12 13 12 15 
etc. (2.14 t 

Finally, the R whose 2 e superscripts appear in the standard sequence will be defined 
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as S. For  example,  

- -  1 ~ 12 ~, - - / ; 7 1 2 1 3  S ~ -  R~, Sij R q ,  ~ , j k l - - " q k l ,  

S _ ~ 1 2 1 3 1 2 1 4  ijklmnop--''ijklmnop, etc. (2.15) 

An impor tan t  p roper ty  of the S ' s  (and the R ' s )  which can easily be  gleaned f rom 
(2.13) is the following. Part i t ion the 2 e subscripts into groups of 2 p - l ,  2 p -  2 . . . . .  2. An 
example  for the case of  16 subscripts is shown in fig. 1. S is an t i symmetr ic  under  the 
interchange of any pair  of  2 k-  1 consecutive strings of  indices which are enclosed in 
the same box of length 2 k. So for example,  S,,...~16 --' - S~,...,,6 under  the interchange of 

i 5 ,--, i 6 o r  ( i 9 i l 0 )  ~ (illi12), o r  ( i l i 2 i 3 i 4 )  ~ ( i 5 i 6 i 7 i 8 )  , but  not  under  the interchange of 

i 6 ~ i 7 or (illi12) ~--~ (i13il4). 
We are now in a posit ion to present  the general solution. First consider the case 

m = n - 1. The  solution can be writ ten 

li 2-~,-2)~, 3)/2 y, P . (2.16) = ( -  1) Soti.,)A, i = 1 . . . .  n, 
perms 

where o(i, n) is a set of 2 n - 2  subscripts and A is an arbi t rary  funct ion (which plays 
the role of a scalar field). The first factor  in (2.16) is for simple normalizat ion.  The  
sum is over all permuta t ions  of  the 2 n-2 subscripts and P is a pe rmuta t ion  factor. 
The  set o(i, n) m a y  be determined as follows: o(n, n) is just  the set of  integers 
contained in the s tandard sequence of length 2 n-2. The  set o(n  - 1, n)  has the same 
elements as the set o(n ,  n) except that  the integer (n - 1) is replaced by  the integer n. 
a ( n -  2, n) has the same elements as o ( n -  1, n) except that  the integer ( n -  2) is 
replaced by  the integer ( n -  1). In general, o ( n - j ,  n) has the same elements  as 
o ( n - j +  1, n) except that  one of the integers with value ( n - j )  is replaced by  the 

integer (n - j  + 1). For  example,  for n = 5, we have 

o ( 5 , 5 ) - -  ( 1 , 1 , 1 , 1 , 2 , 2 , 3 , 4 } ,  

0(4 ,5)  = ( 1 , 1 , 1 , 1 , 2 , 2 , 3 , 5 ) ,  

o ( 3 , 5 ) - -  ( 1 , 1 , 1 , 1 , 2 , 2 , 4 , 5 ) ,  

o(2,5)---- ( 1 , 1 , 1 , 1 , 2 , 3 , 4 , 5 } ,  

o(1 ,5)  -- ( 1 , 1 , 1 , 2 , 2 , 3 , 4 , 5 ) .  (2.17) 

Fig. 1. An example of 16 subscripts and their partitioning which illustrates the antisymmetry properties 
of the operators, S. [See the discussion following eq. (2.15).] 
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We now must determine the permutation index, P. Consider some definite 
ordering of the elements of o(i ,  n) .  Define a process which takes this sequence of 
integers into the standard sequence of length 2 n-2. If  that process involves an even 
(odd) number  of operations then P - - 0  (1). There are two types of operations 
allowed in the process: (i) Interchange in a box. Two subsequences of length 2 k-  
contained in a box of length 2 k (see e.g. fig. 1) can be interchanged. (ii) Replacement. 
A sequence of length 2 k (wholly contained in a box of length 2 k [including k = 0]) 
which differs from the standard sequence of length 2 k only in its last digit can be 
replaced by the standard sequence of length 2 k. For each value of k this need be 
done at most once. Moreover, one should not produce any intermediate sequences 0, 
such that Sp----0 due to the symmetry discussed following (2.15). 

These rules are harder to express in prose than they turn out to be in practice as 
the following simple example will illustrate. Consider the case n - - 5 ,  i = 2. Using 
(2.16) and (2.17), our rules for determining P, and recalling the symmetry properties 
of the S 's ,  we have 

l 2 = (S12131415 -]- S12141513 -]- S12151314)A. (2.18) 

To show that the sign for, say, the third term in (2.18) is correct consider the 
sequence of operations 

12151314 ~ 12151214 ~ 12131214 (2.19a) 

o r  

12151314 ~ 12151312 ~ 12151213 ~ 12131215 ~ 12131214. (2.19b) 

Both (2.19a) and (2.19b) involve an even number of legal operations so that S12151314 

appears with a plus sign. 
Next consider the case m = n - 2. The solution can be written 

l i =  2 - ( " -3) (" -4) /2  ~ ( -  1 ) P [ S A ] , ( i , , ) .  (2.20) 
perrns 

Here A is a three-component "vector" field, Ate, with/3 = n, n - 1, n - 2. (Alterna- 
tively, we may consider Aa an n-component field with A~ = A 2 . . . . .  A n _  3 = 0 . )  S 
is an operator with 2 n-2 indices, and ~'(i, n) is a set of 2 n-3 + 1 integers. The sum is 
over all possible permutations of these 2 "-3 + 1 integers among the 2 n-3 subscript 
positions of S and the one of A. As ~ before P = 0,1 is a permutation index. The set 
~-(n, n) has as members the members of the set o(n  - 1, n - 1) and, in addition, the 
integer n. As for the case of the o 's, z(n - j ,  n) has the same elements as ~-(n - j  + 1, n) 
except that one of the integers with value ( n - j )  is replaced by the integer 
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(n - - j  + 1). For example, for n = 6, we have 

r(6,6)  = (1 ,1 ,1 ,1 ,2 ,2 ,3 ,4 ,5} ,  

r(5,6)  = {1 ,1 ,1 ,1 ,2 ,2 ,3 ,4 ,6} ,  

r(4,6)  = {1 ,1 ,1 ,1 ,2 ,2 ,3 ,5 ,6} ,  

r(3,6)  = {1 ,1 ,1 ,1 ,2 ,2 ,4 ,5 ,6} ,  

r(2,6)  = {1 ,1 ,1 ,1 ,2 ,3 ,4 ,5 ,6} ,  

r(1,6)  = {1 ,1 ,1 ,2 ,2 ,3 ,4 ,5 ,6} .  (2.21) 

The permutation index, P, for each term is determined by a set of rules only 
slightly more complicated than those used in the previous case (m = n -  1). The 
additional complication arises from the fact that our solution (2.20) is expressed in 
terms of three non-zero fields rather than one as in (2.16). To determine the sign of a 
given term in (2.20) we note the sequence of subscripts associated with the operator 
S in that term. Using rules (i) and (ii) described following eq. (2.17) (with one minor 
change stated below) we alter this sequence until we reach a modified standard 
sequence (MSS). In the case m -- n - 2 there are three MSS's corresponding to the 
three non-zero components of A. To find the MSS corresponding to a given Aj we 
first find an even permutation of the sequence (n - 2, n - 1, n) such t h a t j  is in the 
last position. The MSS corresponding to Aj is then the standard sequence of length 
2 n-3, but with the last digit replaced by the integer immediately to the left o f j  in our 
evenly permuted sequence. So, for example, for n = 6 the MSS corresponding t o  A 4 

is 12131216 whereas the MSS corresponding to A 5 is just the standard sequence. 

For a term in (2.20) involving A j, we determine P by counting the number of legal 
operations necessary to reach this MSS. We must make one change in the rules 
following (2.17) which is the following add i t ion to  rule (ii): When k = n -  3 the 
sequence must be replaced by the relevant MSS (rather than by the standard 
sequence). Moreover, it may be so replaced only if it differs from the MSS only in its 
last digit. If, using rules (i) and (ii) modified with this addition, we have performed 
an even (odd) number of operations to arrive at the MSS then P - - 0  (1) for that 
term. 

It is now simple to state the general solution for arbitrary m < n. It is 

1 (m - -  l ) ( m  - -  2 ) / ' 2  P = 1) [SA],(i . . . .  _,,,). (2.22) li ( n _ m _  1)! 2 -  ~ ( -  
perms 

v ( i , n , n - - m )  is a set of 2"  t + n - - r n - -  1 integers, o(i,n)----v(i,n,1) and "r(i,n)= 
v(i, n,2). v(n, n, n -  m) has as members the integers in the standard sequence of 
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length 2 " - 1  plus the integers m +  1, m + 2  . . . . .  n - 1 .  To obtain v ( n - j , n , n - m )  

from v ( n  - j  + 1, n ,  n - m )  one integer with the value n - j  in v ( n  - j  + 1, n ,  n - m )  

is replaced by n - j  + 1. 
A is a "tensor" field with n - m -  1 indices and is antisymmetric under the 

interchange of any two indices. A is non-zero only if each of its indices,/~, has a 
value n t>/~ i> n - m + 1. To determine P for a given term in (2.22) we first note the 
set of integers which are the subscripts of A for that term. Then we find an even 
permutation of the sequence m, m + 1,... n such that the n - m - 1 integers compris- 
ing the subscripts of the A occupy the right most n - m -  1 positions and are in 
increasing order from left to right. The integer immediately to the left of these 
n - - m -  1 indices (i.e. the one in the second position from the left of the entire 
sequence of n - m  + 1 integers) should be used to replace the last digit in the 
standard sequence of length 2 m-1. This is the MSS for this term. P is determined by 
counting the number of operations necessary to take the indices of S into the MSS 
(as described for eq. (2.20) and adding to it the number of interchanges necessary to 
render the subscripts on A in ascending order from left to right. If  the sum of the 
operations on the subscripts of S and permutations on the subscripts of A is even 
(odd) then P = 0 (1). 

2.4. GAUGE INVARIANCE AND INDEPENDENT DEGREES OF FREEDOM 

The solutions (2.22) can now be inserted into (2.6), the delta functions dropped, 
and the sum over the l i 's replaced by a sum over the fields, A. However, solutions 
(2.22) contain, in general, a gauge symmetry which is a generalization of (2.12). In 
order to faithfully represent (2.6) in terms of the fields A, one should choose a gauge 
before evaluating Z. Since we are dealing with abelian theories, failure to choose a 
gauge will simply result in spurious uniform factors of infinity which will cancel in 
the computation of correlation functions (either of the original variables, or of 
gauge-invariant combinations of the dual variables). Nevertheless, it is interesting to 
expose the gauge symmetry of (2.22). Indeed, choosing a gauge may sometimes lead 
to a simpler or more useful representation of (2.6) than its gauge-invariant form. 

The solutions (2.22) are invariant under the transformation 

perrns 

1 
C =  ( n - m - 2 ) !  +-2-¢" ,)o,-z)/2, (2.23) 

w h e r e  A a l . . . a . . ,  2 is an arbitrary gauge function, antisymmetric under the inter- 
change of any two indices, and non-zero only if each a k has a value n >1 a k >! n - m + 1 

(k = 1 .. . . .  n - m -  2). The set y(m;/~l . . . . .  /~n m - l )  has as elements the integers of 
the standard sequence of length 2 m- 1 except for the final integer (i.e., the integer m) 
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plus the integers/~1 " " " / ~ n - " -  1. The sum is over all permutat ions of  the integers of 3' 
and P changes f rom zero to one or one to zero under  an interchange of  any pair of  
/~'s as well as under  an "interchange in a box" of the 2 " - 1  subscripts of  S [see rule 
(i) following eq. (2.17)]. Note  that the ant isymmetry of  the A ' s  is preserved and that 

any of  the A ' s  with an index not  in the range [n - m + 1, n] remains zero even after 
a gauge transformation.  

After having chosen a gauge we expect that  the number  of  independent  degrees of  
f reedom of the theory, when expressed in terms of  the dual variables, is the same as 

when expressed in terms of  the original variables. Consider, for example, the case 

n = 6 and m - - 3 .  We then expect to have 6 -  3 - - 3  independent  dual functions. 

According to our solution (2.22) the lg's can be expressed as functions of  the 

antisymmetric  A~a with ot, fl = 6,5,4,3. However, we have four gauge functions at 

our  disposal for gauge fixing. The number  of  independent  degrees of freedom 
therefore appears to be 4 × 3 / 2  - 4 = 2. But this is incorrect. The point  is that  there 
are effectively only three independent  gauge functions, not  four. To see this note 
that the gauge transformation associated with a set of  gauge functions {As} is the 

same as the gauge transformation associated with the set {A 8 + $12~8f~ } where ~ is 
an arbitrary function. Therefore, there are really only three independent  gauge 
degrees of freedom so that the number  of  independent  degrees of  f reedom of  the 

theory is 4 × 3 / 2  - 3 = 3, as it should be. The generalization of this observation to 

other  values of m and n is straightforward. 

2.5. M A T H E M A T I C A L  DIGRESSION: SUFFICIENT CONDITIONS FOR THE SOLUTION (2.22) 

Having formally stated a solution (2.22) to (2.7) we now ask for a set of sufficient 

conditions which will assure us that this solution is sensible. To address this question 

we rewrite (2.7) in an inhomogenous  form. Write 

R [ l  i =-- --  T j ,  (2.24) 
i = m + l  

so that 

RJli  = T j ,  j = 1 . . . .  m .  (2.25) 
i=1 

For  the moment  let us regard the T j as given. Then (2.25) is a set of  m equations in 
m unknowns.  For  a given set of  T j it is a straightforward matter to show that (2.25) 
will have a solution if S~1 ,  S~1 ,  S~13 . . . . .  S e  I all exist, where e is the s tandard 

sequence of  length 2".  
N o w  let us suppose that we can write the l i for i -- m + 1 . . . . .  n in the form dictated 

by the solution (2.22). If  we imagine having chosen a gauge, this just  involves writing 

n - m  functions in terms of n - m  other functions. Suppose we choose the gauge 
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which leaves non-zero only those n - m A's  whose subscripts have the largest totals. 

For instance for n = 6, m = 3 the non-zero A's  in this gauge would be A65 , A64 and 
A54 while A63 , A53 and A43 would all be zero. It is then clear that if S e t exists we can 
invert (at least in this gauge) our presumed solution for l i, i = m + 1 . . . . .  n to find the 
required non-zero A's  in terms of l,,+t . . . . .  l n. Hence, if the S~ - t  exist, we can express 
lm+ 1 . . . . .  l n in the form of (2.22). Finally, we can use (2.25) with the sufficient 
conditions listed thereafter to write the remaining li's in the form (2.22). Note that 
this sufficient condition is actually quite flexible since we may label the operators 
{R{} in any convenient order. 

3. Geometric interpretation of the dual form 

The dual form of the usual abelian gauge and spin models heretofore studied had 
a straightforward interpretation, particularly when the theory was defined on a 

simple hypercubic lattice. However, the geometric interpretation in our more general 
case is not so straightforward. This is because the nature of the appropriate dual 
lattice on which the dual variables reside is not obvious. For example, in a theory 
with nearest neighbor and next nearest neighbor interactions the dual lattice should 
be such as to have a lattice element (e.g. on a cubic lattice a site, link, plaquette or 
cube) associated with each interaction term. In general dimensions the connection of 
such a lattice with the original real space lattice is not always simple or elegant. Thus 
each particular case must be addressed separately. 

Nevertheless, a simple example can help to illustrate many of the general features 
which one might expect in a concrete, geometric realization of the dual form. For 
this purpose consider the trivial one-dimensional gaussian model with nearest 
neighbor (nn) and next nearest neighbor (nnn) interactions defined by 

where 

Z= f DOexp[ ~-- ~( R,Os)2- fl( R20,)2], 

RldPi~dPi+l--dPi, R2dPi~dPi+2--dPi. (3.1) 

The model is illustrated in fig. 2. Introducing Fourier variables ll(i ) and 12(i) 
(conjugate to Rlq, i and R2ep i, respectively) and proceeding in the usual way (drop- 
ping overall inessential factors) we have 

z o~ f Dl, Dl2exp ~i ---~-da l, ( i) --~12( 1-[ 3( R,II(j) + R212(j) ) (3.2) 
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q, 

® 

® ® 

Fig. 2. One-dimensional model with nearest neighbor and next nearest neighbor interactions (~)  and its 
dual (A) discussed in sect. 3. 

The solution to the delta function constraints is [see eq. (2.9)] 

l t = R 2 A ,  12= --RtA,  (3.3) 

where A is a continuous scalar field, - ~ < A  < ~ .  Using (3.3) in (3.2) we easily see 
that this theory is self-dual (albeit trivial) so that 

1 1)  (3.4) 
Z ( a , f l ) o c Z  4fl '  4a " 

Since the theory is self-dual we expect that the dual theory can also be interpreted as 

a one-dimensional  gaussian model with nn and nnn interactions. Using (3.3) we can 
try to construct such a geometric structure. In  fig. 2 we show the original lattice (q,) 

and a dual lattice (A). F rom (3.3) we note that l~'s, those associated with nearest 

neighbor interactions on the q~ lattice are to be represented as next nearest neighbor 
differences of  the A field on the dual lattice, and conversely for the l 2,s. We therefore 
need a prescription for associating geometrically an l corresponding to a given 
interaction link of  the ~ lattice with an appropriate  difference of  A fields. Our  
prescription will be as follows: Consider a nearest neighbor link on the lattice ~,. 
Find the site on the lattice A which corresponds to the site on the q~ lattice which is 
at the left end of the ff link in question. Call this dual site L. The l t associated with 
this q~-link is then AL+ 2 - -A  L. N o w  consider a next nearest neighbor link on the q~ 
lattice. Find the site on the dual lattice (A)  which corresponds to the site on the 
lattice which is at the right side of  the nnn link in question. Call this dual (A) site R. 

Then, the l 2 associated with nnn q~ interaction is A R_ t - AR- 
In fig. 2 we have labelled 5 interaction lines in the q~ lattice with circled numbers  

and have labelled the sites of the A lattice. Following the above prescriptions the l ' s  

associated with the labelled links are given by 

IQ)=A  5 - - A  3 , l (~ )=A6- -A4 ,  lQ----A 3 - -A4 ,  

I Q = A  5 - -A6,  lQ~-A4- -A  5. (3.5) 
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Now, if we imagine that the l ' s  represent currents, then the delta functions in (3.2) 

can be interpreted as enforcing a kind of divergenceless condition at each site of the 
lattice. For example, in fig. 2 the delta function enforces the constraint that 

z®-/@ + l®- t® = 0 .  (3.6) 

It  is interesting to see how (3.6) is satisfied in terms of the A's. Using (3.5) we find 
that the divergenceless condition (3.6) corresponds to taking differences of Ai's on 
the dual lattice around a closed path defined by the circuit (the numbers refer to site 
labels) 5 --, 3 --, 4 ~ 6 --, 5. That is, geometrically a condition of divergenceless (of the 
1 's) on the original lattice is expressed by a curlless property of the (single valued) 
A's  on the dual lattice. Such a diverge ,-, curl correspondence is not surprising in 
view of the nature of dual transformations. In other cases a similar divergence ~ curl 
relationship will hold although it may be, geometrically, considerably more complex 
depending on the specific theory. 

Before leaving this example we note that there is another type of closed circuit on 
the dual lattice about which we could have taken differences of A's. Consider for 
instance the path 5--, 3 ~ 4 ~ 5. Using (3.5) this corresponds to the condition 

1 0  + I Q +  l@ = 0. Pursuing our current analogy, this tells us that not only is the l 

current divergenceless at the sites of the ~ lattice but there is also no net l current 
flowing through the lattice. This result is related to the choice of boundary 

conditions, about which we have been cavalier in (3.1)-(3.3). It is clear that we can 
add in (3.3) arbitrary lattice independent constants to the expressions for l I and 12 
and still satisfy the delta functions in (3.2). Eq. (3.3) corresponds to boundary 
conditions in which l 1 and 12 are set equal to zero at, say, the left end of the lattice. 
This can also be accomplished by a suitable choice of boundary conditions on ~ in 
the original lattice. This is an example of the point discussed in sect. 2 concerning 

the importance of fixing boundary conditions for defining the admissible solutions 
of (2.7). In addition to altering somewhat the solutions (3.3), another choice of 
boundary conditions might have resulted in a different net/-current  flowing through 
the lattice, but, of course, this current would still be conserved. 

4. Summary and comments 

In this paper we have derived a dual form for a very wide class of abelian theories 
which includes theories with more general types of interactions (such as nearest 
neighbor plus next nearest neighbor) as well as the more usual kinds of statistical 
and field theoretic models. Under the duality transformation theories are mapped 
into dual theories in such a way that the high (low) temperature regime of the 
original form of the theory maps into the low (high) temperature regime of the dual 
form of the theory. The dual form of the hamiltonian is determined by the number 
of different kinds of terms in the original hamiltonian and the number of different 
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independent fields. In particular, the form of the dual theory does not directly 
depend on the space or space-time dimensionality of the theory. Furthermore, the 
dual forms we have presented in general have a gauge symmetry as discussed in 
subsect. 2.4. 

Because the form of the dual theory depends on finding a solution to a set of 
linear homogeneous equations [see (2.7)], there are actually a variety of functional 
forms possible for the dual theory. Our solution was chosen to satisfy the criterion 
that in the dual hamiltonian there be no inverses of the (differential) operators that 
appear in the original form of the hamiltonian. However, for certain problems it may 
be advantageous to choose a different solution to eqs. (2.7). Even in that case, 
though, the dual form of the theory will retain the usual property of relating high 
(low) temperature regions of the original theory to low (high) temperature regions of 
its dual. 

When duality transformations have been used to discuss ordinary spin and gauge 
theories, it has usually been a simple matter to use the dual theory to obtain the 
form and interactions of the topological excitations of the original degrees of 
freedom of the model. This was generally accomplished by using the Poisson 
summation formula to rewrite the dual theory in a somewhat different form. For the 
members of the very general class of theories which we treat here one can rewrite the 
dual theory using the Poisson summation trick, but in general it is not clear that 
the fields that thereby appear can be interpreted as topological excitations of the 
original theory. This inability to easily identify the topological excitations stems 
largely from the problem of geometrically interpreting the dual hamiltonian, as 
discussed in sect. 3. Indeed, even in the case of a relatively simple theory, such as 
that of ref. [3], it is not obvious how to do this. A better understanding of this 

problem would certainly be helpful. 
The techniques and results presented in this paper should be a useful tool for 

studying many theories of statistical and field theoretic interest. As with any tool, 
the more skillful the user the better will be the result. 

The work in this paper was motivated in large part by a very pleasant and fruitful 
collaboration on a related subject with D. Amit, S. Elitzur, and E. Rabinovici. I 
thank them for their stimulating and helpful remarks. I also thank them and the 
Hebrew University for the warm hospitality extended to me while part  of this work 
was being done. This work was supported by the United States-Israel Binational 
Science Foundation and by the National Science Foundation under grant no. 

PH78-08426. 
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