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ABSTRACT 

A procedure has been developed to calibrate 
safe O' indices for various types of structures. 

The load model is based on normal ap- 
proximations of non-normal distributions at the 
design point. For time varying loads, the basic 
time intervals are considered, with probabilities 
of occurrence in each interval and conditional 
distributions of intensity. 

Load and resistance factor format and al- 
lowable stress design are considered. Computa- 
tions were carried out for the National Building 
Code of Canada. 

Safety indices are presented in charts and 
tables. The results can be used to determine 
optimum values of resistance factors a n d / o r  
safety factors. 

INTRODUCTION 

The development of a building code in- 
volves the optimization of load and resistance 
factors. There is a need for an efficient 
numerical procedure to compare safety of 
structures corresponding to different code re- 
quirements (load and resistance factors). 
Nowak and Lind [1] developed a procedure, 
based on Rackwitz and Fiessler's model [2], to 
optimize resistance factors. Recently, also 
based on that model, the computer program 
was developed and safety indices were calcu- 
lated for various cases of beams and columns. 
The present paper describes the procedures 

and results of these computations. 
Five load components are considered: dead 

load, live load, snow, wind and earthquake. 
Live load is considered as a sum of sustained 
live load and transient live load. The load 
models are based on the presently available 
data. 

Safety indices were calculated for the beams 
and columns designed according to the Na- 
tional Building Code of Canada [3], for vari- 
ous load cases. The results are presented in 
the form of charts and tables and can be used 
in selection of resistance factors or safety 
factors, as demonstrated. 
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SAFETY INDEX 

The procedure  to calculate safety indices is 
described by N o w a k  and Lind [1]. A brief 
summary  is given here. 

The limit state equat ion for the considered 
design cases is 

Z = R  ( D + L S + L T + S +  W + E ~  (1~ 

where R = resistance, or load carrying capac- 
ity of the structure,  D = dead load effect. 
L S  = sustained live load effect, L T  = transient  
live load effect, S =  snow effect, W =  wind 
effect, and  E = ear thquake effect• Z >/0 cor- 
responds to safe realizations, while Z < 0 cor- 
responds to failure. Probabi l i ty  of  failure. P v .  

is 

P v  = Prob ( Z  < 0). (21 

Safety index, fl, is def ined as 

f l=-(P ' ( P v )  (3) 

where (I)-l ( ) =  inverse of the s tandard  nor- 
mal  dis t r ibut ion function.  

If all the variables in eqn. 1 are indepen- 
dent  and normal ly  distr ibuted,  then Z is also 
a normal  r a ndom variable with the mean 
and  s tandard  deviat ion o z given by 

Z = R - ( D + L S + L T + S + W + / 7 ) ,  (4) 

= + o , ,  + o L  + - 

(5) 

where 

R-, • , /7,  2 o 2 = means  and  variances of • .  O R , . . . ,  

R . . . . .  E .  

The probabi l i ty  of failure is 

= ¢ ( - ; ' / O z )  (6) 

and  hence in this case, f rom eqn. 3. 

# =  '/Oz (7) 

If the variables in eqn. 1 are not  normal ly  
dis tr ibuted,  then fl can be calculated using 
Rackwitz  and Fiessler 's iterative procedure  
[2]. The method  is based on normal  ap- 

proximat ions  of non-normal  distr ibutions.  The 
approximat ing  normal  distr ibution is selected 
so. that its cumulat ive d is t r ibuuon functlol3 

( ( ' D F )  and its probabilit~ density function 
(PDF~ are equal to the C D F  and PDF of thc 
original dis tr ibut ion at the ,,,, called "design 
point" .  Design point, denoted by R* . . . . .  L? ~_ 
are values for R . . . . .  E such that 

R * - - q D * - L S * -  L T *  .... S ~ 

- W * - E * I = 0 .  ~8}  

Initial values of R* . . . .  E*, satisfying eqn. 
8, are guessed first. The mean. 5 '  and the 
s tandard  deviation,  o x . of the approximat ing  
normal  dis t r ibut ion are calculated form the 
following formulas: 

o ,  " . ~'/(1 v { X*) 19) 

X= (t0  

where X = R . . . . .  E,  q0 = P D F  of the s tandard  
normal  r a n d o m variable, and 

f x l  I -  P D F  of X. 

For those approximated  dis tr ibut ions the 
mean  and s tandard  deviat ion of Z' can be 
calculated using eqns. 4 and 5, 

Z '  - R '  ( D '  + L S '  + L T '  - S '  

 ll) 

o z,  = o7~,-  o~, ~ O£s, ~- oLr,  * o& 

- o ~  -,- o7,, ) ( 1 2 )  

and the safety index is 

# - Z ' /Oz, .  ~13) 

The  i teration loop is comple ted  after the new 
design points are found  from the following 
formula• 

X *  = X '  + f lO2x,/Oz , 114) 

where X = R . . . . .  E. A minus sign is used for 
R (or negative loads). Then new approximat-  
ing normal  dis t r ibut ions  are calculated using 
eqns. 9 and  10. and a new fl is calculated 
using eqn. 13. The calculat ions are cont inued  



until /9 does not differ in the consecutive 
iterations (within the required accuracy). 

The presented procedure allows for the 
calculation of /9  for time-invariant loads and 
resistance. However, earthquake, wind, snow 
and live load are time-variant. Therefore the 
model is modified to account for this varia- 
tion. 

For each load component  a basic time in- 
terval, r, is determined. It is assumed that 
load magnitude can be considered constant 
during this time period. 

The occurrence or non-occurrence of the 
load in each time interval corresponds to re- 
peated independent trials with probability p 
of occurrence. Given that the load occurs the 
distribution of its amplitude is F~nt(x ) and 
the corresponding PDF is fin,(x). 

For n basic time intervals the cumulative 
distribution function, F ( x ) ,  and the probabil- 
ity density function, f ( x ) ,  for each load com- 
ponent can be written as 

F ( x )  = (1 - p [ l  - F.o,(x)]}" (15) 

f ( x ) = riP~in t ( X )[ F (  x )] '"- '~/" (16) 

The combined effect of the considered load 
components  is calculated as follows. The loads 
are arranged by increasing "r's: E, W, LT, S, 
L &  D.. Dead load and resistance are assumed 
to be time invariant. E is combined with W 
first. The basic time interval for E is r E. The 
C D F  and PDF of E in the time interval r w 
(basic time interval for W) is calculated using 
eqns. 15 and 16 with n = r w / r  E. The distribu- 
tions of E and IV, both in time interval Xw, 
are approximated by normal distributions at 
E* and W*, respectively. The parameters of 
the approximating normal distributions are 
calculated using eqns. 9 and 10. The joint 
distribution of E + W in time interval X w is 
then normal, with the mean and variance 
equal to the sum of means and variances of 
both components.  

The joint  distribution of E and W, E + W, 
is combined with L T .  The value of the C D F  
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and PDF for ( E + W) is calculated at ( E* + 
W*), in time interval "rcT (basic time interval 
for L T ) .  It is approximated by a normal 
distribution at that point, and a normal distri- 
bution approximating L T  at L T *  is added. 

Then the joint distribution of (E  + W +  
L T +  S )  is calculated, L S  is added, then D, 

finally the normal approximation is found for 
Z,  as given by eqn. 1 (at the design point). 
The safety index is calculated from eqn. 13. 

New values for R* and D* are determined 
by using eqn. 14, and L S *  becomes 

c s *  = L S ' +  . . . .  [(LS+ + E)* 

-(LS+ (17) 

where ( L S  + . . .  + E )' and Ol2cs + . . + u c are the 
mean and variance of the approximating nor- 
mal distribution for the joint distribution of 
( L S  + . . .  + E ) ,  at the previous design point, 
and ( L S  + . . .  + E ) *  is the new design point, 
calculated from eqn. 14 (by replacing X with 
( L S  + . . .  + E) .  The new values for S*,  L T * ,  

W* and E* are calculated similarly. 

RESISTANCE AND LOAD COMPONENTS 

Each load component  is fully determined 
by the parameters p and n and the C D F  of 
intensity, F~.I, ( ). The models of load compo- 
nents and resistance are presented below. The 
nominal values of loads are those specified by 
the National Building Code of Canada [3]. 

Resistance It is assumed that the resis- 
tance is time invariant, with n = 1, and p = 1. 

The C D F  of resistance, F a ( x ) ,  is taken as 
lognormal. The lognormal FR(X ) can be 
calculated using a standard normal distribu- 
tion function as follows, see [4], 

g R (x) = * ( ln(  x / #  ) /o, .  R ) (18) 

where/~ = median of R. 

The median, R, and o~n R can be expressed 
in terms of the mean resistance, R_ and coeffi- 
cient of variation of resistance, V R. 

/~ = R- exp( -- 1 0 2  R ) ,  a n d  
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o/,,s~ = l n ( V  2 + 1) 119) 

Also the density function of resistance can be 
expressed in terms of the standard normal 
density function, qp: 

f R ( x )  ~- ( 1 / x o , . R ) q ~ ( l n ( x / [ ~ ) / o , .  R } (20)  

Dead load is considered as time invariant, 
with n = 1 and p = 1. The C D F  is assumed to 
be a normal distribution. The ratio of mean- 
to-nominal is taken as X D = 1.0 and the coef- 
ficient of variation as V o = 10%. including 
analysis factor. 

Live load L is considered as a sum of two 
components,  sustained live load. LS.  and 
transient live load, LT.  L S  includes the weight 
of furniture and removable equipment as well 
as weight of persons usually in the building. 
L T  includes the weight of items and persons 
in the building only occasionally, for example. 
people gathering for a special meeting, or 
weight of furniture stored in an office during 

remodelling, etc. 
The live load model is derived from the 

results of statistical studies described by Allen 
[5] and by Ellingwood et al. [6]. 

Sustained live load It is assumed that 
changes of L S  occur every 5 years, so ~t = 10 
for 50 year lifetime, with p = 1.0 ( L S  is al- 
ways present). The C D F  of intensity, Fcs, ~s a 

gamma distribution. 

Fz.s( X ) = F( k , X x  ) / F (  k ) t21) 

where F(k ,  X x ) =  fc~e-"u  k ldu. and F~ k ) -  

]~ e "u ~ du. k and X are constants. Conse- 
quently the density function of L S  is 

X kx  ~ ~' : . ' t "  (22 .f7..,. ( - ,  I : 7 .  I -#T  I e , z- ,  I 

w h e r e  L = n o m i n a l  l ive load as . .peci f ied in 
the National Building Code of  Canada [31. 
The parameters k and X depend on the 
parameters of the sustained live load distribu- 
tion. 

The statistical studies of live toad provide 
arbitrary-point-in-time values of LS. These 
values correspond to realizations of intensit~ 
of  LS.  The ratios of mean-to-nominal and the 
coefficients of variation of L S  are given in 
Table 1. 

For the gamma distribution the mean. #. 
and variance. 02. are 

.tt = k/)~: o: = k . /X e t231 

Assuming nominal live toad is t, ~ and o: 
can be expressed in terms of X~ s and G,s as 
follows: 

o -~ I X V )-' i,s s.s • t 24 l  

Then from eqns. 23 and 24. after transforma, 
tions. 

k = I /V ,2 , .  " . .  )t = 1 / [  )~,.sV,.~) 125) 

The resulting values of k and X are also given 
in Table 1. 

Transient live load It is assumed that the 
basic time interval for L T  is 7 hours, and  that 
L T  occurs once per month. The corre- 

T A B L E  1 

Parameters  of LS-intensity 

Structural  Tr ibutary  area * Mean- to -nomina l  Coefficient of 
Type (m 21 ratio variat ion 

(Xi. s ) (VL,~) 

Dis t r ibut ion parameters  

k X 

Beam 20 0.24 0.70 2.04 
100 0.39 0.50 4.0 

Co lumn  100 0.39 0.45 4.94 
1000 0.55 0.35 8.16 

8.50 
10.26 

12.66 
14.84 

* Tr ibutary  area is the area over which live load is placed to calculate the load effect. 



293 

TABLE 2 

Parameters  of L T  for 50 years 

Structural Tributary area 
Type (m 2 ) 

Mean-to-nominal  
ratio 

( ) ' , . r )  

Coefficient of 
Variation 
(F,.7) 

Distribution parameters 

Beam 20 0.60 
100 0.40 

Column 100 0.40 
0.20 

0.19 11.5 0.0 
0.19 17.0 0.0 

0.19 17.0 0.0 
0.19 33.0 0.0 

sponding n = 62571 (for 50 year lifetime), and 
p = 0.008. The C D F  of intensity is an extreme 
type I distribution, with 

F L T ( X  ) = e x p { - - e x p [ - - e ~ ( x / L  - u)]} (26) 
where L = nominal live load, a, u are con- 
stants. The corresponding density function 
f , .r(x) is 

fLT(X)=~  exp --a --u 

(27) 

'0, ? 

V, T 

O, i5 

,3, i l l ,  

~ y  L 

] 20 

..... 0 5 O. q O. 5 , , ,L  

Fig. 1. Parameters u and A for LT. 

i i i i 

0.6 0.7 0,8 0,9 

~ L T  

The assumed mean-to-nominal  ratios and 
the coefficients of  variation for maximum val- 
ues of LT in 50 years are given in Table 2. 
The parameters c~ and u in eqns. 26 and 27 
were selected accordingly (see Table 2). The 
relationship between a, u, )~LT and VLT is 
shown in Fig. 1. 

Snow The basic period is taken as 8 weeks, 
and it is assumed that snow occurs once in a 
year. These assumptions correspond to n = 
325 and p = 0.15. The C D F  of intensity is 
taken as an extreme type I distribution with 
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&(x). 

Es,(x) = exp{-  exp[c~(x/S - u)]} (28) 

where S = nominal snow load, c~ and u are 
constants. The probability density function. 
fx(x) ,  is 

f s , ( x ) = ~ -  exp -c~ ~ u 

x e x p { - e x p [ - o ~ (  S - u ) l  } (29) 

The parameters a and u were derived so that 
the 30 year mean-to-nominal ratio is 0.80 and 
the coefficient of variation is 0.25. The corre- 
sponding 50 year values are 0.88 and 0.227 
respectively. The parameters are a = 6.45, u = 
0.191. 

Wind It is assumed that wind occurs once 
in a month and the basic time interval is 4 
hours. This corresponds to n = 109,500 in 50 
years and p = 0.005. 

The CDF of intensity is taken as an ex- 
treme type I distribution with F w ( x  ) and 
f w ( X )  similar to eqns. 28 and 29, respectively, 
The parameters a and u were calculated so 
that 30 year mean-to-nominal and the coeffi- 
cient of variation were equal to 0.80 and 0.25 
respectively (the corresponding 50 year values 
are 0.875 and 0.177). The parameters are a = 
7.9, u = 0.0012. 

Earthquake The basic time interval is : 
minute with a once in a year occurrence. This 
corresponds to n = 52.56 x 10 6 and p -  
0.9513 X 10 -6. 

The CDF of intensity is taken as an ex- 
treme type II distribution with 

FE ( x ) = e x p { -  ( u E / x  ) k] (30) 

where E = nominal earthquake load, u and k 
are constants. The constants were calculated 
from the assumption of 30 year mean-to- 
nominal equal to 0.30 and the coefficient of 
variation equal to 0.70. The parameters are 
u = 0.10 and k = 4. 

For comparison the 50 year CDF's  of all 
load components are plotted on normal prob- 
ability paper in Fig. 2. 

_. i 0 -  
> <  

.E 

~" l0 

10-! 

i@ 4 

lO-] 

I ? X 

Fig. 2 C D F ' s  for load c o m p o n e n t s  150 years}, sub-  
scr ip ts  at L S  and LT: 1-beams with A~ = 20 m 2. 2 -beams  
wi th  A , - 1 0 0  m 2. 3 -co lumns  wi th  A~- -100  m e. 4-col-  
u m n s w i t h a  = 1 0 0 0 m  e 

DESIGN FORMULAS 

Two design options are considered, as pro- 
vided by the National Building Code of 
Canada [3]. The first one is based on allowa- 
ble stresses and is refered to as Working 
Stress Design, WSD. The other one is a load 
and resistance factor format, refered to as 
Limit State Design, LSD. 

WSD is based on comparison of service 
loads with allowable loads. The design crite- 
rion is. 

t 
D + L  

R/SF>~ max D + Q  

0 . 7 5 ( D + L +  Q) 
(311 



where D = nominal dead load, L = nominal 
live load, including snow, Q = nominal wind 
or earthquake, R = nominal resistance, and 
SF = safety factor. 

In the code no distinction is made between 
R and SF, and R / S F  is specified as the 
allowable load. Therefore in this study R in 
eqn. 31 is replaced with R-/A R, and SF is 
combined with A R into (ARSF), so that eqn. 
31 becomes 

R-/ (ARSF)= (max. load from eqn. 31) (32) 

In LSD the design criterion is 

[ 1.25D + 1.5L 
J 1.25D + 1.5Q 

q,R (33) 
max]  1.25D + 1.05 (L + Q) 

/ 

t0.85z) + 1.se 

where D, L, Q and R are as in Eq. 31, and 
q~ = resistance factor. 

In the calculations the CDF of resistance is 
assumed to be lognormal. The parameters of 
R, the ratio of mean to nominal, X R, and the 
coefficient of variation, V R, depend on type of 
material and limit state (flexure, shear, deflec- 
tion, etc.). Examples of A n and V R for typical 

TABLE 3 

Examples of A n and V n,  from [6] 

Type of Structure Mean to Coefficient 

and Limit State nominal ratio of Variation 
(~,R) (G) 

Steel: 

girders, flexure 1.08 0.12 
shear 1.14 0.16 

columns 1.08 0.14 
Reinforced concrete: 

beams, flexure 1.01 - 1.22 0.12-0.16 

shear 0.93-1.09 0.17-0.21 
columns 0.95-1.10 0.14 0.17 

Prestressed concrete: 
flexure 1.03-1.06 0.057-0.14 

Timber* : 

beams, flexure 1.70-3.85 0.25-0.45 
shear 
columns 

* Ellingwood [7]. 
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structures are given in Table 3. 
The ratios A R depend on the current nomi- 

nal values of R, and may be subject to change. 
Therefore in this study the resistance factor, 
~, and A R are combined into Cola R, so that 
eqn. 33 becomes 

(~ /AR)R  = (max. load from eqn. 33) (34) 

Single resistance factors, (ARSF) for WSD 
and (q~/AR) for LSD, allow for more flexibil- 
ity in the interpretation of results. 

CALCULATION OF SAFETY INDICES 

Safety indices were computed for beams 
and columns designed according to the Na- 
tional Building Code of Canada [3]. The con- 
sidered combinations include four cases with 
two l o a d s : D + L , D + S , D +  W a n d  W - D ,  
and four cases with three loads: D + L + S, 
D +  L + W , D +  L + E, a n d D +  S + W, each 
case with a wide range of load ratios. Four 

¢/~'R = '7 

I xN'3., 
L~,8 \ \  " - . . .  ~ v,v \. \ \ \ ~  

",-- 
, ' /  " " \  '-.'-_ "". N 

0 0.2 O.q 0.6 0,8 1,O 
X/@+X~ 

Fig. 3. Safe ty  ind ices fo r  L S D ,  V n = 0.10. 
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Fig.  4. Safety  ind ices  for L S D ,  V~ = 0.20.  

models for live load are considered, according 
to data in Table 1 and 2. 

For each set of loads the mean resistance is 
calculated using eqn. 32 for WSD and eqn. 34 
for LSD. The computations were carried out 
for WSD for (ksSF) values ranging from 
1.60 to 5.0, for LSD for ( ~ / k ~ )  from 0,3 to 
0.9; and for V R equal to 10, 20 and 40%. 

The results are shown in Figs. 3 -8  and in 
Tables 4-9 .  In the figures safety indices are 
plotted versus the ratio of X to D + X, where 
X i s  L, S or W; in Figs. 3-5  for LSD and 

= 3 . ~ ~ ~  . . . .  

S [-i . . . .  i4 
o L 2 W 

[3 .... S 

0.2 0 .4  c~ 6 0.8 1,0 

X/(D+X) 

Fig.  5. Safety  ind ices  for L S D ,  V R = 0.40.  

, / \ 

" \ \  x..~ 
._ '~\  \ \ x  

7. i 
\ \ \ . - -< . .  

J o~  ~.4 },L ¢ : -  . 

Fig. 6. Safety  indices  for W S D .  ~)~ = 0. t 0 .  

5 

5 

Z 

< 
c ~  

2 2 , 

"- . ~  "~ -... 

L 
L 2 ""-~.  

5 

f } ,2  ) ,4  ).6 ' ~ 1 ,0  

3*X 

Fig .  7. S a f e t y  ind ices  for  W S D .  I,'~ = 0 .20 .  
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Fig. 8. Safety indices  for WSD,  VR= 0.40. 

VR = 10-40%, respectively, and in Figs. 6-8 
for WSD and V R = 10-40%. The curves in the 
figures are denoted as follows: L l - - l ive  load 
for beams with tributary area A t = 20 m 2, L 2 
- - l ive  load for beams with A t =  100 m 2, 
L3--1ive load for columns with A t = 100m 2, 
L4--1ive load for columns with A t =  1,000 
m 2, S- - snow and W--wind .  The safety in- 
dices computed for the combinations of three 
loads, and for W - D ,  are presented in the 
tables; in Tables 4-6  for LSD and V R = 
10-40% and in Tables 7-9  for WSD and 
V R = 10-40%. 

SELECTION OF OPTIMUM I'S AND SF's 

The basic features of a building code are 
"goodness-of-fit" and simplicity. Since mod- 
ern codes are developed based on the safety 
criteria, the goodness-of-fit is also measured 
in terms of safety. The perfect fit is achieved 
if safety of all structures designed using the 
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code is at an opt imum level. Lind [8] consid- 
ers the opt imum safety as a parameter in the 
economical analysis (trade-off between cost of 
design and construction and the expected cost 
of failure). 

The user of the code (designer) is interested 
in a simple format, and the simplicity de- 
pends on the number of different sets of load 
and resistance factors. However, as in the case 
of the optimum safety, the optimum simplic- 
ity is also a parameter of an economical 
trade-off. The selection of the optimum safety 
index and the optimum number of different 
q~'s or SF's is beyond the scope of this paper. 
However, the calculated safety indices can be 
used to select the optimum resistance factors 
and allowable loads for a given target safety 
index, BT. 

The basic parameter affecting the selection 
is the coefficient of variation of resistance, 
V R. For typical structures and materials Vffs 
are well established, see Table 3. 

For a given V R, Tables 4-9  and Figs. 3-8 
provide a spectrum of /~'s. The opt imum 
(~/~R)opt for LSD, o r  ()kRSF)opt for WSD, 
provides the best fit to the preselected BT- 
The selection may also be carried out by 
assigning weighting factors to various/3 's  in 
the tables and figures. The weight may repre- 
sent the importance of the load combination 
to which it is assigned. Then for each value of 
(~'/?~R) in LSD, or ()tRSF) in WSD, the 
weighted sum of the /3's can be calculated. 
The optimum factor provides the closest fit to 

PT. 
Finally, the opt imum resistance factor, q~opt, 

is 

~opt = (l~l~/~kR)opt~kR ( 3 5 )  

where )t R is given in Table 3 for typical struc- 
tures and materials, and the optimum allowa- 
ble load is equal t o  (XRsr)opt. 

CONCLUSIONS 

A procedure has been developed to calcu- 
late safety indices for structures designed on 
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the basis of given toad and resistance factors. 
The method is based on normal approxima- 
tions of non-normal distributions at the de- 
sign point. 

Safety indices were calculated for typical 
cases of load components, including dead 
load, live load, snow, wind and earthquake. A 
wide range of resistance parameters (mean- 
to-nominal ratio and coefficient of variation) 
was considered. The results are presented in 
tables and in figures. 

The calculated values of fi can be used to 
select the optimum resistance factors and al- 
lowable loads according to the National 
Building Code of Canada. 
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