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Abstract - -"A method to generate digital random time histories is described. A random number 
sequence is shaped to give the desired spectral density curve. This finite set of numbers is then 
Inverse Fast Fourier Transformed (IFFF). The result is a pseudo random time history which has 
given spectral characteristics. An application of this technique is described.'" 

INTRODUCTION 

THE GENERA~Or~ of digital random time histories which have given stochastic propert ies 
is of interest to those working in the field of marine dynamics. Projects involving 
computer  simulation or model  towing tank experiments  find these random records quite 
useful and in many cases essential. 

Various techniques have been devised to create these random records. Johnson (1981) 
catalogs the ones currently used by different towing tanks throughout the world. He 
classifies them as either non-deterministic or deterministic generation. Non-deterministic 
generation implies a non-repeating record while deterministic generation implies a 
record that contains a finite number  of discrete components .  

The  generat ion me thod  described in this paper  contains aspects of both the 
non-deterministic and deterministic methods. A random number  generator  is used to 
generate  digital white noise. This non-deterministic source is then operated on by a 
shaping filter and the result is inverse fast Fourier t ransformed (IFFT) to give the desired 
time history. The use of the IFFT in fact means that the record is represented by the sum 
of a finite number  of  sine waves. However ,  this number  can be made as large as the IFFT 
algorithm allows. The details are given in the following sections. An example where the 
method is used to generate  random waves is also described. 

PROBLEM STATEMENT 

The objective of this work is to describe the means by which a " random" time history 
may be generated such that the record would have a specified spectral density function. 
In the application described in this work, the " r andom"  record is used to drive a wave 
maker  that produces irregular seas. The block diagram shown in Fig. 1 helps to define 
this problem in a more  concrete manner.  
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FIG. 1. Procedural block diagram. 

In Figure 1 and throughout the rest of this work, the following comments apply: 

- -  The lower case letters w(t), y(t) and z(t) denote time functions. 
- -  The upper case letters W(f), Y(f) and Z(f) denote their corresponding Fourier 

Transforms. 
- -  Sw, Sy and S: are the corresponding spectral densities. 
- -  w(t) is white noise with spectral density: Sw = 1. 
- -  y(t) is the control time history to be used to drive the wave generator. 
- -  z(t) is the wave height at a particular point. 

The problem can be restated precisely as follows: 
Given H(f) ,  the system function of the wave generator, and S:, the desired spectral 

density function of the generated waves, the required control function y(t) has to be 
found so that the wave generator produces S:. 

In the above scheme, y(t) can be regarded as a colored noise. Consequently, the 
problem may be viewed as that of finding a shaping filter Q(f) for whitening the colored 
noise. After obtaining Q(f) the process can be reversed by passing white noise through 
this shaping filter. The desired control function y(t) will appear at the output. It should 
be noted that white noise can be generated fairly easily by a number of standard 
procedures. For the sake of simplicity and for the ease of implementation, the additional 
constraint that Q(f) is a real function will be made. In other words, the shaping filter will 
not distort the phase angle of the white noise input. 

DERIVATION 

In this section, the relationship between Q(f) and the given quantities, S,(f) and H0' ), 
will be illustrated. It will be shown that the problem of generating a simulated time 
history from a given spectral density function is nothing more than a corrollary of the 
wave generator problem. 
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Applying a fundamental result of Linear System theory (see, for example, Crandail 
and Mark (1973)) to the block diagram, the following relationship can be written: 

and 

Z ~  = H ~ . Q ~ . W ~  , 

Y(f) = Q(f) -  w0r) . 

In a similar manner, the spectral densities are related by: 

5 ; 0 9  = IH(f)[ 2 .  10(]')12. S.,(/¢) . 

Note that the white noise spectral density S,,, was chosen to be unity. Hence, 

Therefore: 

s:GO = In0012-  IQG012 . 

Sz09 
IQ(f)l  2 -  IH0~I 2 - 

(1) 

(2) 

Recalling that we have placed a constraint by selecting Q(f) to be a real function the 
above relationship becomes: 

v'&(r3 
Q ( f ) -  IHq)l (3) 

Substituting the above transfer function for the shaping filter back into Equation (2) 
we arrive at: 

Y00 = ~/Sz(f) . W(f) (4) 
Inf f ) l  

Finally, note that Y0') is the Fourier transform of the plunger control time history. 
Thus, the desired record may be produced by taking the inverse Fourier transform of 
Y(f).  

I m p l e m e n t a t i o n  

Referring back to the block diagram shown in Fig. 1, if we set: 

H ( f )  = 1 , 
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then, Y(f) and Z(f) are identical. They are the Fourier transform of the desired time 
record, and 

Y(f) = VS( f ) .  W(f) . (5) 

For the purpose of convenience, this simplifying assumption will be used in this paper. 
Having a non-unity transfer function does not change the basic technique described here. 

Recalling that WOO is the Fourier transform of the white noise, it follows that W(f) is a 
complex random function. In digital computer simulation, W(f) is represented by a 
sequence: 

where: 

and 

{ W k , k  = 1 ,2"} , 

w ,  = w ( o )  , 

Wk = W [ ( k -  1)Af] . 

The number 2" frequencies is selected to enable efficient use of fast Fourier transforms 
(FFF) algorithms. The frequency increment Af is related to the length of the data record 
T by: 

1 

Let fmax be the frequency range of W(J) and, hence, Y(f), then 

fm~,~ = (2"-- 1)Af 

1 
= ( 2 " - 1 )  7" 

o r  

( 2 " -  1 ) =  f~,,x- T .  (6) 

This equation gives us the relationship between the number of terms of the sequence 
{Wk} to be used and the range of frequency and data length. 

The complex random function W(f) can be represented by 2" complex random 
numbers, Wk, where 
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Wk = RR de2= 

and where 

RR is a Rayleigh random variable with variance of unity, 
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(7) 

and 

0 is a random variable, uniformly distributed between [0,1]. 

Using Equations (4) or (5), 2" points of Y(t) can be generated as a sequence of {Yk, k 
= 1 , 2"}. Taking the IFFT of {Yk}, will produce a time sequence {yj , j = 1 , 2"}. 
However, the result will show a great deal of scattering. Smoothing can be achieved by 
the following scheme: recall that the spectral density function is already assumed 
nonzero in the frequency range [0, fmax]. Here ]'max is the highest frequency of interest. 
However, the sampling time must be carried out at the Nyquist rate, 

f = 2 f  
sampling max 

Therefore, the data must be padded by another 2" of zeros adding to the high end of the 
frequency range. The zeros will ensure that the time record will not have any component 
of frequency higher than the maximum frequency of the information contained in the 
spectral density function. A further degree of smoothing can be achieved by padding the 
data with 2 "+~, 2 "+2, etc. of zeros. However, this might increase the cost of the IFFT 
process. 

In summary, the following four steps describe the procedure to generate a random 
time history: 

1. Generate 2" of random complex numbers Wk, using Equation (7) 

Wk = MR ej2~O " 

2. Multiply Wk by the transfer function Q(f) of the shaping filter; Equations (4) or (5); 
getting a sequence of the output, 

{ Y k , k  = 1 ,2"} • 

3. Pad the sequence of the output {Yk} with 2" zeros. 
4. Taking the IFFT of {Yk} will produce the time sequence {Yi}- The smoothing is 

automatically achieved by data padding of step 3. 
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Fro. 4. Periodogram of run No. 3. JONSWAP spectrum. Hi/3 = 12 ft (3.66 m). Scale 
ratio 1:66. 

Example 
As an example of the technique, a series of time histories were generated to drive the 

wave maker  of the Ship Hydrodynamics Laboratory,  University of Michigan. The 
desired output was a JONSWAP spectrum that had either a 5-ft (1.52m) or a 12-ft 
(3.66m) significant wave height. The model scale was 1:66. 

Figure 2 shows a typical 80 sec, model scale, time history of {yi}, the input to the wave 
maker.  

Figure 3 shows a short segment of another run to demonst ra te  the effects of zero 
padding. As can be seen, the record is sufficiently smooth. 

Figure 4 shows the periodogram of a single run. The ordinates of the per iodogram are 
given by 

{ s k }  - -  { I Z l k } 2 / a f  • 

Figure 5 shows the averaged periodogram for the five runs. The technique used to 
average was simply summing the values of Sk for a given k and dividing by five. This and 

other methods of spectral smoothing are described by Otnes and Enochson (1978). The 
desired J O N S W A P  spectrum is also shown in Fig. 5. The actual curve and desired curve 
compare  well up to the frequency of maximum Sk. However ,  for higher frequencies, the 
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FIG. 5. 
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c o m p a r i s o n  is p o o r .  Th i s  is a resul t  o f  i n a d e q u a t e l y  e s t i m a t i n g  the t rans fe r  f u n c t i o n  o f  the  

w a v e  m a k e r  for  shor t  waves .  T h e  d i s c r epancy ,  t h o u g h ,  does  ot de t r ac t  f r o m  the 

u se fu lne s s  o f  the  m e t h o d  o u t l i n e d  in this work  for  g e n e r a t i n g  r a n d o m  t i m e  h i s to r i e s .  
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