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AWH-Tk paper tre8ts the bramission of wave motion from one solid to rnotber when the bodies ue 
hitially spurted by I: small pp. If a pulse of elastic waves strikes the surface of one of the solids and the 
rmplitude of the pulw ir iaqe enough, I& solids can come into con&t and interact locally. The dynamic 
interaction is treated using Coulomb’s friction law, and a method is presented for finding the slip ad stick 
zones in the contact region when the incidence angle of the pulse is subcritii. Unusual results are 
encountered for large friction coefficients. 

INTRODUCTION 

In treating the reflection and transmission of elastic harmonic waves between two solids that 
can separate, it is discovered that the solids must be pressed together for a continuing 
interaction[l]. If this is not done, the solids move apart during the early stages of the process, 
and a continuously maintained train of incident waves sees a free surface. The early part of the 
interaction can be studied, however, by analyzing a pulse of finite extent. In such cases it is not 
required that the solids be pressed together and, in fact, interaction is possible even if there is 
small initial gap between them. 

In a previous paper[2], a solution was given for the problem of an elastic pulse striking the 
frictional interface between two half spaces and producing localized regions of separation and 
slip between the bodies. In this paper we consider the related problem for which a localized 
region of contact between two otherwise separated bodies propagates along the interface due to 
the action of an incident pulse in one of them. The problem is illustrated in Fii. I. The two half 
spaces are initially separated by a uniform gap d and the upper solid has a tangential velocity u 
to the right as shown. A P or SV pulse strikes the interface at an angle of incidence 6, and 
produces P and SV pulses reflected at angles B,, 6,. If some interaction occurs between the 

Fig. I. Incident. reflected and refracted waves at the interface with an initial gap d. 
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bodies, we also anticipate the development of refracted P and SV pulses in the upper solid at 
angles 8,, 8, respectively. 

The velocities of P and SV waves are denoted by cL, cr respectively and we use bars to 
distinguish the properties of the upper body. The angles are related by the equation 

sin sin 8, sin f12 sin 63 sin 6, 
z-z- =-=- 

(1) 
CO CL CT CL ET 

and the disturbance due to the pulse propagates to the right along the surface of the lower body 
at velocity 

u = co/sin e,. (2) 

As in [2], we restrict attention to those values of 6, for which u is supersonic with respect to 
both solids, i.e. eqn (1) defines real values for all the angles ei. 

METHODOFSOLUTION 
As in[2], we solve the problem by superposition of two parts, but here the initial solution 

corresponds to the situation whore there is no interaction between the half spaces, i.e. we find 
the reflected pulses on the assumption that the surface of the lower body is free of tractions. 
This is a classical problem[3] and need not be considered here. The pulse will cause local 
displacements uI, u2 at the free surface which are stationary with respect to the dimensionless 
moving co-ordinate 

r) = k&x, sin e. - cot). (3) 

The wave number &,, can be regarded as the reciprocal of a characteristic length for the pulse. 
In other words, a bulge or depression runs along the free surface at velocity v, its shape being 
described by the displacement u*(q). 

If the maximum height of this bulge is less than d, the free surface solution is the final 
solution of the problem and the half spaces do not interact. However, the interesting case is 
that in which contact occurs. A corrective solution must then be superposed to satisfy the 
physical conditions of the problem and eliminate the interpenetration predicted by the free 
surface solution alone. 

The gap between the bodies is 

&?o(rl) = d - 1(2(T) (4) 

and we define the gap opening velocity for the free surface solution 

There is also a corresponding slip velocity 

(5) 

A positive value of Ho corresponds to the upper body slipping to the right over the lower body. 

THECORRECTIVESOLUTION 

In the corrective solution, equal and opposite tractions are applied to the two surfaces to 
satisfy appropriate conditions on displacements in contact zones. This solution is developed 
in[2] from the results for a moving point force [4]. 
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If N(q), S(u) are the corrective normal and tangential tractions respectively, the cor- 
responding corrections to the gap opening and slip velocities are 

G(s) = - [AMI)) - AIS cJr (7) 

H(s) = - w4r)) + A,Mr))l ‘: (8) 

where 

A,= p (1+2m,mt-mt’)_(1+21Ci,lfi~-A*2) 
sin 8, [ PR I c;R ) 

AZ=& [ 
m,(l + m2’) + &(l + Az2) I PR ctR 1 

A,=& [ 
m2( 1 + I?$) + A$( 1 + HI3 

1 PR r;R I 

(9) 

(10) 

(11) 

and 

WI, = cot e,; WI2 = cot e2; rii, = cot e,; HI2 = cot e, (12) 

R =(I - m22)2+4mlm2; R’ = (1 - At’)’ + 4&i,&. 

The normal traction N is taken positive if tensile, while S is positive when it acts to the right on 
the lower body. Notice that G, H are influenced only by the local values of N, S. The 
coeajcients A2, A3 are positive, but AI may be of either sign and vanishes for identical materials. 

BOUNDARY CONDITIONS 

If the free surface solution predicts interpenetration (i.e. go(~))<0 for some u), we 
anticipate the development of adhesive or slip contact regions. The tractions in these regions 
can be determined from physical conditions leading to equalities, e.g. that the gap is zero in a 
contact zone, whereas the extent of the zones is determined from physical constraints leading 
to inequalities, e.g. that normal tractions must be non-tensile. 

STICK 

In a stick zone, the gap is zero and there is no slip. Thus 

#(r)) = Gdtl) + G(q) = o, 

I;(q) = Ho(q) t H(q) = 0. 

Substituting for G, H from (7) and (8) and solving for S, N, we find 

s(s)=E 
CL [ -yQy * I 

(14) 

(19 

(16) 

(17) 

The permissible extent of the stick zone is determined by the conditions that normal tractions 
must be non-tensile 

NsO (18) 
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and the tangential tractions must lie in the range 

IS/s -fN (19) 

wherti/ is the coefficient of friction. In fact, (18) is included within (19) and can be disregarded. 
We assume Coulomb friction with equal static and kinetic coefficients. 

Substituting (16) and (17) into (19), we find 

IWO-A,GoId -f(A,Ho+A,Go) 

and hence 

In view of the absolute value, (21) is equivalent to two inequalities which simplify to 

where 

and 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

i = AdlAd. (26) 

Notice that the algebraic sign of yI is the same as that of cf- f) which was found to critically 
influence the nature of the solution in[2]. We also note that y2 may be of either sign, but 
Iy21 s Iy,l. The special case of zero friction corresponds to yI = y2 = 1 /j 

SLIP 

In slip zones, the gap is zero and eqn (14) still applies, and hence 

A2N - A,S = gG,,/cL 

from (7). 

(27) 

The condition for slip with Coulomb friction is 

S= -fNsgnh (28) 

We define conforming slip as that for which A,h’ > 0 and hence 

s= -fNsgnA, (29) 

Solving (27) and (29) for S, N, we find 

(30) 

(31) N(q)= pGo 
~02 + b,ln 
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and the slip velocity is 

h) = Ho - 72Go an AI 

from eqns (8), (30), (31) and (25). 
It follows that conforming slip is only permissible if 

and the requirement of non-tensile tractions imposes the further condition 

GosO 

from (31). 
In non-conforming slip A,& < 0 and we find 

779 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

Hence, non-conforming slip is only possible if 

Ho m YI < Y&O (38) 

and the requirement N 60 leads to the further condition 

GosO; YI > 0; (39) 

G,bO; 71-z 0. (40) 

SEPARATION 

In a separation zone there are no corrective tractions and hence the free surface velocities 
Go, Ho are unchanged. The physical condition for separation is that the gap g(n) be positive. 
Notice, however, that when separation starts we must have Go positive. Thus, a transition from 
contact to separation can only occur when Go 3 0 and the reverse transition when Go d 0. 

GRAPHICAL REPRESENTATION 
The use of these results in the solution of particular problems is best demonstrated 

graphically. The first step is to solve the free surface problem for the lower body to find the 
functions Go(n) and Hdq). We then plot the expressions ylGo and y2Go as functions of u to 
divide the diagram into regions representing the ranges of the controlling inequalities. 

Hence, by plotting the function Ho sgn Al on the same figure we can determine in which 
regions stick, slip and separation will occur. 

Yl >o 

We 5rst consider the more common case yI > 0 (see[2]). Figure 2(a) shows ylGo, y2Go, 
HosgnA, for a typical example corresponding to the free surface displacement of Fig. 2(b). 
Notice that if the pulse raises a bulge (as it must do if contact is to occur) the gap opening 
velocity will be negative on the right side of the bulge and then positive, since the disturbance 
moves from left to right. 
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gap opening Cp>O 

m Conforming shp 
69 Non-conforming slip 

(b) 

Fig. 2(a). Graphical determination of slip and separation zones for a typical example, yl > 0. (bf Distortion 
at a free surface due to the incident pulse of (a). 

The diagram is shaded in accordance with the inequalities defining the conditions for stick 
and slip. For example, stick is only permitted in the range y2G0a Ho sgn A, B ylGo and this only 
exists for Ga< 0 since yl 3 y2 when yr > 0. These inequalities define the region between 
the two lines r2G0, ylGo in the right part of Fig. 2(a) as shown. 

For the particular example illustrated we reason as follows: 
Contact will not occur to the right of A (Fig, 2b), since the corrective solution has no effect 

ahead of the disturbance. We identify the co~esponding point A in Fig. 2(a) and note that it 
falls in the stick region, so the contact is initially adhesive and remains so until B. Conforming 
slip commences at B and persists to C where there is a transition to separation. 

Notice that for yt > 0, separation must always start when Go passes grout zero i.e. at the 
maximum point of the free surface bulge-since neither stick nor slip is permitted for G,,<O. 

Away from the pulse, Go tends to zero, but Ho tends to the global slip velocity u which is 
here regarded as a prescribed quantity. The value of u will depend upon the way in which the 
bodies are supported. The limiting value u = 0 arises if both bodies are prevented from moving 
tangentially. The curves for G,, H0 are then similar, passing through zero at the same value of 1) 
and hence the contact will consist of either all slip or all stick. The tangential traction 
transmitted in the contact zone will generally add up to a tangential force which must be 
resisted by the support. 

Another limiting case of interest is that in which the bodies are unconstrained tangentially so 
that no net tangential force is transmitted between them. In this case we have to choose II to 
make the sum of the tangential tractions zero. 

If the coefficient of friction f is zero, it follows from eqns (25) that yI = y2 = l/i> 0. The 
effect on Fig. 2(a) is to make the two lines ytGo, y2G0 coincide, eliminating the stick region as 
we would expect, The solution then proceeds as before. Contact must occur between A and C 
but it will be either conforming or non-conforming slip depending on the value of Ho sgn yl. 
Separation occurs everywhere to the left of C. 

Yl<O 

Figure 3(a,b) shows an example for the case yI CO u<f and 72 > y,). As in[2], the 
ineq~lities are not not mu~Iy exclusive-stick and non~o~ormi~ stip are both possible for 
Ho sgn A, < y,G,,, Go > 0 and the separation point is indeterminate. We emphasize that the 
solution is not unique in the sense that no physical principles are violated by assuming that 
separation starts at any arbitrary point to the left of B or indeed that separation never occurs 
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pop closing, Go< 0 

U Stcck 
C=(tonforming skp 

m Non - conformeng shp 

d 

Fii. 3(a). ~t~rminat~n of slip and separation zonts for y, < 0. fbf Free surface distortion for (a). 

and the gap remains closed. However, the solution in which separation starts at B might be 
preferred in that it gives a smoothly opening gap, i.e. the initial value of & is zero. Furthermore, 
if a small irregularity in one of the surfaces causes local separation to the left of B, it will be 
perpetuated, since the gap continues to grow. By contrast, a similar gap developed to the right 
of B will close again since Go(v) < 0. In this sense, contact to the left of B could be regarded as 
unstable. 

The corrective solution, the extent of the slip and stick zones and the contact tractions 
depend on the incident pulse only through the functions Go(q) and I&( 7)) describing the rllative 
motion of the surfaces in the free surface sotution. Such relative motion could be produced by 
other means-notably if the bodies are curved and roll over each other with microslip so that 
the contact region moves along the interface at velocity Y. This problem is treated in a 
companion paper [5]. 
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