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A new formalism is presented for the calculation of the contribution 8p to p = M~v/M~cos 2 9 w 
from heavy particles transforrmng according to arbitrary representations of SU(2)× U(I). A 
conjecture for the necessary and sufficient conditions that 80/> 0 for all values of masses and 
mixing angles within a particular multiplet is formulated. A number of examples are given (all 
consistent with the conjecture) and the significance of improved knowledge of 0 vis h vis the 
possible existence of undiscovered heavy particles discussed. 

1. Introduction 

The s tandard  S U ( 2 ) ×  U( I )  model provides an increasingly successful description 

of low-energy weak and electromagnetic processes. Its theoretical framework, how- 

ever, places few restrictions on the number  and type of undiscovered particles. It is 

therefore impor tan t  to ask whether in format ion  about  heavy particles can be 

obta ined by measurements  at current ly accessible energies. In this paper we focus 
2 2 2 a t tent ion on the measurement  of the parameter  p = M w / M z c o s  #w.  

In the s tandard model, p = 1 in the tree approximat ion,  a consequence of an 

"accidental"  SU(2) symmetry of the vector boson mass matrix [1]. The fact that 

p ~ 1 experimental ly** provides strong support  for the doublet  Higgs structure. 

Deviat ions of p from one are expected due to radiative corrections, among  which are 

the vacuum polarization of the W and Z propagators.  As emphasized previously 

* Address after September I, 1981. 
** See, for example, the recent fits of ref. [2]. 
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[3,7], these are especially sensitive to heavy particles in the range of  100 GeV. As 

experiments improve the precision with which O is known, insight may be gained 

into as yet undiscovered heavy particles. 
Of  course, radiative corrections are energy dependent  and, among  other effects, 

cause shifts in the theoretically expected values of  the physical masses M w and M z 

[4]. In this paper, we consider contr ibutions to the vacuum polarization due to heavy 

particles and energies well below the masses of  such hypothetical  particles. Our  

investigation is motivated by the observation that, for s tandard lepton or quark 

families, the correction 80 = P -  I satisfies 80 t> 0 for all values of  the fermion 

masses, so that addit ional generations seem to always increase  P. Although these 

corrections have been calculated for a number  of  special cases [3-7]  no general or 

systematic study has been made, and this provides further motivat ion for our  work. 

In the following, we consider one-loop corrections to the vector boson propagators  

due to heavy fermions a n d / o r  scalars (which do not develop vacuum expectation 

values). For  q2 << M2w and also well below the heavy particle masses, the polarization 

tensor Fl~,(q ~) is essentially constant  and may be approximated by its value at zero, 

= 

(Here a, b denote  weak isospin indices.) We are especially interested in the difference 

3 I I  between the contr ibutions to the W and Z: 

At qZ = 0, this is* 

80 = 11 + _ / M ~  - 1 1 z z / M ~  = 6 ll/M~Zv. 

6 1 - 1 = H +  - H 3 3 .  

We present a conjecture that, for a certain general class of  contributions,  611(0) 1> 0 

for all values of  the masses of the associated multiplet**. We show that the 

conjectured result holds for a number  of  special cases falling within the class but 

have been unable to prove it in full generality. We also exhibit models, both for 

scalars and for fermions, which fall outside the class and can give contr ibutions to 60 
of either sign. As a by product  of  this work, we derive a compact  expression for 8II  

which simplifies the calculation in any given model and provides a more convenient 
form for discussing positivity and symmetry properties. 

" In general, there are corrections of order ctq 2 to 8 I1. Also. ¢$p receives additional corrections, such as 
yZ interference or other, process-dependent, corrections. See refs. [6,8]. A further complication is that 
different authors use different definitions of the weak mixing angle: for example, in rcf. [6], p is 
defined to be I. so our calculation would be interpreted as a correction to the trec relation 
M w = (*ra/v/2(;~)l/2/sinOw . We choose to follow ref. [8]. 

** The assertion that 811(0) I> 0 would follow if one could show that the imaginaD, part ImSll(q 2 ) ~> 0 
for all q2, since 8 I1 ( q 2 ) obeys an unsubtracted dispersion relation. It is easy to see. however, that this 
stronger result is not true. Even for a simple standard lepton or quark doublet, with doublet masses 
nl I and m 2 ( m l < m  2, say), there is a range 4rn~<~q2<~(ml+rn2) 2. where Imll) (q2)=0 but 
I m l l z z ( q  2) -~0, so ImSII <~0. Nevertheless, 811(0)/>0 (see sect. 3). 
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Before proceeding let us consider the experimental relevance of a non-vanishing 
8p. For a fermion multiplet whose mass m arises entirely from symmetry breaking, 

the order of magnitude of dp is Gem2/81r 2. Now if we assume that experiments will 

eventually be sensitive to 8p~0 .5%,  we find m~>200 GeV for the effect to be 
observable. This is, however, near the value at which we expect lowest order 

perturbation theory to cease being trustworthy. A naive estimate based on the size of 
the Yukawa coupling of the fermion gives m ~< 400 GeV. By considering partial-wave 
amplitude unitarity Chanowitz et al. [7] found m < 500/~/N GeV. (1 TeV/iN) for N 

nearly degenerate isodoublets of quarks (leptons). Thus the range of values for which 
our calculation is reliable is at best a narrow one. However, when perturbation 
theory breaks down because certain couplings become strong, then p = 1 is no longer 

natural unless the strong interactions obey an isospin symmetry. Thus the simulta- 
neous occurrence of p~- ! and strong interactions among heavy particles places 
interesting restrictions on higher symmetries, as has been noted in technicolor 
models [1,9]. 

We now turn briefly to a discussion of the problem of decoupling of heavy masses 
and its relevance to our calculations. We will discuss the decoupling issue in the 
context of the p parameter but will attempt to make clear which conclusions have 
general validity. With regard to decoupling, two distinct cases arise in general. If  the 
particles are in representations such that their masses arise entirely from sponta- 

neous symmetry breakdown, then the contribution to p is not suppressed as the 
masses are scaled up. However, since increasing the masses involves increasing a 

dimensionless coupling constant, masses cannot be made arbitrarily large without 
creating a sector of the theory that is strongly coupled and thereby invalidating 

perturbative calculations, as already discussed. If, on the other hand, the representa- 
tion allows an SU(2)×  U(I)  symmetric mass term, then the associated particles can 
be made arbitrarily heavy, but it is found that the contributions to p are now 
suppressed in accordance with the decoupling theorem [10]. The way this occurs is 
slightly different for scalar and fermion contributions. For scalars, when, of course, a 
symmetric mass term is always allowed, the natural order of magnitude of the mass 
difference AM is given by AM~g(ck~2/M, where M is the heavy mass, ( ~ )  the 

vacuum expectation value of the Higgs and g some dimensionless coupling. The 
contributions to p are O(Gv(AM)2) and one sees that the decoupling theorem holds. 
For fermions, we have A M ~  g(g,)  and hence apparently no decoupling; and indeed 
that is what occurs in the first case considered above. However, in the case where an 
isospin invariant mass term M is allowed, and we make M >> AM one finds* that the 
contribution to p is O(GF(AM)4/M2); in other words the decoupling theorem is 
valid. 

Now when the heavy mass scale is a result of a symmetry breaking at some higher 
energy it is clear that the heavy particles will lie in representations of SU(2) × U(1) 

* We have explicitly verified the above statement for the case of a left-right symmetric model (see sect. 
4). We believe, however, that the conclusion is quite general. 
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degenerate except for the splittings induced by (~,). This corresponds to the second 
case considered above, and decoupling occurs; so that, for example, in the SU(5) 
grand unified theory the contributions of the X and Y gauge bosons, and of any 
fermions which receive masses from the vacuum expectation value of the Higgs 
24-pier, will be suppressed. For a more detailed discussion of the decoupling 
theorem and the related problem of gauge hierarchies in the context of grand unified 

theories, see refs. [11]. 
As noted earlier, p = 1 at the tree level because of an accidental isospin symmetry 

of the spontaneously broken theory in the tree approximation [1]*. In fact, p = 1 if 
isospin were exactly conserved, but it is intrinsically broken by hypercharge interac- 
tions. Nevertheless, it remains useful to discuss the transformation properties of the 
theory under this isospin and to assign isospin transformation properties to all the 
fields. (This will be discussed in the next section.) At the one-loop level, non-vanishing 
contributions to 81-I arise from mass splittings within isomultiplets which are related 
to couplings in the original lagrangian. By considering a number of different fermion 
and scalar models (summarized in sect. 4), we conjecture that the necessary and 
sufficient condition for 8I-I t> 0 for all values of the couplings is that the mass matrix 
responsible for the splitting transform as the third component of an isovector. The 
standard model with arbitrary mixings among N generations of quark a n d / o r  lepton 
doublets falls into this category. However, it is possible to construct models for 
which the mass matrix transforms otherwise, and we give an example of both a 
scalar and a fermion model for which one can have 81-1 < 0. 

An outline of this paper is as follows: in sect. 2 we show how the deviation of p 
from 1 is determined by the breaking of the global isospin symmetry, distinguishing 
carefully between different types of breaking, for both fermions and bosons trans- 
forming according to arbitrary representations of the gauge group. In sect. 3 we 
derive, both for scalars and fermions, a new formula for 8H. We apply the formula 
immediately to prove 81-I(0)>t 0 in a couple of special cases. In sect. 4, we take up 
several special models; first, we give simple examples of scalar and fermion multi- 
plets which can yield either sign for 8II. Then we consider other special cases of our 
general conjecture. Finally, sect. 5 concludes with some remarks concerning related 

matters. 

2. The standard model, isospin, and heavy particles 

The lagrangian of the standard SU(2) ® U(i) electroweak model (without fermions 
for now) can be written as [12] 

- ½ Tr( D ~  )* ( D ~  ) - V(~*~  ). (2.1) 

* For application of this symmetry to a gencr~ classification of heavy ttiggs effects, see ref. [12]. 
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The (matrix) fields appearing here are defined as follows: Let BP be the U(1) singlet 
and wfi = - fiw$~~ be the SU(2) triplet gauge potentials. Then the field strengths are 

Bpy = itI,, B, - 3 B y 8 

W p"=~,w"-~"w,+g~w,~w,l. (2.2) 

The usual Higgs scalar doublet is 

and the conjugate doublet is 

Together they compose the columns of the matrix 

The Higgs potential V is 

V= +X(+Tr(Qt@) - 0’)‘. 

(2.3) 

(2.4) 

The covariant derivative is defined as 

In the absence of the hypercharge coupling (g’ = 0), the lagrangian possesses a 
global SU(2) 8 SU(2) ’ invariance [ 1,121 given by 

BP + B C’ (2.7) 

where G, H are (independent) SU(2) matrices. 
The presence of q in the hypercharge interaction explicitly breaks the additional 

global SU(2)’ symmetry associated with H. It is worth noting that radiative correc- 
tions to p due to hypercharge do not occur at the one-loop level, so for one-loop 
calculations, the hypercharge coupling g’ can indeed be neglected. Thus the addi- 
tional SU(2)’ symmetry has interesting implications at the one-loop level. 
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Because of spontaneous symmetry breakdown (SSB), • develops a classical field 
which, in the conventional unitary gauge, is represented as 

1 0 ) (2.8) 
( % = ° ( 0  1 " 

(The magnitude o is, of course, gauge invariant and we'll choose energy units so that 
o = 1 henceforth.) Although SSB breaks the SU(2) ® SU(2)' global symmetry, there 
remains a "diagonal" unbroken SU(2), 

~ G ~ G  t .  

~ ~ Gw~G*, (2.9) 

which we shall call isospin invariance. Thus, under isospin, the Higgs field is the sum 
of an isoscalar (TRY) and an isovector (~  - ~(Tr~)l). The vector boson ~,, being 
traceless, remains an isovector, just as it was under weak isospin. 

Another, independent source of isospin breaking comes when fermions are in- 
cluded with Yukawa interactions. For example, in the standard model, with a 

left-handed quark doublet ~'L = DE and right-handed singlets U R, D R, gauge- 

invariant terms occur of the form 

YI~Lt~UR 4- y2~/~L~DR, (2.1o) 

which may be written alternatively as 

y ~ / L ~ R  + A y~L~P03~ R, 

where we defined 

( U R )  
q'R - -  D R  " 

(2.11) 

The first term (y)  possesses the additional SU(2)' invariance 

fir --' H~kR, • --, ~H*,  (2.12) 

but this symmetry is broken by the second term (Ay). (We should remark that 
because of hypercharge, it is not possible to renormalize the theory with Ay = 0, so 
this term must naturally be included.) Thus, except for the hypercharge corrections 
and the mass splitting within isospin multiplets, the full theory is isospin invariant: 

,~--. G,~G t, w, -~ Gw, G*, 

~kL --' G~br, 4'R ~ G~kR. (2.13) 
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In the subsequent sections, we shall focus on the one-loop radiative corrections to p 
from fermions and from scalar bosons, in arbitrary isospin multiplets. For this 
purpose, it is useful to discuss the symmetry properties in general. 

The basis for a general representation of SU(2) may be characterized as a tensor 
field ~,, ,: . . . , , ,  with indices taking values, say, .y 1 transforming as 

~, , . . . , . ,  --. Gia  . . "G,,APj, . . . j , , .  

An irreducible representation (of spin ½n) is characterized by a field with n indices, 
totally symmetric in its indices. Of course, the hermitian conjugate field ~ .  ,,, 
transforms according to the complex conjugate representation, g/, ',, but indices 
may be lowered using the invariant "metric" tensor e,j = -e~,. Thus it is unneces- 
sary, although sometimes convenient, to deal with mixed tensors. 

For fermions, the most general gauge-invariant mass terms are of the form 

D 

rn~tq,...j~bRj,...,. + h.c., (2.14) 

where we have distinguished between left (L) and right (R) chiral fields 6L and ~R" 
One may have gauge-invariant Yukawa couplings to the Higgs field contributing to 
the mass after SSB: 

Y 2 ~ L j , "  "jflJl,XRj2.. 7. q- YI~dLJ, "" "J~J,~Rj2"" "J. -]'- h.c., (2.15) 

where we assume the fields X and ~ carry appropriate hypercharge so that the terms 
are U(I) invariant. Without loss of generality, we may assume these fields transform 
as irreducible representations of SU(2). As with the standard doublets and singlets, 
it is convenient to rewrite these terms as follows: 

Let Cf be defined as before, i.e. 

~ 

%- = • ,  ~j- = % ,  (2.16) 

and define a fermion multiplet Xk . j2 . . . s ,  according to 

X _  . J 2  "J. = ~ , ~  J . '  X _ .  i :  ,°  - -  X j : . . . j .  (2.17) 

(For notational simplicity, the chiral subscript R has been suppressed.) In this 
notation, the Yukawa terms are 

y ~ , . . . j ¢ j k X k . j 2 . . . ~  + A y e . ,  * + h.c. (2.18) • . . j , ( * O 3 ) j l X k , j 2 . .  "J. 
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As before, we may define a new SU(2)' transformation under which ~b L is a singlet 

but • and X are doublets: 

Xk,j,_...J,,--" H k k ' X k ' . ; :  v,," (2.19) 

Under this new SU(2)', the first term (y)  is a singlet, while the second (Ay)  is an 
isovector. (Of course, one could equally well choose (O3)kk'Xk'j2j,, tO be the doublet 
under this SU(2)', an observation which will be useful later. Had we chosen 03 X as 
our doublet, then the transformation properties of the two Yukawa terms would be 
reversed.) One can easily check that, neglecting hypercharge interactions ( g ' =  0), 
the contributions to the lagrangian involving the covariant derivatives are also 

invariant under this new SU(2)'. 
After SSB, ( ~ ) = o / ) ~  so the theory in lowest order remains invariant under 

isospin, defined as the "diagonal" SU(2) given by requiring H = G. Thus, quite 
generally, the first Yukawa term (y )  is isospin invariant while the second (diy) 

transforms as the third component of  an isovector. 
This discussion generalizes to allow the addition of other fields which mix with 

~bL, XR, and ~rt, as well as the interchange of left and right or the inclusion of 
Majorana fields. Generally, the mass matrix will transform as an isosinglet plus an 
isovector but, unlike the preceding example, with several multiplets it may not be 
possible to define an isospin so that the breaking transforms as the third component 
of an isovector. This is best illustrated by an example, which will be useful later. 
Suppose we have a model consisting of two weak left doublets with different 

hypercharge 

(E+) 
L~ = N ' Lb = e -  ' 

and four right weak singlets R +, R °, R °, R -  The usual sort of Yukawa interactions 

are 

ff,,C~(y, + A y ,  o 3 ) R ,  + ff, bdP(yb + A ybo 3 )R  o + h.c., (2.20a) 

where we define right doublets under global SU(2)' to be 

(R+) () R a =  ROa , Rb---- R ° .  
R -  

However, since R ° and R°b have the same hypercharge, then the possibility exists of 
having additional Yukawa terms of the form 

hL~qJR ° + h'L,b;kR ° = ½ h E ~ o _ R  b + ½h'Eb~O+R . .  (2.20b) 
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The general form of the mass matrix is 

' g. 0 0 0 R + i 

0 g'a h 0 R° I (2.21) 
( E - N ~  - ) 0 h'  g,', 0 R ° ' 

0 0 0 gh R , 

where g~ =y~ + A G ,  g', = G  - A G ,  and similarly for gh, g'h. In general, there is no 
redefinition of isospin possible for which the mass terms commute with the third 
component of isospin. (Such a redefinition is, in fact, possible when hg'  b = -h 'g '~ . )  

Therefore, one generally has terms in the mass matrix breaking isospin in directions 
other than the third. 

The present model differs from "generational" types of models, where different 
multiplets of the same weak isospin also have the same hypercharge. Such models 
continue to admit a definition of isospin for which the third component remains 
conserved. Although mixing of the type we have described can be excluded by 
discrete symmetries, in general we know of no reason not to expect such a 
phenomenon so that no component of isospin remains conserved. 

Scalar fields are actually more complicated from this point of view, because, in 
addition to trilinear terms of the type discussed above for fermions, there are quartic 
terms which, after SSB, contribute to the boson mass-squared matrix. Henceforth, 
we'll simply call this the boson mass matrix for short. For simplicity, we will first 
illustrate the complications for the case of another scalar doublet X which, we will 
suppose, does not develop a classical expectation value. For now, let us suppose the 

~ 

field carries a non-zero additive quantum number different from ,#(or ~) [either 
hypercharge or an independent U(I)] so that it always occurs as X*~Xj. Then we may 
couple it to the Higgs scalar in the form 

ax*x,t,t, + flxt'rx 't'*'¢. (2.22) 

To discuss the isospin properties after SSB, we need to introduce 

X =  (XX),  (2.23) 

analogous to ~. Then we may write the previous coupling as 

~ a T r ( X t X ) T r ( O t * ) + ¼ B T r ( X t c r X o 3 ) . T r ( * t e * o 3 ) .  (2.24) 

The first term is invariant under 

e~--, GePHtl , X - - ,  G , H *  2 , (2.25) 

Note that the SU(2) matrices on the right, H I and H 2, may be different for ¢ and X. 
(The ones on the left must be the same to preserve the invariance of the kinetic 
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energy, involving the vector field which transforms as w~ --, Gw~Gt.) The second term 

above breaks this SU(2) ® SU(2)' ® SU(2)" symmetry. After SSB, ( ~ )  = e l ,  and we 
must choose H 1 = G, but we are still free to specify H 2 as we please, i.e., except for 
the hypercharge coupling and the second term (fl)  above, the theory remains 
invariant under SU(2) '® SU(2)". This contribution to the mass matrix becomes, 
after SSB, 

½ T r ( X t X )  + ½/~Tr( x t o 3  X o  3 ). (2.26) 

It is most convenient to define isospin for X as X--* GX (i.e. H 2 = 1), since then the 
symmetry-breaking term (fl)  transforms as the third component  of an isovector*. If 
X does not carry an independent U(I),  and has hypercharge equal to ~, then another 
gauge-invariant quartic term contributing to the mass matrix is 

½"/X*O~.~t~q5 + h.c., (2.27) 

which may be conveniently written as 

~ , [ T r ( X * G X o b ) T r ( d ~ t o ~ o b )  - Tr( XtoaXo3 )Tr(  ~t%d~o3 )]. (2.28) 

The first term in the brackets is invariant under 

¢b --, G ~ H * ,  X-*  GX H ~ . (2.29) 

(Note that in this case, it is most convenient to choose X to transform like ~.) The 
second term breaks this SU(2)® SU(2)' down to the original weak SU(2)(H = 1). 
Under the SU(2) ' (G= 1, H arbitrary) it transforms as the 3,3 component  of a 
second-rank tensor. 

After SSB, this contribution to the mass is 

½y [Tr( x t G  X% ) -  Tr( Xto3Xo3)] .  (2.30) 

Thus, the first term remains invariant under isospin (defined as G = H),  while the 
second transforms like a second-rank tensor. Suppose instead we had chosen to 
define isospin for X as X--, GX. Then the symmetry breaking of the mass term is 
isovector, but it no longer commutes with the third component  of isospin. 

So another way to state the conjectured theorem is as follows: The one-loop 
radiative corrections to 3p due to mass splittings are always positive if there exists'a 
definition of isospin such that the symmetry breaking of the mass matrix transforms 
as the third component  of an isovector. (By mass matrix, we mean, after SSB, the 
mass terms for fermions and the mass-squared terms for bosons.) 

'* If, on the contrary', we chose 112 = G in our definition of isospin so that X transforms as e~, then the 
breaking would be classified as a tensor. 
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The two terms discussed above can be combined  in the form 

¼3'Tr( xt%xOb)Tr(Oto,,OOb ) + ¼(/3-- 3 ' )Tr(  x t % x o 3  )Tr(*to~Oo3 ). (2.31) 

We may  summar ize  our  previous discussion as follows: After  SSB, the symmet ry  
structure may  be described as isovector or isotensor depending on the definit ion of 
isospin chosen. However,  there are two special cases wor thy of note: (i) 3' = O, for 
which there is a definit ion of isospin so that  the symmet ry  breaking t ransforms as 
the third componen t  of  an isovector, and (ii)/3 = 3', for which there is a definit ion 

under  which isospin symmet ry  remains unbroken  and 80 = 0 to one loop order. 
A third al ternative model  occurs when X is a hypercharge singlet, in which case the 

preceding term (y )  is not allowed but instead we may have two other  terms: 

a~,t~(,l,t~ , + ½~x*~2 " q,*oq, + h.c., (2.32) 

which may be written as 

{6Tr(  X * X o , ) T r ( ~ t ~ ) - ½ e T r ( x t o x o t ) T r ( ~ * o c b o s ) .  (2.33) 

One may  also add terms of the a and /3  type as before. As in the first model  (with 
only a and fl terms), it is most  convenient  to define isospin asymmetr ical ly  as 

~ G~G t, X--, GX. (2.34) 

With this definition, the a and 8 terms are invariant  but the /3  and e terms both 

t ransform as the third components of isovectors. 
This exhausts  the discussion of an addit ional  scalar boson doublet.  The generaliza- 

tion to arbi t rary weak isospin representat ions follows a similar path  as for fermions,  
except that  now, in addit ion to possible trilinear couplings, we may  have an 
abundance  of quart ic terms which, after  SSB, contr ibute  to the mass  matrix. 

It is useful to s tandardize the notat ion for these symmet ry  operat ions.  We shall 
denote  the generators  of  weak isospin as T, and the generators  of  isospin U,~ 
(regardless of which definition is adopted.)  The  difference S~ = U~ - T, generates the 
addit ional  SU(2) '  t ransformation.  Clearly, IT a, Sh] = 0, so T,, Sa, and U, have the 
commuta t ion  relations of  orbital,  spin, and total angular  momenta .  

In this language, our conjecture is as follows: Let ~.31~.(x) denote  the quadrat ic  
terms in the lagrangian density due to mat ter  fields*. Suppose there is a definit ion of 
isospin such that  [U 3, ~.3L(x)] = 0. Then the one- loop radiative corrections to ~FI due 

* By matter fields, we mean all fermions and those scalar fields other than the Higgs scalar. ~:vl~ (x) 
denotes their mass for fermions and their mass-squared for scalars. It would be interesting to extend 
the conjecture to the contributions of vector bosons other than the W and Z 0, but we have not 
investigated this case. 
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to these matter fields are non-negative. Moreover, they vanish only if isospin is 
conserved [U~, 91~(x)] = O. 

3. General formalism and elementary applications 

The polarization tensor for the vector boson self-energy is formally given as 

FI ab( q ) ~ "  = --ild4xeiqxT/OIt'~lx~tO~'OX+Jxl"a~,,~'.'b,,I/ I ' _ _ _  
o o ~  (3.1) 

where the ellipses represent possible seagull graphs (for scalars), renormalization 
counterterms, and terms necessary to render the time-ordered product Lorentz 
covariant. As a consequence of minimal coupling the source J~(x) of the vector 
boson field is, for those "matter" fields other than the Higgs field and the vector 
boson field itself, identical with their contribution to the weak isovector current. Of 
course, the longitudinal form factor Hab(q 2) vanishes in the symmetric theory; that 
is, H~d0 ) is non-zero only because of spontaneous symmetry breakdown. We have 
found it useful to express this directly by noting that 

q~,q,l-I~; = q2II,,h(q 2 ) = - i f d % e ' q x T ( O I  O.J~(x)a.Jb(O)lO) + . . . .  (3.2) 

Here the ellipses represent possible counterterms and equal-time terms. (Seagulls are 
cancelled by Schwinger terms in the usual way [13, 14].) It will be important later 
that the only possible equal-time term is a constant, independent of q2 as one can 
easily show. Now what is the divergence 0 .J~(x) of the contribution of "matter" 
fields to the weak current? By a well-known theorem [13, 14] it is just the change 
8E~(x) in the lagrangian due to an infinitesimal, global weak SU(2) transformation 
on the matter fields, keeping the Higgs field ~ and vector boson field W~ fixed. By 
expanding the exponential, we may then obtain 

r i b ( o  ) = ~i f d~xx2T(OIS~_,(x)8~dO)lO> + . . . .  (3.3) 

The ellipses represent only possible renormalization counterterms. No equal-time 
terms contribute. As a practical matter, it is frequently easier to calculate ~ as 
follows: If we consider just those terms in the lagrangian coming from the addition 
of matter fields, then these are SU(2) gauge invariant by themselves. Therefore, 
instead of rotating the matter fields, we can calculate 8 ~  as minus the change in 
these terms obtained by performing a global weak SU(2) transformation on the 
Higgs ~ and vector fields Wf alone, keeping the matter fields fixed. This means the 
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change can be calculated by the replacements 

,# ->  ~½ o~,/,, 

(3.4) 

These developments lead to an extremely simple formula for the one-loop correc- 
tions to IIab, but we shall need some additional notation in order to treat the general 
case. First we shall treat scalar fields and later deal with the spin complications 
associated with fermions. Let X,, denote all the scalar "matter" fields and let M 2 
denote the mass-squared matrix after spontaneous breakdown (i.e. Xt,(M2),mX,,) 
represents the terms quadratic in the scalar fields. Let T, represent the weak charge 
matrices so that 8E~ = i[T,, M2]. Then the one-loop contribution may be represented 
as  

q2Uah(q2)=_i f d"k " ~ - ~  Tr[3E~A(k + )3EbA(k - ) ] , (3.5/ 

where we have denoted the scalar propagator as A ( k ) -  [k 2 -  M 2] - t  and the trace 
denotes the sum over all scalar matter fields. The loop momenta k_  and k_  can be 

½)q, parametrized in a general way as k + = k + (~ -+ where ~ is an arbitrary parame- 
ter. To obtain II~b(0), we must expand to second order in q. Since the integral must 
be independent of the choice of ~, this leads to a number of alternative forms for the 
result (see appendix A), but we find the following most symmetric: 

Using 

±. r d"k [ 3A 3A 

3A A 3A- I  A 
ak~, - ak~, = -2k."<A2' 

(3.6) 

this can also be written as 

d 4 
(2~)4k2Tr[3E~A23~bA2]. 

Note that this converges in four dimensions. Now 

aaeoa = iA[T~, A-']k = -i[T~, k ], 

so the result is simply 

- nob(0)= ½ ( 4k2Tr([To,al[T~,a]), 

(3.7) 

(3.8) 

(3.9) 
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where we have Wick-rotated to the euclidean form of the integral. No counterterms, 
or equal-time terms need be added; this is the full answer. The diagonal elements 
II,~ are manifestly positive, since i[T a, A] is a hermitian matrix. (This could also be 
established via a dispersion relation but it is nice to see it here.) The result may also 
be written as 

I d4k 2 nob(O)=~f~-~Zk Tr(A[T., tTh,  A]]) ,  (3.10) 

which bears a resemblance to Dashen's current algebra formula for Goldstone boson 
masses [15]. 

As a simple application of this formula, consider a model of arbitrary scalar fields 
for which the mass matrix commutes with T 3. (This occurs for example for quartic 
couplings of the type ~,~ %q'X~, *' ...:,(%)j, Xk~:..../,,.) Then clearly I - [33(0  ) = 0, SO that 

8ri=rx+_ 0 (3.11) 

Thus any such model can only increase p. 
Fermions present some complications which can be conveniently organized as 

follows: Models are generally presented in terms of chiral fields which we arrange as 
(column) vectors left L,, and right R,.  After SSB, the mass terms assume the general 
form f f , , , ( M ) , , , R , + h . c . - - E M R  + h.c. (The matrix M is not necessarily square.) 
Because the massive fermions are conveniently represented as Dirac fields, we take 
these chiral fields in four-component form. We then gather the left and right fields 
together in a single column vector so the complete mass matrix takes the block form 

~31L=( 0Mr M)0 " (3.12) 

Similarly, we define weak charges TaL and TaR for the left and right chiral fields, 
respectively. They can be grouped together as 

0 T~ R , (3.13) 

so that the divergence is represented as 

0 Aa ) (3.14) 
a e o  = i [  r a ,  = i - 0 ' 

where A ~ = T ~ L M - M T ~ R .  The  Feynman propagator is S(k)=(](-a.YiL) - l=-  
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A(~ + ~.,~1~. ), with 

Here we have 
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A ( k ) = ( k 2 - " ; ~ 2 ) - ' = (  AL0 AR0 ) .  (3.15) 

~:3E2=( MM*0 M'MO ), (3.16) 

and ALl 
need to introduce the projectors PL = ½(1 -- 3'5) and PR = ½(I + 3'5), and 

( PL 0 ) (3.17) 
P = 0 PR 

Then the one-loop contribution of all fermions may be written succinctly as 

d"k (3.18) q21-i~h(q2)= - i  f ~ Tr[ P6~_~S( k_ )PS~.hS ( k . )] + . . . ,  

=-k 2 -  MM* and ARI = k  2 -  M*M. Note that A~.','~ = ~3~,A. Finally, we 

where the trace includes a sum over Dirac indices. Now, it is convenient to eliminate 
the 3'5 dependence at once, noting that [P, 6~aS(k)] = 0, and p2 = p, and the 3'5 
term gives no contribution to the Dirac trace. Proceeding as before, one can derive 
alternative forms for l-lab(0), including 

Noting 

and 

we find 

l_i~b(0)=_~i f d"k [ ,a 0S6~ a s ]  + " ' "  

OS _ sOS-I  s =  -S3'~S 
Ok, Ok~ 

s s eos  = i s l  g ,  M ]S = - i [  g ,  S ], 

(3.19) 

l - iab(O)_~lj~f~.  ~ _ l . l "  dnk Tr([Ta,S(k)]3",[Th, S(k)]y~,) + "'" . (3.20) 

Unlike the boson case, the integral does not converge in four dimensions, and a 
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counter-term is required. However, we shall soon see that the (logarithmic) diver- 
gence is proportional to 3ab (an isosinglet), so when we form the difference to 
calculate 6p, the divergences will cancel. Thus, as expected, 3p is finite and 
calculable. At this point, it is convenient to carry out the Dirac trace which leads to 

Hub(0)=--~  f d 4k Tr(2[T~,,~3EAI[Tb,~3EA]+k2[T~,A][Tb, A ] ) +  . . .  
- J  (2~.) 4 

(3.21) 

where we have again gone over to euclidean form. Alternatively, this may be written 
a s  

d'k 
- ~ (3.22) 

This latter form is particularly convenient for analyzing the divergence structure, 
which arises from the term of the form 

Tr( 631LA[ Ta,[ Tb, ~L]] A ). (3.23) 

However, because the symmetry breaking is via an isodoublet, one can show (see 
appendix B) that 

(3.24) 

Hence, the divergence is symmetric and will cancel in 3p, as asserted earlier. 
We may illustrate the formalism for a standard left doublet coupled to a pair of 

right singlets. With the notation introduced in the preceding section [eq. (2.11)], the 
relevant matrices are 

63E= (y  + 0Aye 3 Y+AY°3)O ' T"-=( ½°aO 00) . (3.25) 

The isospin generators are taken to be 

U a = (  ½%0 ~Oa ' 0 ) (3.26) 

so that U a commutes with °31L. It can easily be seen that [T 3, 6~2]  = 0, SO that also 
[T3, A]=0.  Moreover, [Ta,[Ta,~3]LA]]=¼A63E (not summed), independent of the 
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choice of a. Hence the entire result for 3II -- H+ _ - I - [ 3 3  is 

3 I I =  _kf ,d4k4kZTr([T+,A][T ,A])I>0. (3.27) 

To recover this result in more familiar form, write 

A L = A R =  

( k 2 + m ~ )  -I  
(3.28) 

Then we find 

[ 2 2 8H = , f (ml ,m2) ,  (3.29) 

where the ubiquitous function f is defined by 

_--/" d4k k2 [ 1 l )2 
f (m2'm2) J (2~r )4  ~k2+mZt k2+m~ 

I 2m m ,n ] (3 0, 1 

16~r 2 m !  - -  m 2 m 2 

From the integral representation, it can be seen that f(m~, m~)>! 0 for all values of 
the masses. Moreover, the integrand is non-negative for all values of the internal 
loop momentum. Indeed, we have found in every case for which 3H/>0,  the 
integrand is also non-negative for every value of the loop momentum. This is a great 
advantage of the momentum space representation (as opposed to Feynman paramet- 
ric form or the explicit analytic dependence on the masses or coupling constants. 
This example also illustrates that those fermion models for which the first term in eq. 
(3.22) completely cancels in the difference 3H have precisely the same form as the 
scalar case. 

The preceding result may be easily generalized to any number of generations of 
left doublets mixing arbitrarily with right singlets. One may easily show that again 
[T~,[Ta, MA]] = ¼MA (not summed on a), so that the first term in eq. (3.22) makes no 
contribution to 6H. The second term is not so simple, since the propagator A now 
involves mixing among many fields. However, it is clear that 3H involves a coupling 
of the T~ matrices up to total weak isospin T =  2. So the product of the two 
propagators must also be coupled to T = 2. But A contains at most T = 1, because it 
involves the composition of doublets and singlets. Hence one may discard all terms 
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in A other than the isovector pieces A(o. Write 

[r,. At',]--[U3, [S3. A'"] 

163 

(3.31) 

We assumed that [U 3, M] = 0, the first term gives zero. And all doublets are S-spin 
singlets in such models, so the second term is also zero. Hence [T 3, A0)] = 0 and 

8I-[=-¼ f d4~k4k2Tr([T+ A°)][T_ A{O])~>O. 
J ( 2 , 7 )  ' ' 

(3.32) 

Consequently, additional generations with arbitrary mixing angles only add to 8p. 
This result may obviously be generalized to allow the addition of left singlets as well, 

with additional gauge-invariant mass terms. 

4. Applications 

In this section we use the general formalism to calculate 8p for a number of 
specific cases for both scalar and fermion fields. These examples, and others which 
we do not present, are all consistent with our conjectured theorem. 

Consider the case of a single scalar doublet X possessing the same hypercharge as 

the Higgs field ~. The transformation properties with respect to U and T spin of the 
resulting lagrangian were treated in some detail in sect. 2. If we write 

x = , 

then the mass eigenstates in general are ~r +, o and Tr °. In general, the mass matrix 

depends on the parameters fl and ~ as well as a common, T-spin invariant mass 
term. Corresponding, the three mass eigenvalues, m .... mo, and m 0 can be arranged 
arbitrarily. Using the formalism of sect. 3, one finds that 

d4k 2 ~ 
~ l - I - - - f ~ T - ~ k  [(A+--A0)2-}- (A , --Ao)2--(A0--Aa)2], (4.1) 

where A+ ~ ( k  2 + m 2 )  - I ,  etc. The quantity in brackets in the integrand can be 

shown to be 

2( m 2 - m 2 )( m 2 - m2o )A2 AoAo. (4.2) 

Consequently, 81-I can have either sign. In particular, the integrand is negative 
definite when the charged particle mass lies between the two neutrals. 

With regard to this model, two special cases were considered in sect. 2. From the 
explicit form of the mass matrix one sees easily that the U-spin symmetric case fl = ~, 
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[see eq. (2.31)] corresponds to m+ = m o and consequent vanishing of 80. On the 

other hand, the limit y = 0 corresponds to m 0 = too, but m+ v ~ m o due to isovector 
breaking in the 3-direction, in which case 8I-I/>0. Thus this model illustrates all 

facets of our conjectured theorem. 
We now consider a scalar model which is formally similar to the type of fermion 

models which we will come to presently. The model consists of a scalar multiplet X 
of T-spin J coupled to two T-spin J - ½ multiplets ~ ,  ~2 by trilinear couplings with 
the Higgs field q~. As was shown in sect. 2 this corresponds to isovector breaking in 
the third direction and so we expect 8p >t 0. Writing the field as a column vector 

, I , =  ~t , 

, ~ 2  • 

the scalar mass matrix takes the form 

M2 = go + aMo + BM3, 

M 3 = N 3 + ~*,  etc., 

where for simplicity we take/ ,2 to be proportional to the unit matrix. The M ' s  and 
their commutation relations with the generators of T spin are given in appendix B; 

M 0 is an isosinglet, and M~ is an isovector. 
By U spin rotations we can write 8II  in the following convenient form: 

d4k k2Tr [T .  ,Ai]  2, 
a n  = - f  (2~.)4 (4.3) 

where 

A? I = k2 + g~ + aMo+ BM1. (4.4) 

The conjecture is that 81I/> 0; we have been unable to establish this to all orders, 
but expanding in powers of a,/3 one finds a leading contribution 

81I = a2/32f d4k k 2  
(2~r) '  (k 2 +g~,) 6Tr(MgM;)'  (4.5) 

which is manifestly positive. We believe that this result is in fact true to all orders in 
a,/3 and continues to hold if we give distinct invariant masses to (X, ~1, ~2)- 

At the end of sect. 3 it was shown that an arbitrary number of fermion doublets of 
the same hypercharge mixed with an arbitrary number of singlet fields gave 8p/> 0. 
Here we consider the generalization to the case in which one has more than one 
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multiplet identical with respect to SU(2) but with different hypercharge. As will be 

seen below, such a model can yield either sign for 3I-I. 
Consider the model described in sect. 2 consisting of two left doublets of different 

hypercharge and four right singlets [see eqs. (2.20) and (2.21)]. 
It is straightforward to apply our formalism to calculate 31-1. If the left propagator 

is parametrized as 

AL= 

a +  0 0 0 i 

0 /33 o ) 
0 3 y 0 ' 

0 0 0 a_  , 

(4.6) 

then the integrand becomes 

T r ( - ½ [ T + , A ] [ T _ , A ] +  [T3,A] 2 } = ½ ( a _ - / 3 ) 2 + ½ ( a _ - Y ) 2 - 3 2 .  (4.7) 

Clearly this will be negative if we can make a ÷ ~ fl and a_  ~ y for fixed 3. But this 
can easily be arranged since a ~ t = k 2 + g~ and a-51 = k 2 + g~,, while /3, y, 6 are 
independent of go and gh. However, one might worry that the integrand cannot be 
made negative for all momenta, so the integral for 8II would turn out to be positive. 
In fact, it is possible to make the integrand negative definite, as can be seen by 
taking a special case, for example, g~, = h, g'o = h ' =  0, go = gb. In this case, one 
neutral particle is massless and the other has mg = 2h 2. The two charged particles 

2 ~O,/2_~___ 2 have been taken to have the same mass m + ga, SO this spectrum looks much 
like the preceding scalar example with negative 3II. Indeed, eq. (4.7) becomes simply 

1 

k2 + mZ+ 

)( ) 2 2  1 1 1 _ - - m , ( m o - - m ~ )  

k 2 kZ+mZ+ k 2 + m ~  ( k 2 + r n 2 ) 2 k 2 ( k 2 + m ~ )  

(4.8) 

Thus, the integrand is negative definite whenever the charged particle mass lies 
between the two neutrals, just as before. 

We now consider a fermion model which is LR symmetric, i.e. has T L = T R. For 
such a model it is clear that gauge-invariant mass terms are allowed, as already 
discussed in the introduction in the context of the decoupling theorem. 

F~) which is via Y ukawa Our model consists of a doublet F 2 L+R coupled 

interactions to singletsfla. ~ R) and f2~L+ R)" AS usual a mass matrix is generated of the 
form 

~Lm~PR + h.c., 
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where q :  = ( F l Fz ft f2) and m has the general form 

It 0 g~ 
0 It 0 
g3 0 Itl 
0 g4 0 

0 

g2 
0 ' 

It2 

(4.9) 

where It, Itl,It2 are gauge-invanant mass terms and g~-4 arise from the Yukawa 
interactions. For general values of the f ' s  it can be seen that m breaks isospin like 
the third component  of an isovector. 

It follows easily that A L and A R are given by 

ALR----( A L ' R '  BL ,R DL BL'R).R (4.10) 

in block form where the entries AL. R -- DE. R are diagonal matrices. The generators 
T ° are given by 

L'R=2 0 0 

It is clear that in this model we will have contributions from both terms in eq. 

(3.21). 
It is easy to show that 

Tr[T",AI[T~,AI=¼Tr[r",AL]2+L--.R,  (no sum on a ) ,  (4.12) 

2Tr[ T °, MA ]2 = 4TrmARTOm,AIT~ 

=Tr[z° ,E]  2, (4.13) 

where we have written mA R in block form: 

mAR = G F) (4.14) 
H 

(where the entries are again 2 × 2 diagonal matrices) and have dropped terms which 

cancel in the difference SO. 
It is easy to see that both (4.12) and (4.13) give positive contributions to SO, since 

A and E, both being diagonal matrices, can clearly be written as linear combinations 
of the unit matrix and z3; whereupon the discussion following eq. (3.10) applies. 

As already discussed in the introduction, one might wish to consider the limit in 
which some or all of the invariant mass terms (It, Itt, It2) become large. It is easy to 
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show that in that limit the contributions to 3p from the heavy particles are of order 
GFg4/t.t 2 So that the decoupling theorems hold as anticipated. 

Up to this point we have not examined any fermion model containing representa- 
tions of isospin greater than ½. Therefore, as a final example we consider the case of 
a fermion representation whose left (right) handed components transform as a triplet 
and a singlet (two doublets). For simplicity we permit Yukawa interactions (with the 
Higgs) only between the triplet and the two doublets, so that the resulting mass 
spectrum consists of three massive and one massless field. If we write the mass term 

a s  t~Lm~R, then 

t 'F/~ 

v/2hl 0 0 0 i 

0 h I h 2 0 ] 

0 0 0 ¢2 h 2 

0 0 0 0 : 

(4.15) 

whence 

A L = ( k  2 +ram*) ' l  

( k 2 + 2 h ~ )  - '  

( k 2 + h 2 + h ~ )  - '  

( k 2 + 2 h 2 )  ' '  

(~2)-~ 

(4.16) 

A R = ( k 2 + m t m ) - l =  

where 

( k 2 + 2 h 2 )  - '  0 

k 2 + h  2 
0 

- h l h  2 

0 

- h l h  2 

k2 + h 2 

f 

0 

0 

0 

0 

(k2 + 2h22)-' 

(4.17) 

~ = k2(k 2 + h 2 + h~). (4.18) 
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As for the preceding case, in this model we find contributions from both terms in 
(3.21). A straightforward calculation gives 

Tr[T3, A]2-- Tr[T+, A][T_,  A] = ( ( k  2 + 2 h 2 ) - '  - (k 2 + h  2 --~- h2)-I  } 2 

q- {(k2q -2h2)  - 1 -  (k 2 71-h 2 q-h2)- l}  2 

q- ½( ( k2 ~- 2h2)-1 -- (k2 %- 2h2)l|-~-(h2 -- h2)/~} 2, 

(4.19) 

T r [ T  3 , M A ]  2 - -  Tr[T+, MA ][T_,  MA] : 
( h2 q- h2 )( h2 - h22 )2 

X 
1 1 } 

( k Z + 2 h  2)2 + ( k 2 + 2 h  2)2 " (4.20) 

Thus both terms are separately non-negative, and vanish in the isospin symmetric 
limit (h 1 = h2). We note once again the advantage of our formalism and the 
momentum-space representation in establishing this result. 

From sect. 2 it can be seen that the mass matrix of this model continues to 
transform like the third component of an isovector if Yukawa interactions are also 
permitted between the singlet and the doublet fields. In that case we have shown 
that the isospin symmetric limit 30 = 0 is an extremum of 30. Of course, according to 
our conjectured theorem it is, in fact, the absolute minimum; although we have not 
demonstrated this explicitly we are confident that it is true. 

A natural generalization of this model would be to the case of left-handed fields of 
T-spin (J,  J -  I) and right-handed fields of T-spin ( J -  ½, J -  ½), but we have not 
carried out this calculation. 

5. Conclusions 

In this paper, we have investigated the one-loop contributions to 0 due to heavy 
scalars and fermions. We have stressed that the isospin transformation properties of 
the mass matrix are important to determining the sign of the deviation of p from 
one. 

We have given a general classification of scalar and fermion contributions to p at 
the one-loop level, and formulated a conjecture about the necessary and sufficient 
conditions for these radiative corrections 30 to be non-negative for all values of the 
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parameters of the mass matrix. The class of models encompassed includes the 
N-generation generalization of the standard model of leptons and fermions, for 
which we have given a separate proof that 8p>t0. We have also developed an 
alternative formalism for the calculation of 60. 

At the one-loop level, non-zero 6p arises from isospin breaking in the mass matrix 
of the fermion or scalar fields. Clearly an independent source of such breaking arises 
from the coupling of the fields to the hypercharge current. This will contribute at the 
two-loop level; a naive estimate gives 6p~ Gvam2/(8~r 2) which, while possibly as 
large as the one-loop corrections due to mass splitting, is phenomenologically 
negligible. 

Within the next few years it is anticipated that precise measurements concerning 
W and Z masses will be made. One-loop calculations of the effect on these masses of 
normal generations of quarks and leptons have already been done [4]. It is evidently 
important to extend the considerations of this paper to q2 ~ M2w, M72; the precise 
values of M w and M z will be a crucial test of the whole structure of the model. In 
the meantime, however, the measurement of P remains our best 'window' on 
unexplored energy scales. 

Appendix A 

In this appendix, we derive some simple identities which result from the repara- 
meterization invariance of one-loop integrals. The sort of expression with which we 
have been dealing takes the form [recall eq. (3.18)] 

F(q2 ) = fd.k Tr[ V,S,( k_ ) V2 $2 ( k_ )], 

k._=k+(~+--½)q. (A.I) 

For simplicity, we suppose the vertices V, are momentum independent. The S,(k) 
represent propagators, either boson or fermion, (and the trace is over all fields). 
Then, since F(q 2) is independent of ~, one can easily generate identities by taking 
derivatives with respect to ~: 

- -  = f [ v. oS (k_) 3F [ 3S,(k+) V2S2(k-)+ V, SI(k+) 2 3k~ ' 3~ 0 = q~ d~kTr V1 3k~, (A.2) 

02S,(k,  ) 3S,( k + ) E 3S2(k-)  t-V, V2S2( k_ ) 32F3~ 2 = 0 = q~q,fd~kTr 2V 1 3k~ 2 ~k~ ~k~k,  

O Sdk_) 
+ V'S(k+)V2 0k~Ok~ (A.3) 
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In this paper, we have used these in the limit q ~ 0: 

fdnkTr[VI~-~-~V2S2 + VISIV 2-~k52] = 0  , 

02 S 
f d ' k T r  V, 3~3k V2S 2 ] -2fd'kTr[V, 3S, OS, ] + v,s,v2 0k.0k. j:  K ] 

(A.4) 

where 

so that 

These are useful when expanding F in powers of q. Alternatively, one may derive 
symmetric forms such as eq. (3.19) by shifting: 

OF = f d"k Tr[ V, OS'( k + I ) V2X2( k )] (A.6) 
3q, Ok, " 

Now shift k ~ k - q before taking the second derivative: 

O2F - f IV toS ' ( k )EoS2(k -q ) ]  (A.7) Oq.Oq~ d ' k T r  Ok. 2 Ok. ' 

etc. 

A p p e n d i x  B 

Because the Higgs field is an isodoublet, the weak isospin transformation proper- 
ties of the mass terms are simple. Let M be the mass matrix arising from sponta- 
neous breakdown of trilinear (Yukawa) couplings. Define 

M~( O ) = ei°a rMe -,oa.r 

Then it is easy to show that 

dEM,~(0 ) 

d0 2 
- ~M+(8) ,  

Ma(O) = Mcos ½0 + 2sin ½03E';, 

8¢~=i[Ji.r,g].  

(B.I) 

(B.2) 

(B.3) 

(A.5)  
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One can use this to generate interesting identities, for example, the diagonal 
elements in eq. (3.19) are 

± r d"k [~S~ aS~ ] 
l-laa(O) = - -g  J ~ - ~  Tr [ -~- ' /"--~- Y'I ' (B.4) 

where 

S~( 0 ) = e'°roSe -'°r,, 

Now observe that the trace is in fact independent of 0, so one need not set 0 = 0. 
This leads to the amusing observation that (setting 0 = ~r), these expressions are 
invariant under the interchange 

M ~ 2 8 E , .  (B.5) 

It is also easy to exploit the doublet character of the Higgs field to work out the 
general form for 6E~ directly from M, without actually writing down the generators 
T~ and calculating the commutator i[T,, M]. For example, suppose the Yukawa 
terms are of the form given in eq. (2.18) of sect. 2. Define the isoscalar N o = 
~j,...jXjI.j2...j. and the isovectors N~ = ~kj, ...j(%)~,Xk,~....j, so that the mass matrix 
is 

M = yN o + A yN  3 + h.c. (B.6) 

Then 

8~ 3 = i[ T 3, M ] = ½i( A yN  0 + N3y ) + h.c., (B.7) 

6£l = ½(iyNI + A yN2) + h.c., 

~ 2  = ½(iyN2 - A yNI)  + h.c. 

Alternatively, one may write 

8 ~ .  =½i[ ( y - -  h y ) N + - -  (y  + h y ) N t ] ,  

(B.8) 

~ _  = ½i[(y + A y ) N _ - -  ( y - -  A y ) N ~  ]. 

Thus, in practice, it is trivial to write down the vertices ~ 
calculating the commutator i[T~, M]. 

(B.9) 

without actually 
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