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We consider the appearance of infinities due to the triangle anomaly in the Weinberg model 
by introducing terms in the lagrangian which restore the Ward identities. It is then shown that 
these are not the same as the divergences which occur in the s tandard model if the quarks (which 
cancel the anomalies) are given a large mass. We have not succeeded in finding a model in which 
the infinities due to the anomalies are the leading effects of heavy fermions. 

1. Introduction 

The decoupling theorem [1] is of great importance in establishing which theories 
are viable as ultraviolet theories given our present day knowledge of the infrared 
(infrared is everything below 300 GeV). In its original form this theorem states that 
the influence of heavy particles on the infrared theory is unobservable, i.e. it can be 
absorbed in the parameters of the infrared theory, if both the infrared and ultra- 
violet theories are renormalizable. For instance, weak interactions mediated by 
vector bosons with a mass of about 100 GeV can be ignored in QED calculations 
concerning the Lamb shift and anomalous magnetic moments. As such, the decou- 
pling theorem has been taken for granted by two generations of physicists. 

But in the context of gauge theories decoupling is by no means evident. Further- 
more, the concept of naturalness reveals a domain of interest beyond the scope of 
the original formulation. For instance, one may inquire whether the influence of the 
heavy particles on the parameters of the infrared theory is unnatural, that is requires 
fine tuning. Thus, in a grand unified theory such as SU(5), the radiative corrections 
to the low lying masses could be much larger than the observed mass which would 
be unnatural. Actually, the recent work of Kazama, Unger and Yao [2] has shown 
that this is not the case, thereby extending the notion of decoupling. Other cases of 
interest are the influence of heavy fermions on the p parameter of the standard 
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model and the possibility that the Higgs scalar is very heavy. In all these cases one 
goes beyond the scope of the decoupling theorem and tries to establish which effects 
of the heavy particles remain in the infrared. The interest in such sensitivity to very 
heavy masses is, of course, evident. 

In this article we consider another case not covered by the decoupling theorem. 
Imagine the standard model with only one generation of fermions, containing the 
electron and its neutrino, and the up and down quarks. If we remove the quarks 
from that theory then we are left with Weinberg's original model of leptons, which is 
in fact non-renormalizable because it contains anomalies. Thus, the decoupling 
theorem is not applicable and if we increase the mass of the quarks to large values 
then we expect to see observable effects in the lepton sector. The question is: how 
strong are these effects? Naively one would expect the following. Consider the 
Weinberg model [3] with its anomalies. The first non-renormalizable infinity occurs 
at the two-loop level and it appears as a logarithmic divergence. Consequently, one 
would think that in the model including quarks the quark mass would show up in 
the lepton sector only at the two-loop level. 

In actual fact this is not the case. Amazingly, it seems to be impossible to 
construct a model that shows decoupling at the one-loop level, and in this article we 
describe some efforts in this direction. 

The consequence of this situation is that indeed anomalies must be absent in the 
infrared theory, even if the ultraviolet theory is not very far away. In a tumbling 
scheme [4], anomalies should be absent at every stage, and 't Hooft 's [5] work on the 
constraints following from the requirement of absence of anomalies is relevant at all 
stages. 

In sect. 2 we consider the pure Weinberg model and establish the whereabouts of 
the non-renormalizable infinities. In sect. 3 we consider the one generation standard 
model, and investigate what happens if the quark masses are made large. In sects. 4 
and 5 we show how two possible ways of evading the difficulties do, in fact, not 
work. 

2. Infinities of the Weinberg model 

Consider the Weinberg model with only an electron and a neutrino in the 
so-called unitary gauge. If there were no anomalies all nonrenormalizable infinities 
would cancel in the S-matrix. But due to the anomaly at the one-loop level the 
symmetry will be broken and the mechanism of cancelling divergences is disturbed. 
Consequently, at some point, at the earliest at the two-loop level, certain non- 
renormalizable divergences will remain. The question is "where?" 

If we tried to pursue a calculation in the way described above, that is starting from 
the unitary gauge, then the analysis would become quite difficult and opaque. 
Instead we will proceed as follows. We start from the theory in the Feynman- 
't I-Iooft gauge where renormalizability seems good. However, due to the anomaly 
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the Ward identities break down and unitarity is violated. We then introduce new 
terms in the lagrangian such that the Ward identities, and thus unitarity, are 
restored. But these new terms are of a non-renormalizable type and they give rise to 
infinities that can be found rather easily. 

To do the calculation we must specify the regularization scheme to be used, in 
particular, we must specify how to treat ~,s. We will use the scheme of ref. [6] in 
which ~,5 is taken to be the product of the first four ~, matrices. Furthermore, the 
Feynman rules are as specified in ref. [7]. In the gauge specified, for example, one 
relevant Ward identity concerns the amplitude for a neutral vector boson to decay 
into two photons, and multiplying this amplitude with k~,, the W ° four-momentum, 
the result must be equal to iM o times the amplitude for a ~0 (the neutral Higgs ghost) 
decay into two photons. Due to the anomaly this is not the case but we can restore 
this and other Ward identities by introducing a term [8] into the lagrangian: 

ig3tanOwe~/~(  F~G~e~ ~ + F ~ F . a , f  tan 0 w ) 
128~r2M 

(2.1) 

(this term is derived in appendix A), where F~ is the field strength of the original 
U(1) vector boson, and 6 ~  is the field strength of the SU(2) vector bosons and 4" is 
the unphysical Higgs. 0 w is the weak mixing angle. Note that this term is of order g3. 

We must now investigate the divergences arising from the term (2.1). This may 
happen if this term is part of a loop, either of the self-energy or triangle type. Using 
vertex (2.1) only once there are several logarithmically divergent amplitudes, of a 
non-renormalizable type. One finds an anomalous magnetic moment for the electron 
(fig. la) and the W (fig. lb) and similar moments for other vector-lepton and 
vector-vector-vector interactions. Infinities are also found in lepton-lepton and 
lepton-vector scattering, for example figs. 2a, b. Since the vertices (2.1) are in fact 
implicit one-loop graphs, these diagrams must be seen as two-loop diagrams. Thus 
logarithmic divergences appear at the two-loop level. At the three-loop level quadratic 
divergences (poles for n = 2) appear, such as in the well-known diagram of fig. 3. 

+ 

and the W 

Fig. 1. 

+ - . -  Fig. I s  

+ • • • F ig  1 b 



560 T. Sterling, M. Veltman / Decoupling 

+ . . .  

-; ~ 9. 

Fig. 2. 

Fig. 3. 

3. The Weinberg model with quarks 

We have shown that the triangle anomaly causes non-renormalizable divergences 
in the two-loop approximation. We would like to relate these divergences to a 
physical parameter which mimics them as it gets large. A model ready made for this 
is the standard [9] model of quarks and leptons. If the quark mass was made large 
and the quarks deeoupled (as they do at the tree level), the remaining theory would 
be the Weinberg model. Since the Weinberg model is not renormalizable this 
decoupling cannot occur. We want a theory in which the non-decoupling is evident 
only through the anomaly, that is in the two loop effects of the previous section. 
However, even in the one-loop approximation there are effects which grow with 
increasing quark mass. 

Hung and Wolfram and Politzer [10] have discussed the effect of heavy fermions 
on the effective Higgs potential. In the standard model the potential is 

Veff. fermions = --4g4 ~] ( mf ) 4 . ~41n~a (3.1) 
fermions 

Clearly, if this term is larger than other ~41n~52 terms, the potential is unbounded 
below and the vacuum is unstable at any local minimum. This makes any attempt to 
let the fermion mass be large suspicious but the potential may have significant 
contributions from higher loops that could give a minimum in the potential. For 
example, if the two-loop contribution has a term 

~4 (In (~2)2 (3.2) 

with a positive coefficient, this would overcome the ~541n~ 2 t e rm  at sufficiently high 
~52 . 
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Fig. 4. 

Assuming that the potential somehow has a minimum we can then find where the 
quark mass enters other one-loop corrections. The source of all the problems are 
graphs with all external lines being Higgs bosons or graphs with two external vector 
bosons and one Higgs, shown in fig. 4 (m = h e a v y  fermion mass, V =  vacuum 
expectation value), as previously discussed by Chanowitz, Furman and Hinchliffe 
[11]. We show in fig. 4 the type of terms encountered in these diagrams expanded as 
a power series in p2/m2, p~ and P2 represent more complicated functions of the 
external momenta.  Some diagrams with small n are calculated in appendix C. 

Some of these graphs (those with less than 4 external lines) can have infinite pieces 
that must be renormalized. There are also finite pieces which do not decrease as the 
mass increases; it is these terms which exhibit most clearly the lack of decoupling at 
one loop. Appendix C shows the calculation of some of these graphs. Of course, 
most of these terms which diverge with increasing m have nothing to do with the 
anomalies. We have attempted to construct a theory which has the Weinberg model 
as a low energy limit and has only the anomalous divergences as low energy 
manifestations of some heavy particles and we have failed. 

4. Extra Higgs bosons 

We have seen that letting the u and d masses become large in the standard model 
creates large effects at the one loop level. We would like to find a model in which the 
infinities due to the anomalies (sect. 2) are the leading effects of the ultraviolet part 
of the theory. In order to do this we must somehow cancel all the effects shown in 
sect. 3. There are two different problems. The first is the vacuum instability caused 
by fermion loops in the effective Higgs potential. This problem can be solved by 
adding some scalars to the theory which are at least as heavy as the fermions; since 
the scalar loops have the opposite sign in the effective potential we can restore the 
potential to its original form. The second problem is that there are effects (at low 
energy, that is less than 300 GeV) which do not decrease as the heavy fermion mass 
increases. In the one-loop approximation these effects involve external Higgs bosons 
(the Higgs boson must be part of the infrared theory). A more complicated Higgs 
sector is able to avoid some of these problems, but introduces new problems. 
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In order to evade the vacuum instability we can add more scalars. In fact, by 
giving the added scalars the same SU(2) × U(1) structure as the heavy fermions we 
can eliminate all effects on the effective potential in the one-loop approximation. A 
way to see this is to consider the lagrangian 

~ =  +A+02A + F+F--~L,~/L + a+OZaj + fj+ fj--fRj,~+R j 

- - G [ ( f L H ) ~ R ,  + (A+H)f ,  + (F+H)al] +h .c .  

- - G [ ( f I ~ H ) t ~  + ( A~-H)f2 + ( F;H)a2]  + h.c., (4.1) 

where j  = 1,2; A, g'l, and F are SU(2) doublets and a, g'R and f are singlets. H is an 
SU(2) constant, (A+H) and (ASH)  are the two SU(2) products of A + and H. This 
lagrangian obeys a supersymmetry: 

8A = ~Rq~I~, 6q, e = (~A)a R + FaL, 8F = ~I-~L ; 

6aj= --~L+Rj, ~+Rj = -- (x3aj)a L - ~ a  R, 6fj= ---aR~q~Rj, (4.2) 

where a is an infinitesimal spinor. The F and ~ fields can be eliminated to give a 
lagrangian with only dynamical fields. Notice that the supersymmetry is good only if 
H is a constant because the supersymmetry depends on dropping a total derivative 
from the lagrangian. However, even if we introduce a kinetic term for H, supersym- 
metric cancellations will occur for diagrams with H constant, that is with zero 
momentum. Specifically, the one-loop effective potential has no contribution from 
the supersymmetric fermion-boson pair. The breaking of the supersymmetry makes 
it unnatural that the fermion and boson fields couple to H with the same strength, 
G, but if we allow this unnatural condition to be satisfied the effect of the fermions 
disappears in the one-loop effective potential. 

In the two-loop approximation this cancellation will not occur because there are 
graphs with internal H lines. In the limit that the mass of the heavy fermions, m, is 
large these graphs will dominate because they have the most factors of m 2 from the 
Higgs coupling. Using the method of Lee and Sciaccaluga [12] we can calculate the 
contribution to the potential from the diagrams of fig. 5: 

2( gm )6 ,4( (ln,2)2 V-- (8 r)4M6 + Aln*2 )' (4.3) 

where A depends on the renormalization point. Since V gets large with ,2 this will 
not cause vacuum instability. 

This eliminates the vacuum problem but the fermion boson pair will not decouple. 
There are several places where this can be observed. First, the Higgs propagator has 
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Fig. 6. 

finite corrections due to the graphs of fig. 6. These graphs can be expanded a s  a 

power series in p2/rn2: 

F = A + B p 2 / m  2 4- C p 4 / m  4 4- . . . .  (4.4) 

A and B are infinite and will be absorbed in the renormalization but C is O(rn 4) and 
so the p4 term is independent of mass. As shown in appendix C, the fermion and 
boson contributions to C have the same sign so there is no way to arrange them to 
cancel. Similarly the decay of the Higgs boson into two photons through a fermion 
and boson loop (fig. 7) is independent of the mass [13] and the scalar loop 
contributes with the same sign as the fermion. 

These, and other problems due to the large coupling of the Higgs to the heavy 
fermions (and bosons) could conceivably be remedied by adding a second Higgs 
doublet which would couple only to the heavy fermions while the other couples only 
to the light fermions, each set having its own global SU(2) to prevent other possible 
couplings. At the tree level we already see effects on the infrared theory. Specifically 
the mass of the charged W bosons will be 

M 2 =g2(Vi2 q_ V2 2). (4.5) 

The extra Higgs must be in the ultraviolet part of the theory so its contribution to 
the W mass is unaccounted for in the infrared theory. This extra Higgs would also 
result in pseudo-Goldstone bosons which are massless at the tree level; these would 
only get a mass proportional to m at the two-loop level. 

The basic problem is that in order to contribute to the anomaly the fermions must 
have a non-trivial SU(2) structure and therefore any Higgs which gives them mass 

. . . . .  q -  . . . .  q -  p h o t o n s  

Fig. 7. 
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must also give the W bosons mass and thereby influence the low energy theory. So 
the only Higgs we can have is the one already in the theory and we have already seen 
the effects a heavy fermion has on its interactions. 

5. Fermion mass mixing 

The Higgs mechanism cannot give the u and d a large mass in a satisfactory way. 
Therefore, we must try to find a different way to make them massive. In SU(2) × U(1) 
models there can be massive fermions without spontaneous symmetry breaking. 
These fermions must either be in a pair, namely a left- and a right-handed fermion 
which are in a single representation of SU(2) and have the same U(1) charge, or in 
SU(2) singlets with no U(1) charge; in the second case there can be a Majorana 
mass. In either case there is no anomaly. The possibility arises that such particles 
could mix with other fermions which have an anomaly in such a way that both 
acquire a mass. However, in the case where these anomaly free masses get large the 
mixing due to relatively small vacuum expectation values is small and the anomaly 
free particles will decouple. 

A familiar example of this type of fermion is the addition of a right handed 
"neutrino" to the Weinberg model, that is an SU(2) singlet with no U(1) charge. This 
particle can both have a Majorana mass and mix with the electron neutrino as a 
result of the Higgs vev. The Higgs fermion sector of the lagrangian is 

(00) (0) 
rne (ev )L  dP + e R + h ' c ' + v - ( e t T ) L  ~o V VR + h.c. q-mt~RVR, 

( , ) =  v. (5.1) 

The mass terms are (note that v~ is left handed), 

(eeVeV~) 

m e 0 0 

0 0 ½m~ 

0 ½m~ M 

e R 

v~ + h.c. 

PR 

(5.2) 

When rn << M the mass eigenstates are approximately 

m~ 
~ 1 ~-~- /~L -~ P[  - -  "~"~- (/~R -/- /,'~ ) ,  withmassm2v/4M,  

c _ m v  , 
qh = VR + VR-t- ~---~ tVL + V~), with mass M. (5.3) 

We see that as M gets large the left-handed neutrino mass gets very small and the 
right-handed component will be very massive. In this situation the decoupling 
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theorem will hold and there will be no noticeable effect of the v R at energies much 
less than its mass. 

In more complicated mass matrices the result is essentially the same; the particles 
which can be massive decouple if their masses are large. Therefore, there is no 
possibility of making massive fermions which have an anomaly by such a method. 

6. Conclusion 

In this paper we have shown that fermions that have a mass acquired by a vacuum 
expectation value which breaks SU(2) × U(1) symmetry will not decouple as their 
mass gets large. Furthermore, this non-decoupling is not due to the anomalies which 
guarantee that fermions with anomalies cannot decouple. It seems that it is impossi- 
ble to construct a model in which the anomalies provide the leading evidence of 
non-decoupling. The anomalies cause divergences only in two-loop diagrams whereas 
heavy fermions will have one-loop diagrams which diverge with the fermion mass. 

Since the largest effects which are seen as the fermion masses get large are not 
related to the anomaly there are wider consequences than forcing the anomalies to 
be cancelled by reasonably hght fermions. There can be no fermions with masses 
much heavier than 300 GeV whose mass breaks SU(2)×  U(1) without leaving 
observable effects at lower energies. These effects would appear in different ways 
depending on the Higgs mass and the complexity of the Higgs sector of the theory. 

We are indebted to William Bardeen, David Unger and Y.-P. Yao for instructive 
comments. 

Appendix A 

TRIANGLE DIAGRAM 

As an example there are two anomalous diagrams, shown in fig. 8. The second 
diagram obtains by a photon interchange from the first. The contribution of the first 
diagram is: 

r ~ _ _  ig3s~ 

4G 

)" d " r T r [ ¢ Y ° ( - y ( p + r ) + "y " ( - i r + ) ( - i ( r - q )  + m ) ] x 
)2 m2)(r+p+k)2+m2) (r2+mZ)((r+p + 

The notation is as in ref. [7]. To work out the trace it is expedient to move factors 
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oc,k ~..,k 

Fig. 8. 

--iTr + m to the left or right, such as to obtain the combinat ion  ( - iTr  + rn)(iyr + 
m )  = r 2 ÷ m 2. The trace works out  to be 

Tr[ 1= - - ( r  2 + m2)[Tr(757'~iyrTJ'7 ~ } + Tr('y57~iypT~7 ~ } 

-Tr(¢v°7"7"i7q}]- 2i, Tr ('r 'y°i.lpv"i ,r } 

+ 2 ir~Tr {75y~ivrv~iyq } + Tr  {75y~ivpT~iTrv~iTq } 

= - -4 i (  r2 + m 2 ) e ~ x ( r  + P  -- q)x  + 8ir~e~x~.P~r. 

+ 8ir.e~x~qxr ~ + Tr  {ysy"iypT~iTry~iyq }. 

N o w  we use the functions B, C of ref. [7], but  differing by  a factor iTr 2, for example 

Bo(p,ml ,m2)  f 1 
= j d . q  (qZ + m ~ ) ( ( q - p ) 2 +  m2 ) . 

In terms of these functions, and suppressing mass dependence:  

4c o 
ig3s ~ 1-'/~'~ = - 4ie,~j,~x { B 1 ( k ) k  x - Bo(k )qx } 

+ 8ieax,~ Px{ 621P.& + 622k~k~ + 623( P.kx + k~p~) + C24~}~ } 

+ 8ie~x..qx { C2. p.p. + Czzk~k. + C23 ( p~k. + k~ p~ ) + C24~g } 

+ Tr  {,/57~i'/pT~ivpy"iTq } C~1 + Tr  {757~iypT~iykT~iTq } C~2. 

All functions C have the same functional  dependence,  i,e. C = C( p, k, m, m, m). The 
remaining traces can now be done easily. For  equal masses B 1 = - ½ B  0, and one 
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finds 

4 c  o 
ig3s 2 F~ ~ =  i e ~ (  - -2Bo(k ) (  p -- q)x + 8C24 ( p - -  q)x 

+ 4 p 2 ( C l l  --  C12 )q~ - 4 q Z C l 2 P x  ) 

+ 8ie~x~.( (C23 - C22 )Pxk~k, + (C2, - C23 + C1, - C12 )P?~kx Pt~ }" 

To obtain the complete amplitude we must add on the same term, but with p, # and 
q. v interchanged. For the second diagram we get functions C defined by 

C ( p , q ) = C ( q , p ) .  

The following relations hold: 

Co =Co; C,,--c,,, 

C-22 = C2l -~- C22 --  2C23 ; C23 = C2l - C23 ; C24 ~- C24. 

One so obtains 

W ~ II 

-- -g3s2 [ e,,~,.x ( -4Bo(  k )( p - k )~, 
4c o 

+ 16C24(P- q)x + 8 p 2 ( C , , -  C l2 )qx -  8q2CI2Pa} 

+ 16e~x,~pxk~((C22 + C,2)k ~ + (C23 + C,2)p~ } 

+ 16e~x.~pxk.((C23 - C22 )k .  + (C2, - C23 + C,, - C,2 )p.}] .  

To verify the Ward identity we need to compute the diagrams of fig. 9. The 
corresponding equations are like those for the F given before, but with ys~,~ replaced 
by - 2 c o ( m / M ) @ .  The trace works out to 4mex..~pxq~. Adding the contribution of 
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Fig. 9. 

the second diagram of fig. 9 we find for the total of fig. 9: 

4im2g3s 2 
F~  - M ~x~Pxq~C°" 

The relevant Ward identity derives from the gauge fixing term - 0~W~ ° + M0~ °, with 

M o = M / c  o. This implies 

it, r ~  -- M F ~  ~ ( ~ W  I~ 0 ,  
C o 

To evaluate this one uses the identity 

C 2 4  - -  ¼ i , / r 2  1 ._ 2 / -  i 1 -- ym ~o ~- ~ {Bo(k)  - f , C , ,  --f2C12), 

f l = p  2, f z = p 2 - ( p + q )  2 

One obtains 

ig3s~e~,,xk~p~{8i~r2-16m2Co) + 4irn2g3s~ 2~r2g3s~ 
4c ° Co ~ x ~  Pxq~Co - c ~  e ~ k ~ p ~ .  

This is non-zero, which is the anomaly. The anomaly would be removed if F~ ~ had 
the additional term: 

2 9 3 S 2 , n  -2 

M ex~Pxq~'  

which corresponds to a term 

i-3s 2 
g o ~ A ~ A  ~o 

16~r2MeXj,~flx ~o~ ~9 

in the lagrangian (multiply by (2rr)4i, and remember that each derivative gives a 
factor i). Note  that this term is real, because one of the indices of the e tensor is 4 
and 04 and A 4 a r e  imaginary with our convention for the metric. 

This is only one of the anomalous graphs in the standard weak model. Using the 
formula for all anomalies given by Bardeen [8] we deduce the term that will remove 
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all anomalies in one loop: 

569 

ig 3tanO ( 
128 rr 2M e~'uK" \ Fx UGKa~pa q- Fax F~ ~q~o tan 0 ) 

where Fx~ , is the W(1) field strength, OxB ° --8~B °, G~ is the SU(2) field strength, 
a a b c  b c 8~Bfl-O.B~ +ge B~B., and ~a is the unphysical Higgs. We can expand this to 

find all the effective vertices necessary to restore the Ward identities; removing a 
factor ( g 37r 2 /M)  ex~ ,~ ~ from each vertex we have: 

~o ~P'# 
. . . . .  " ~ c b v  2SePxqk 

~o____ s@ 
zc e Px% 

w?p,F 
o /w ,  q,v 

. . . . . .  SeCepx% 
w?p,;J 

l 
p,/J 

~_o___ w7~ igse 
W%' 2 PX 

?-- -- - WT~< 2co p>, 

w+w 

- [ - - -  ",wq, v ~°-Pxqu 
t , 

s e 
. . . . .  - - w # q , v  2c- ePxqk 

_+ f p'/j 
- 2 (Px-qx) 

£ - - -~+_+  o~,v +igs~ 

Iw-+,~ 
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+ 1% ~ -~----~-+_ w°p,p -igse,d~ +c2~ 
Iw~< 

_+ w?p,~ 

; - 7 -  (P~,- q,~,) _*____~+_ wo, q,v igs~ 
Iw+-,~ 

Appendix B 

FEYNMAN RULES FOR "SUPERSYMMETRIC" FERMION AND BOSON INTERACTION WITH 
THE HIGGS BOSON 

Following the conventions in Passarino and Veltman [7] we can add the Feynman 

rules for u and d quark interactions with the Higgs. Using the lagrangian, eq. (4.1), 

and letting 

UL ' ~RI  = UR' ~R2 = dR' 

H =  Z +  i~ 3 + V (A,) 
A =  A2 ' 

and eliminating F and f~, we can then find the Feynman rules for these fields: 

Vertices 
U ) 

d 

u ,d>  

tl 

d 

d 
i 

i 
i + 
i _ 

LI 

i 
I 
i +- 

i 
i 
i 

Iz 

~3 
d 

~3 

i.G75 

~Gb, 5 

G 

[G~ s 

- iG~ s 



T. Sterling, M. Veltman / Decoupling 571 

A.a . . A,a 
i 
i , -#r2 Gm 

,Z 
A,a . • A.a 

. 7 ~ ,  - G 2 

"dp- "ch- 

A,a . . A,a 

/ ' " "  - G z 

"Z " "Z  

A,a . . A,a 

• .""... _0z  4;; 
Propagators 

A,a(AI,A2,aT, az) 
1 

p2+m2-i.E 

i # +  m 
d,U. > 

1:)2 + m  2 ie 

dp + I 
p 2 - i c  

I 

p~-~s 

p~- tE 
~3 

A p p e n d i x  C 

RESIDUAL EFFECTS OF HEAVY FERMIONS 

The simplest graph to calculate is the Higgs self-energy graph [11], using the rules 
of appendix B and ref. [7]: 

. . . . .  

P 

Fzf = - 1  d . p  ~ ~ p ) 2 + m 2 ) ( p 2 + m 2  ) - 2 -  

= _ fo~dX 2 G 2 i ~ " / 2 F ( 2  - ½n) 1 - n 
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We can expand this in a Laurent series in e = 4 - n and m to find the behavior as m 
gets large: 

F2 f =  G2[ -6m2[  2~'2 + C -  rrZlnm 2 + ½rr 2] 

- q 2 [  2rrze ~r 2 q4 ] 
+ C - ~ r 2 1 n m 2 - Z r r  2 + T ~ + . . .  , 

where C is a constant. Since G = m/V the term quartic in q is constant as m gets 
large. 

This result can be used to calculate the corrections to the three-Higgs interaction 
using the fact that 

/7V7 

to calculate the graphs 

,.~ -% ,.~ -% 

+ © 
' i 1 ' 
'0 I0 

F3f°- ~ 37n F ~ = - ~ -  lZm -e -rr21n - -2 ' /r2 q -" ' "  ' 

Then we can use Bose symmetry to deduce that the graphs 

G + ©  
I i 

Ir [r 

are • 
G3 [ [ 2vr2 

r3'= S 12m - - - - , n ' 2 l n  m 2 - - - ~ ]  --,,'7" 
2 ( p2 + qZ + r2 ) ] 

This is the lowest order correction which increases with m and cannot be absorbed 
into the renormalization. 
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The scalar partners have two one-loop corrections to the propagator: 

. . . . . . . .  ( 2 ) -  . . . .  

(a) (~) 

Expanding as before: 

1 )2 F~a=2G2m2f d'p ( p 2 + m 2 ) ( ( p + q  + m  2 ) 

i~rn/2F(2 - ½n12 n/2 ' 
= 2 G 2 m 2 f d X ( m 2 + x ( l _ x ) q 2  

1 
r b= -C2fd.p (p2 + m 2 ) 

-G2i~r"/2V(2- ½n ) 

(1 -½n)(rn2) 1 n/2 

] ] F~=G 2 3m 2 +C-~r21nm2+½~r 2 - ½ r r 2 q 2 + - ~ - ~ - 7 + . . . .  

Notice that 2 of these charged scalars will cancel the mass renormalization necessary 
for 1 fermion, but not the higher terms in q2. 

The three-Higgs graph can be found as before: 

F~ = ½G2[ - 6m[ 2rr3 + C _  ~.21n m2 + 1~2]  _ } _ . . . ] .  

For the scalar there is no (p2 + q2 + r 2) term. 
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