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Rotational Brownian Motion of an Asymmetric Top
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Some time ago J.T. Lewis, J. McConnell and I published a paper with this same title in which we
showed how methods of stochastic differential equations could be used to discuss the motion of an
asymmetric top driven by white noise random torques [1]. Since the detailed results, including the
application to the calculation of complex polarizabilities of asymmetric top molecules and the cor-
relation times associated with the dipolar broadening of nuclear magnetic resonance lines, are given in
that paper, I will not give them here and will instead emphasize the general methods. In part these
methods are those described in a set of unpublished “Notes on Stochastic Differential Equations’ which
I wrote in June 1974, inspired by a visit and talk at the University of Michigan by N.G. van Kampen.
In his talk van Kampen described the methods based on the cumulant expansion of the time-ordered
exponential which he and, independently, R.F. Fox had developed for handling multiplicative stochastic
equations {2,3]. I realized that the same results could be obtained by an extension of the Method of
Averaging of Krylov and Bogoliubov [4, 5], a well known method of nonlinear mechanics, and that is
what is described in the above mentioned notes. The averaging method applies to nonlinear as well as
to linear stochastic differential equations and the application to rotational Brownian motion is in part an
illustration of this advantage.

The fundamental equations of motion are the Euler-Langevin equations

dL/dt+ @ X L+F-w = N(t), 0y

where L is the angular momentum and @ the angular velocity, related by the moment of inertia tensor
L

L=1w. )
This is just the familiar Euler equation in a body-fixed coordinate frame with an added frictional torque
F - and a random torque N(¢) [6]. The friction tensor F is assumed to be constant and to commute
with the moment of inertia tensor, so it may be written

F=1'B=B-I, 3)

where B is the frictional decay rate tensor. The constant friction tensor implies, via the fluctuation-
dissipation theorem [7, 8], that the random torque must be Gaussian white noise with covariance

(N(t)N(t'))=2kTF 6(t — ¢'). 4)
We seek the stationary process w(t), which is a solution of (1) with mean zero,

(w())=0. )
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This can be written in the form of a perturbation series
w(t)= 0P+ 0N+ @)+ - -, ©)

where @®)(r) is a homogeneous functional of degree n in N(t). Explicitly,

0P =1"" f dt’ exp{-B(t - 1)} - N(t), ?
and
w“%0=r*-f<ﬂ%mm—B0—ﬂ»-}iI-w”ﬂaqxwwoi ®)

The first order term @)(¢) is a Gaussian process with covariance
(@(r) @®(t")y = kT - exp{—BJt - £}. )

This is just the covariance of the well-known Ornstein—Uhlenbeck process, the stationary solution of the
Langevin equation which results when the nonlinear term in (1) is dropped. A result of the presence of
this nonlinear term is that the process @(t) is not Gaussian. In particular this means that in general
correlations involving an odd number of factors @(¢#) do not vanish (except for the first). Nevertheless,
the expansion (6) and the expressions (7) and (8) can be used to calculate the various correlations of
w(t) to any given order. When we do this, e.g., for the autocorrelation, we see explicitly that the series
(6) is an expansion in powers of the parameter

(kTIT)*B~", (10)

where I is a typical moment of inertia (eigenvalue of I) and B is a typical frictional decay rate
(eigenvalue of B). Physically this parameter is the ratio of the mean thermal angular velocity of rotation
to the rate of decay of a fluctuation of angular velocity and is small near the rotational diffusion limit,
where inertial effects are small. This means that our results are useful only near that limit, what we
calculate are the inertial corrections to diffusion.

The process w(t) “drives” the rotational motion of the top. We describe this in terms of a matrix or
operator R(¢) which describes the orientation of the body-fixed coordinate axes relative to the space
fixed axes, which satisfies the kinematical equation of motion:

dR/dt = w(t) - oR, (11
where

w(t): 0 = 0.(0) 0 t 0,(1) 0y + w.(1) o, (12)
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in which the components of w(t) are referred to the body fixed axes and o,, o, and o, are
time-independent antihermetian operators, generators of infinitesimal rotations, which satisfy the
commutation relation

[o-x’ Uy] =70y (13)

and cyclic permutations. In the simplest case R(¢) is the 3 X 3 matrix of the direction cosines between
the body-fixed and space-fixed axes and

0 00 00 -1 010
o.=|0 01|, o=[00 0| a=[-100]| (14)
0 -1 0 10 0 000

Equation (11) is of the form of an equation for a multiplicative stochastic process, multiplicative because
the random driving term e(¢) is multiplicative, in contrast to the additive random torque in (1). The
solution of this equation is a random process R(¢). The physically observed quantities are expressed in
terms of the after-effect function, which is the mean (R(¢)) subject to the condition that at ¢ = 0 the top
is oriented so that the body-fixed and space-fixed axes coincide. That is

R(0)=(R(0))= 1. (15)

Multiplicative stochastic equations of the form (11) have much in common with the equations of
motion for parametrically driven mechanical systems, which in turn have much in common with the
equations for nonlinear mechanical systems. As I indicated above, we apply a method based on the
averaging methods of nonlinear mechanics to discuss our equation, which we rewrite in the form

dR/dt = [eKP(t) + 2KP(£) + - - -]R, (16)
where
e"K™(t) = 0™(t) - 0. (17)

Here the small parameter ¢ has been exhibited in order to keep track of orders; we can think of it as
the parameter (10). Now for & small, the solution of (16) must consist of a slowly varying mean (R(¢))
about which there will be small-amplitude fluctuations. We therefore seek a solution in the form
R()=[1+ eFP@)+ 2FP@)+ - - ‘KR (), (18)
where F"(¢) is a stochastic operator with mean zero
(F™(t)=0. (19)

The mean (R(f)) must satisfy a nonstochastic differential equation of the form

d(R(1))/dt = [eQD(1) + 2QD(1) + - - KR(2)), (20)



252 New stochastic methods in physics
where 2®(¢) is a nonstochastic operator. Inserting (18) in (16) and using (20), we then equate
coefficients of equal powers of £ on either side to get a sequence of equations for determining the F’s
and the 2’s:

NV +drFYde = KO

0(2) + dF(Z)/dt = K(Z) + K(I)F(l) — F(I)Q(l) (21)

.., etc.

Each of these equations is of the same form, the right hand side is known in terms of the solution of the
previous equations. The solution of the first order equation is therefore typical. From this one equation
we must determine two unknowns, the stochastic F(¢) and the nonstochastic £2(t). What we do is to
determine 22(¢) as a condition of existence of the solution F®(¢) satisfying (19). Clearly, forming the
mean of this equation, we must have

0O) = (KD(1)). (22)

With this we can solve for F"(¢) with the initial condition (15). We find
FO() = f dr, [KO(@) — (K1), 23)
0

In fact, on account of (5) we have (K™(¢)) = 0, which means in particular 2(¢) vanishes. Using this
and (23) in the second order equation (21) we find

3

09(t,) = f dt, (K1) KV()) 24
and

FO(f) = f dt, K1) + [ d, f At [KO(1) KO ()~ (K1) KOE)). (25)

In this way we can proceed, successively calculating F™(¢) and 2“(¢) to any given order.

As I indicated above, the physical observables are expressed in terms of the after-effect function,
which satisfies the equation (2) with the successive £2(¢) now known. Explicitly, using the above results
we obtain

NV =0, £091)=kTo - F '[I-exp{-Bt}] - o, (26)

and similar, though increasingly complicated, results in higher order. Here I should remark that the
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cumulant method of van Kampen and Fox yields a result corresponding to the time-ordered exponential
solution of eq. (20). But we have not yet finished. The right hand side of (20) is small for small ¢, but has
a rapid time dependence on the scale of the frictional decay time. This is again a situation, now in a
nonstochastic equation, to which the averaging method applies. The solution (R(¢)) will consist of a

slowly varying part, which we denote by R(¢), about which there will be a small amplitude, rapid
variation. We accordingly put

(R()=[1+eAP()+£2AP(0)+ - - R, (27)
where R, since it is to exhibit only the slow motion, satisfies an equation of the form
dR/dt = [eGP+ £GP+ - - | R, (28)

in which the G’s are fime-independent operators. As above, putting (27) in (20) and using (28) we get a
sequence of equations for determining the A’s and G's:

G®+dAV/dt = QO),

G? +dA®dt = QO(1) + D) AV (1)~ AV() G, (29)

.., etc.
Again as above, each of these equations is of the same form with the right hand side known in terms of
the solutions of the earlier equations. In each equation there are two unknowns, G™ and A™(¢), and
G must be determined as a condition of existence of a solution A™(¢) which for long times remains
bounded. From (26) we see that in our case the rapid time dependence is an exponential decay, so it is

clear that G must be chosen to be the value of the right hand side at ¢ = «. The solution of the first
order equations is therefore

GY=00w),  AV()= f dr, [29(1) — N9()], (30)

where the constant of integration has been chosen so that
A™(0)= 0. @1

Continuing, the solution of the second order equation is

6= %)+ [ a1 [29(=), 2) D
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and

A®0) = [ an 1090 - 07

¥ [ dt, j dt, {20(t) - QOE}HOV(L) - QO()} - j dr, f L [20), 00w (3)

Here [A, B]= AB — BA is the commutator. Using (26) we see that the first order terms vanish, and the
second order terms take the explicit form:

GV=kTo-F' o (34
and
A®(t)=—-kTo - (F-B) - [1-exp{-Bt}] - 0. (35)

In this way we can continue, calculating the terms to a given order, although the calculations become
rapidly more laborious as the order increases. The calculations in higher order can be systematized and
made somewhat simpler by introducing graphical methods, but [ won’t go into those here [9].

The integration of (28) is now trivial, since the G’s are time independent. We can therefore express
the after-effect function in the explicit form:

(R(t)) = {1+ eAD(t)+ e AP(t) + - - -}exp{Gt} (36)
where
G=eCV+ eGP+ - - (37

In this form one sees that we have carried the discussion of the after-effect function beyond its
expansion as a time-ordered exponential, which would be the result of directly integrating (20), and
separated the rapid, short time, behavior, described by the A’s, from the slow long time behavior,
described by the exponential. With this T hope I have given some idea of the calculational power of these
averaging methods.
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