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Rotational Brownian Motion of an Asymmetric Top

G.W. FORD
Dept.of Physics.The University of Michigan,Ann Arbor, Michigan 48109. U.S.A.

Some time ago J.T. Lewis, J. McConnell and I publisheda paperwith this sametitle in which we
showedhow methodsof stochasticdifferential equationscould be used to discussthe motion of an
asymmetrictop driven by white noise random torques[1]. Since the detailed results, including the
application to the calculation of complex polarizabilitiesof asymmetrictop moleculesand the cor-
relationtimesassociatedwith the dipolar broadeningof nuclearmagneticresonancelines,are given in
that paper,I will not give them hereand will insteademphasizethe generalmethods.In part these
methodsare thosedescribedin a set of unpublished“Notes on StochasticDifferential Equations”which
I wrote in June1974, inspired by a visit and talk at the University of Michigan by N.G. van Kampen.
In his talk van Kampen describedthe methodsbasedon the cumulantexpansionof the time-ordered
exponentialwhich he and,independently,R.F.Fox haddevelopedfor handlingmultiplicativestochastic
equations[2, 3]. I realizedthat the sameresultscould be obtainedby an extensionof the Method of
Averaging of Krylov andBogoliubov [4,5], a well known methodof nonlinearmechanics,andthat is
what is describedin the abovementionednotes.The averagingmethodapplies to nonlinearas well as
to linear stochasticdifferentialequationsandthe applicationto rotationalBrownianmotion is in part an
illustration of thisadvantage.

The fundamentalequationsof motion are the Euler—Langevinequations

dL/dt+wxL+Fw=N(t), (1)

whereL is the angularmomentumand ü the angularvelocity, relatedby the momentof inertia tensor
I,

L=Iw. (2)

This is just the familiar Eulerequationin abody-fixedcoordinateframe with an addedfrictional torque
F• w and a randomtorque N(t) [6]. The friction tensorF is assumedto be constantandto commute
with the momentof inertia tensor,so it maybe written

F=IB=B•I, (3)

whereB is the frictional decayrate tensor.The constantfriction tensorimplies, via the fluctuation-
dissipationtheorem[7,8], that the randomtorquemust be Gaussianwhite noisewith covariance

(N(t)N(t’)) = 2kTFo(t — t’). (4)

We seekthe stationary processw(t), which is a solution of (1) with meanzero,

(w(t))=O. (5)
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This can bewritten in the form of a perturbationseries

w(t) = w°~(t)+ w~2~(t)+ w~3~(t)+ . . , (6)

wherew~”~(t)is a homogeneousfunctionalof degreen in N(t). Explicitly,

= I_i J dt’ exp{—B(t — t’)} N(t’), (7)

and

w~(t)= J dt’ exp{—B(t — t’)}• fl I ~~~~(t’) x o°~(t’). (8)

The first order term oi~1~(t)is a Gaussianprocesswith covariance

(w°~(t)w~1~(t’))= kTF1 exp{—BIt — t’I}. (9)

This is just the covarianceof the well-known Omstein—Uhlenbeckprocess,thestationarysolutionof the
Langevin equationwhich resultswhenthe nonlineartermin (1) is dropped.A result of the presenceof
this nonlinearterm is that the processto(t) is not Gaussian.In particular this meansthat in general
correlationsinvolving an odd numberof factorso(t) do not vanish(exceptfor the first). Nevertheless,
the expansion(6) and the expressions(7) and (8) can be usedto calculatethe various correlationsof
w(t) to anygiven order.Whenwe do this, e.g.,for the autocorrelation,we seeexplicitly that the series
(6) is an expansionin powersof the parameter

(kT/I)1~’2B’, (10)

where I is a typical moment of inertia (eigenvalueof I) and B is a typical frictional decay rate
(eigenvalueof B). Physicallythis parameteris the ratio of the meanthermalangularvelocity of rotation
to the rateof decayof a fluctuation of angularvelocity andis smallnearthe rotationaldiffusion limit,
where inertial effects are small. This meansthat our resultsare useful only nearthat limit, what we
calculatearethe inertial correctionsto diffusion.

The processo(t) “drives” the rotationalmotion of the top. We describethis in termsof a matrix or
operatorR(t) which describesthe orientation of the body-fixed coordinateaxesrelative to the space
fixed axes,which satisfiesthe kinematicalequationof motion:

dR/dt= o,(t) oR, (11)

where

(12)
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in which the componentsof o(t) are referred to the body fixed axes and o~,o~and o~are
time-independentantihermetianoperators,generatorsof infinitesimal rotations, which satisfy the
commutationrelation

(13)

and cyclic permutations.In the simplestcaseR(t) is the 3 x 3 matrix of the direction cosinesbetween
the body-fixed andspace-fixedaxesand

[0 0 01 [o 0 —ii 0 1 0
o~=l0 0 ii, o~,I00 01, o= —1 0 0 . (14)

[0 —1 0] [1 0 0] 0 0 0

Equation(11) is of the form of an equationfor amultiplicative stochasticprocess,multiplicative because
the randomdriving term w(t) is multiplicative, in contrastto the additive randomtorque in (1). The
solutionof this equationis a randomprocessR(t). The physically observedquantitiesareexpressedin
termsof the after-effectfunction, which is themean(R(t)) subjectto the conditionthat at t = 0 the top
is orientedso that the body-fixedandspace-fixedaxescoincide.That is

R(0)=(R(0))= 1. (15)

Multiplicative stochasticequationsof the form (11) have much in commonwith the equationsof
motion for parametricallydriven mechanicalsystems,which in turn havemuch in commonwith the
equationsfor nonlinearmechanicalsystems.As I indicatedabove, we apply a method basedon the
averagingmethodsof nonlinearmechanicsto discussour equation,which werewrite in the form

dR/dt [eK”~(t)+ e2K~2~(t)+ ]R, (16)

where

= w~(t)u. (17)

Here the small parameters hasbeenexhibitedin order to keeptrack of orders;we can think of it as
the parameter(10). Now for e small, the solutionof (16) must consistof a slowly varying mean(R(t))
aboutwhich therewill be small-amplitudefluctuations.We thereforeseekasolution in the form

R(t) = [1+ eF”~(t)+ e2F~2~(t)+ j(R(t)), (18)

whereF°°(t)is a stochasticoperatorwith meanzero

(F~”~(t))= 0. (19)

The mean(R (t)) mustsatisfy anonstochasticdifferentialequationof theform

d(R(t))/dt= [sO~1~(t)+ e2Q~2~(t)+ ](R(t)), (20)
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where f?~’~(t)is a nonstochasticoperator. Inserting (18) in (16) and using (20), we then equate
coefficientsof equalpowersof E on eitherside to get a sequenceof equationsfor determiningthe F’s
andthe Ii’s:

~(t) + dF°~/dt= ~

Q(2) + dF~2~/dt= K~2~+ K(I)F(H — ~ (21)

...,etc.

Eachof theseequationsis of thesameform, theright handsideis knownin termsof the solutionof the
previousequations.The solutionof the first orderequationis thereforetypical. Fromthis oneequation
we mustdeterminetwo unknowns,the stochasticF”~(t)and the nonstochastic,Q(t)(t). Whatwe do is to
determinef1°~(t)as a condition of existenceof the solutionFm(t) satisfying (19). Clearly, forming the
meanof thisequation,wemust have

= (.K°~(t)) (22)

With this we can solve for F°~(t)with the initial condition(15). We find

Fm(t) = Jdt
1 [K~’~(t)—(K°~(t))]. (23)

In fact, on accountof (5) we have (K~”~(t))= 0, which meansin particular f1~(t)vanishes.Using this

and(23) in the secondorderequation(21) we find

11~
2~(t

1)= J dt~(K~
1~(t

1)K~
t~(t

2)) (24)

and

F~
2~(t)= J dt

1 K~
2~(t

1)+ Jdt1 J dt2 [KW(t1)Km(t2)— (Km(t1)K~’~(t2))]. (25)

In this way we can proceed,successivelycalculatingF~”~(t)and11~(t)to any given order.
As I indicated above, the physical observablesare expressedin terms of the after-effect function,

which satisfiesthe equation(2) with the successiveQ~”~(t)nowknown.Explicitly, usingthe aboveresults
we obtain

e1i~
t~(t)= 0, e2Qt2~(t)= kTff F’[l — exp{—Bt}] o, (26)

and similar, though increasinglycomplicated,resultsin higher order. Here I should remark that the
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cumulantmethodof vanKampenandFox yields aresultcorrespondingto the time-orderedexponential
solutionof eq. (20). But we havenot yet finished.The right handsideof (20) is small for smalle,but has
a rapid time dependenceon the scaleof the frictional decaytime. This is againa situation, now in a
nonstochasticequation,to which the averagingmethodapplies.The solution (R(t)) will consist of a
slowly varying part, which we denoteby ~(t), about which therewill be a small amplitude, rapid
variation.We accordinglyput

(R(t))= [1+ eA°~(t)+ e2A~2~(t)+ .]~, (27)

where~, sinceit is to exhibit only the slow motion, satisfiesan equationof the form

d~11/dt= [eG’° + g2G’~2~~ .]~, (28)

in which the G’s are time-independentoperators.As above,putting (27) in (20) andusing(28) we get a
sequenceof equationsfor determiningthe A’s and G’s:

G~’~+ dA”~/dt=

G~2~+ dAt2Vdt= Ii~2~(t)+ f’i~°(t)A~°(t)— A~°(t)~ (29)

...,etc.

Again as above,eachof theseequationsis of thesameform with theright handsideknownin termsof
the solutionsof the earlierequations.In eachequationtherearetwo unknowns,~ andA~(t),and
~ mustbe determinedas a conditionof existenceof a solutionA~(t)which for long timesremains
bounded.From (26) we see that in our casethe rapid time dependenceis an exponentialdecay,so it is
clear that ~ must bechosento be the valueof the right handside at t= ~. The solutionof the first
orderequationsis therefore

G~t~= f1(1)(cc), A”~(t) fdt
1 [I1~’~(t1)— Q(

1)(cx)J, (30)

wherethe constantof integrationhasbeenchosenso that

A°~(0)=0. (31)

Continuing,the solutionof the secondorder equationis

Gt2~= fl(2)(ce) + Jdt [f1°~(cc), I1°~(t)] (32)
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and

A~2~(t)= J dt~{f2~2~(t
1)—

+ Jdt1 Jdt2 {Ii~°(t1)- fl(
t~)}{Ii~”(t

2)— Q°~)}— J dt~J dt2 [fl(l~), Ii°~(t2)]. (33)

Here [A, B] AB — BA is thecommutator.Using (26) we seethat the first order termsvanish,andthe
secondorder termstake the explicit form:

G”~=kTo’F
1cr (34)

and

A~2~(t)= —kTu (F’ B)’~[1— exp{—Bt}] u. (35)

In this way we can continue,calculatingthe termsto a given order, althoughthe calculationsbecome
rapidly more laboriousas the orderincreases.The calculationsin higher ordercan besystematizedand
madesomewhatsimpler by introducinggraphicalmethods,but I won’t go into thosehere[9].

The integrationof (28) is nowtrivial, sincethe G’s aretime independent.We can thereforeexpress
the after-effectfunction in theexplicit form:

(R(t)) = {1 + eAt1~(t)+ e2A~2~(t)+ . } exp{Gt} (36)

where

G = eG”~+e2G~2~+~. . (37)

In this form one seesthat we have carried the discussionof the after-effect function beyond its
expansionas a time-orderedexponential,which would be the result of directly integrating (20), and
separatedthe rapid, short time, behavior, describedby the A’s, from the slow long time behavior,
describedby the exponential.With this I hopeI havegiven someidea of the calculationalpowerof these
averagingmethods.
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