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Limit analysis which predicts the ultimate load carrying capacity of a structure or machinery 
provides very useful information especially for designs that must survive accidents and abnormal 
conditions. In this paper, maximization of lower bound formulation and minimization of upper bound 
formulation are presented as primal and dual problems respectively. The dual problem is solved by a 
minimization procedure for circular, triangular and square plates with three types of boundary 
conditions and two types of loadings. A detailed parametric analysis for a cracked plate is also given to 
demonstrate the effectiveness of this approach. 

1. Introduction 

Plastic design of structures [l, 121 has generally been considered superior to the con- 
ventional elastic design. It gives a more uniform strength distribution and therefore reduces 
the weight of the structures. It is less sensitive to imperfections and misalignments of structural 
components during construction. It provides more realistic prediction of structural behavior 

under severe and unexpected conditions such as earthquakes and accidents. 
Analysis of plastic design is more difficult. Even with the powerful existing elastoplastic 

computer programs [2, 31, plastic analysis of large and complex structures remains a formid- 
able task. Costs of analytic man power and computer time often offset the gain in material 
savings for ordinary structures. This is the reason why most of the construction codes are still 
based on elastic analysis. 

With light-weight design now made necessary for vehicular structures, the plastic range of 
the materials should be considered in designs. With higher demand on reliability of earth- 
quake proof structures and accident safe nuclear installations, more thorough elastic-plastic 
analysis and prediction of ultimate strength must be understood. 

Limit analysis has a simple mathematical structure yet describes a realistic nonlinear 
behavior. When an exact solution is obtainable by the analysis, it gives the ultimate load limit 
of a structure. Approximate solutions provide bounds on the limit loads. 

For convenience of presenting the ideas in this paper, the classical definitions of statical and 
kinematical admissibilities [4] are slightly modified and augmented with the additional con- 
stitutive admissibility. A solution of any mechanics problem satisfies simultaneously the 
equilibrium equation, the kinematical compatibility condition and a mathematical description 
of material behavior (constitutive relation). Consider a function space of mechanics solutions. 
The solutions satisfying the equilibrium equation and its boundary conditions, if present, 
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belong to a point set S in the space, named statically admissible. The solutions derived from a 
single-valued displacement field and its boundary conditions form another set K named 
kinematically admissible. Solutions which do not violate the constitutive equation (or relation) 
establish the constitutively admissible set C. The exact solution, or solutions if not unique, lies 
in the intersection of these three sets. 

Limit analysis studies the solutions in the intersections of two of the three sets. The lower 
bound solutions lie in S f~ C. The upper bound solutions lie in either K rl C or K f~ S. These 
statements agree with the well known lower and upper bound theorems [5] although they may 
not be in the same wording. A limit solution is an extreme point of one of these convex sets 
defined by either the lower or the upper bound solutions. 

The plates under consideration are assumed to be stiff and have well defined limit values of 
bending moment. The modern structural plates such as the sandwich plates [6] and composite 
plates [7] are designed to have these properties. High stiffness implies infinitesimal elastic 
deformation and enables the equilibrium equation to be written in the undeformed coor- 
dinates and therefore to be linear. A yield criterion without hardening models a class of plate 
behavior in which infinite curvature can occur under a constant yield moment. An initially 
smooth flat plate may develop a displacement field containing ridge lines which allow 
discontinuous gradients. These ridge lines deform like piano hinges. 

Limit analysis predicts the initial collapse condition under which the plate deforms con- 
tinuously with non increasing load. The initial collapse may soon stabilize when large 
deformation of the plate causes part of the load to be carried by the membrane stresses. The 
large deformation is outside the scope of limit analysis. 

The formulation starts with the lower bound theorem from the set point of view. Although 
the resulting maximization problem is difficult to solve, it gives a clear concept of uniqueness 
of optimality and possible nonuniqueness of optimal solutions. An upper bound to the 
optimality is obtained by the virtual work principle and by forcing the constitutive inequality 
to the bounds everywhere. This leads to a minimization problem. 

Several simple solutions for circular, triangular and square plates with various boundary 
conditions and loads and a detailed analysis for a cracked plate with various crack angles and 
lengths are obtained by minimization. 

2. Lower bound formulation 

The equilibrium equation for plates with a frequently used sign convention is given in [S] 

d2MXX 
ax2 

_ 2 a2Mx, + a2W, _ 
axay ayZ - -q(‘7 Y) in I3 7 

where M,,, MxY, MY, are moment components and q(x, y) is the load distribution function in 
the domain D. 

Let (a/ax, alay) be a two dimensional vector operator and let the moment components be 
arranged in a symmetric 2 x 2 matrix denoted by M. The above equation can be written in the 
compact form, 
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V*@+M)=q inD, M= -En _~n], 
I 

M 

XY YY 

(2) 

where - is the inner product of vectors or a vector and a matrix. 
Eq. (2) defines a set in the space Rzx2. The set is convex since for any two points M, and MZ 

in the set, aMZ + (1 - (Y)M; (0 I CI! 5 1) is also in the set, a consequence of the linear operator. 
Consider a yield criterion that models the limiting behavior of the plastic plate by the 

inequality, 

f(M)~O, (3) 

where f is a map from Wzx2 to R. We need not specify f now except to require that f is convex. 
Therefore, the relation (3) also defines a convex set in R2x2. The points M lying in the 
intersection of the sets defined by (2) and (3) are called lower bound solutions. Lower bound 
solutions form a convex set since the intersection of convex sets is convex. 

If q is given in the form of propo~ion~ loading such that q = q&(x, y) where q. > 0 and 
4(x, y) is a given integrable function, the constrained maximization problem, 

max q. 

s.t. V~(V~M)=qo#, fWW (4 

has a solution (M, qo) E W2x2 x W. The boundary conditions on moment and shear if present 
should also be included in the constraint set. Some problems may not have these static 
boundary conditions. q. can be uniquely determined, but A4 may not be unique. These are the 
properties of the convex programming problem given in (4). A proportional loading is also 
called a one parameter dist~bution. 

If q has a finite N-parameter distribution such that q = Xz’=, qi#g(X, y), qi > 0, we have 
another maximization problem, 

s.t. V(VM)=q, fWk% (5) 

which has a unique maximum for the integral I SD q dA. 

The problems (4) and (5) are in principle solvable by a finite dimensional space ap- 
proximation but the numerical tasks are formidable. Nevertheless, we know the solution exists 
and the optimality is unique for each problem. These assertions provide the basis for the 
method of solution to the upper bound formulation derived in the following section from (4) 
by the virtual work principle. 

3. Upper bound fo~u~tion 

We shall now satisfy the equilibrium equation (2) in a weak sense (virtual work) such that 
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f f 
wV(VM)dA= wqdA forall wE W, 

D 

where W is the space of real, kinematically admissible functions which are continuous in D 
and satisfy certain boundary conditions. 

The left-hand side of (6) can be manipulated into another form by the use of Green’s 
theorem 

f I wV(VM)dA= V(wVM)dA- (VM)VwdA 
D 

= 
f 

wit (VM)dS- V(MVw)dA 
ar, 

+ II M:VVwdA 
D 

= 

f 
[wn(VM)-n.MVw]dS+ M:VVwdA, (7) 

aD 

where ft is the unit normal vector along the boundary 3L) and : denotes the inner product of 
two matrices such that 

The line integral in (7) vanishes for all types of natural boundary conditions [lo]. These 
include the simply supported, the clamped and the free edge conditions as well as the 
combinations of these boundary conditions. 

Consider the case where q has a one parameter distribution such that q = qoq(x, y)_ We can 
write (6) in the form 

qo(W = j I, M :VVwdA /If Q’+‘u 
D 

provided that s SD QW dA# 0. There is no loss of generality if we Set ,f _fD cpw dA >O. The 
problem (4) becomes 

max q&f), 
s.t. f(M) s 0 , (10) 

The solution M which maximizes q&f) gives the limit load qoL. This maximization problem is 
by no means easy to solve and there exists no satisfactory algorithm for its solution. We shall 
construct the dual of (10) which leads to a minimization problem. Approximate solutions of 
the minimization problem give upper bounds to the limit load qoL. 

Note that M in (10) is constitutively admissible therefore it lies inside or on the yield 
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surface. Consider a state M* which is on the yield surface such that f(M*) = 0 and is 
associated with a w leading to the yield state. The inequality 

(M*-M):vvw~o (11) 

states the well-known condition of Drucker [15] on stable materials. Using (ll), we have an 
upper bound to q*(M) such that 

M*:VVwdA qow dA = q”(w) f (12) 

where the form of M*(w) in q*(w) depends on the specific f(M). The least upper bound q2 
can be obtained by minimizing q*(w) over all kinematically admissible w(x, y) such that 

M*:VVwdA cpwdA. (13) 

mathematically, (13) is called the dual problem of (10) which is called the primal problem. For 
some f(M), M* can be made explicit and the dual problem involves only the kinematical 
variable w(x, y) which is easier to visualize than M(x, y). For simple domains, w(x, y) can be 
parameterized and the minimization can be carried out in a small parameter space. For 
complex domains, the correct w may be iteratively approached by a sequence of trial functions 
in a finite dimensional space. Even if w is not optimal, qt so obtained by (13) always bounds 
the exact limit load from above such that 

q2rq0,. 

The examples in 
yield function [ll] 

the following sections belong to the class of simple domains. A specific 

(14) 

f(M) = llMlli4 - A& = Ait,,, - M; (15) 

is used where A2 ,,,(M) is the largest eigenvalue of M* and MO is the constant yield moment of 
the plate. The function is convex and A,,, occurs in the major principal direction of M. It is 
physically reasonable to assume that along the lines of maximum moment ridges will form. 

For a given 4, we may choose a w(x, y) in the following way. Let the domain D be divided 
into finite number of subdomains Di such that 

L)= 64. (I@ 
r=l 

Within each Di, there exists a local curvilinear orthogonal coordinate system (5,~) such that 
M& = 0. If w is linear along one coordinate say 6, this direction corresponds to the minor 
principal direction along which the moment is less than MO. Along the major principal 
direction 7, jM&T,I = M,, and a2w/@* # 0. If w is linear in both directions, the subdomain 
deforms like a rigid body. 
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The function w(x, y) must be continuous and satisfies the kinematical boundary conditions 
given in (7). The intersections of all Di (i = 1,2, . . . , N) are the ridge lines. Let (n, s) denote 
the coordinates along each ridge line with s being the line. Then awl&r has a discontinuity 
across the ridge line and IMznl = MO. 

Since M* : VVw is invariant to coordinate rotation, we may write 

M* : VVw = -M,< 2 
a*w _ M* a*w 
at ?v aq* . 

(17) 

For each choice of w, the quotient in equation (13) is an upper bound. We choose M$ and 
Mz,, to be both on the bounds (&MO) to give 

where fl is the union of all subdomains, where VVwf 0, S is the union of all ridge lines and 
[awl&t] is the jump of dw/an. J is the Jacobian of the transformation from (x, y) to (6,~). 

We have established an upper bound to qoL for a kinematically admissible function w such 
that 

The least upper bound 4: may be obtained by miAmizing the function q*(w) such that 

Eq. (20) is a special case of (13) and is the one used in the examples. 

4. Simple examples 

In order to present a large number of solutions in the limited pages allowed, the detailed 
derivation for each problem is omitted. They are interesting exercises of interaction between 
intuition and mathematical optimization process. The choices of functions w(x, y) are guided 
by intuition to establish a few variable parameters. The computation then proceeds to obtain 
the values of the parameters that minimize q*. The choices of w(x, y) in fl are linear and 
conical which intersect at linear and circular ridge lines. The parameters in w(x, y) which 
minimize q* characterizes the configurations of collapse mode. 

Another interpretation of the above algorithm is the finite element concept. The special 
finite element method employed here does not fix its mesh system. But the basis function in 
each element is predetermined. The mesh system is parameterized so that q* is minimized in 
the parameter space. 
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Three shapes of plates, circle, equilateral triangle and square, are included. Each plate is 
imposed with three cases of boundary conditions: resting, simply supported and clamped 
edges. The resting edge condition restricts downward displacement but allows the plate to 
leave the support at places when compressive reaction from the support is absent. fn each 
case, two distribution functions are chosen: &(x, y) = 1 and #& y) = 6(x, y) where 8(x, y) is 
the delta function with origin at the center of each plate. The optimal qE corresponds to $1 is 
the uniform collapse load intensity. The optimal qt corresponds to & is the magnitude of the 
concentrated collapse load denoted by P. 

The integrals in (20) can be easily calculated in the conical subdomains and along the ridge 
lines since c?*w/c~~~ and [awl&z] have simple expressions and can be integrated exactly. There 
is no contribution by the integration in the remaining domain since VVw = 0. 

The results for all 18 combinations of plate configurations, boundary conditions and load 
distributions are given in table 1 and table 2. The meanings of the angles & and f&, and lengths 

Table 1 
Uniformly distributed collapse load intensity 

Boundary 
condition Shape q~i2/6M~ 

% 
Resting Cr 

Tr 

sq 
Simply Cr 
supported Tr 

Sq 
Clamped Cr 

Tr 

0.92495064 35.78 18.44 0.72069224 
l.oooooooo - - - 
2.61836929 50.45 19.09 0.69913792 

1.~ 45.00 0.00 1.0~ 
1.~ - - - 
2.83179668 53.46 13.08 0.77910598 

1.81098918 31.05 27.90 0.60204897 
2.oOOOOOOO - - 
4.95895700 42.75 35.50 0.53369682 

Table 2 
Concentrated collapse load at plate center 

Boundary 
condition Shape P/MO 

sq 
Resting Cr 

Tr 

Simply 2 
supported 

Tr 

Sq 
Clamped Cr 

Tr 

6.62741700 22.50 45.00 0.41421357 
6.28318531 - - - 

6.92820323 30.00 60.00 0.33333333 

8.~ 45.00 0.00 1.~ 
6.28318531 - - 
9.14159266 45.00 30.00 0.57735027 

12.56637000 0.00 90.00 o.OOOOOOOo 
12.56637000 - - 
12.56637000 0.00 120.00 0.00~0000 
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RESTING SIMPLY SUPPORTED CLA?fPED 

Fig. 1. Plate configurations and ridge line patterns. 

1 and d are defined in fig. 1. The conical surfaces are shown as fans. The ridge lines are heavier 
than other lines. Only one independent parameter & appears in minimization. Some solutions 
contained in [ll] are reproduced here for verification. 

5. A cracked plate 

To present a more complex example, a simply supported square (21 X 21) plate with a 
centered crack is considered in this section. The plate is under a uniform load and the crack 
has an arbitrary angle a and length c as shown in fig. 2. The effect of the crack on the load 
carrying capacity of the plate is studied by the method of limit analysis. 

Fig. 2. Configuration and parameters of a cracked plate. 
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The square plate suggests the ranges of (Y and c such that 

Ola 145”. 0 I c I llcos a . (21) 

The ridge lines shown in fig. 2 may or may not intersect the crack tips. The correct ridge lines 
will be determined by two angle parameters I% and & which are optimized to obtain the limit 
load. The function w(x, y) is assumed to be linear in each of the four subdomains separated by 
the ridge lines as shown. It is an easy exercise to calculate the integrals in (19) and construct 
the function 

q*w = q*cA, 02, a, c/l). (22) 

With two parameters (Y and c/Z assigned, q*(w) can be minimized with respect to & and e2. 
The dimensionless limit load of the cracked plate, qi12/6Mo, is shown in fig. 3 for the entire 
ranges of (Y and c/l. 

For small crack lengths, the orientation of the crack does not play a significant role in the 
limit load which decreases with increasing crack length. But the effect of the crack angle is 
quite pronounced at large crack lengths. It is also interesting to note that for any crack angle 
other than 45”, there is a range where crack length has no effect on the limit load. The limit 
load initially decreases with increasing crack length to a point then remains constant. The 
points separate the decreasing range from the constant range of the limit load are shown along 
the dashed curve. 

The minimization procedure used in the &-e2 space is the gradient descent method [9] 
which converges in 4 to 5 iterations for each set of (a, c/l). This fast convergence is achieved 
by the sequential computation such that a converged solution is used as the initial iterate for 
an adjacent pair (a, c/Z). 

0.2 0.4 0.6 0.8 1.0 

C/1 

Fig. 3. Limit load of cracked plate with angle and length variations. 
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6. Final remarks 

Establishment of upper and lower bound solutions to limit analysis has been known for 
many years as indicated by a number of references listed. The list could have been much 
longer if a survey is intended. But a systematic search for the limit solution in a convex set 
using the developments of nonlinear programming methods is relatively recent. The com- 
putational methods certainly provide added power for solving more complex limit analysis 
problems. The minimization approach presented here computes the least upper bound from a 
given family of test functions (collapse modes). If the family contains all possible collapse 
modes, the minimum solution obtained is the limit solution. Otherwise, the minimum is an 
upper bound to the limit solution. Some solutions of the simple problems presented agree with 
the available known results. The other new solutions give physically correct quality and trend. 

The solutions of the cracked plate problem point out a new phenomenon. For some 
configurations, the crack tip is not the most critical area of high stresses. This is contrary to the 
common belief developed from elastic analysis. The plastic analysis should give more realistic 
estimates on load capacity of ductile plates. 

Limit analysis which studies the ultimate behavior rather than the elastoplastic response is a 
valuable aid to structural and machine designs. Its power can be better utilized when more 
convenient methods are made available. This paper and some similar developments [13, 141 
offer a few effective methods. Methodology of limit analysis enjoyed much less development 
than that of elasticity. 
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