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The eIectromagnetic effects on a molecule near a metal surface are considered with the 
view to understanding the surfa~~nhan~d-Raman-scatter~g (SERS) effect. The image enhan- 
cement effect is calculated including the nonlocal response of the metal and finite molecular 
size. The effect is much reduced (X 10-s) from that for a point molecule above a local metal 
but can still give a gain = 103. The power emitted by a dipole above a smooth surface is also 
calculated. For an Ag surface the power emitted in the form of photons, surface plasmons, 
and electron-hole excitations are found to be in the ratio 1 : 3 : 106. The numerical results 
are calculated using the semi-classical in~n~te-b~rier model of the metal surface with a Lind- 
hard dielectric function modified to take into account finite electron lifetime and core polariza- 
tion 

1. ~n~oduction 

The electromagnetic interactions of molecules near a metal surface are of inte- 
rest in relation to a number of phenomena, Perhaps the most striking is the large 
enhancement of Raman scattering by molecules adsorbed on certain metal surfaces 
[I]. Other such phenomena are the surface-induced changes in molecular fluores- 
cence [2], infrared absorption, and vibrational frequencies [3-51. The Van der 
Waals forces between molecules and metal surfaces are another such phenomenon 
[6]. In this paper we discuss the electromagnetic interactions of a molecule at a 
smooth metal surface. The important effects of surface rou~ness will be the sub- 
ject of a subsequent paper. 

Although our results are not limited to the Raman scattering application, it is 
the one which has motivated this work, and we will couch our discussion in terms 
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of it. The increase in Raman scattering cross section by adsorbed molecules can be 
up to six orders of magnitude. A high-reflectivity metal and submicroscopic rough- 
ness seem to be important, but the effect is not specific to the molecule. The recent 
observation of enhanced Raman scattering from molecules on liquid Hg indicates 
that resonances associated with roughness features or adatoms may not be essential 
[7]. The dependence on pump frequency shows no resonant structure, nor does it 
follow the usual w4 -dependence observed for free molecules. There is apparently a 
short-range effect requiring direct or nearly direct contact with the metal and a 
long-range effect which exists for molecules -10’ A from the surface [8-l 11. Any 
explanation of the surface-enhanced-Raman-scattering (SERS) effect must include 
these general features. 

In section 2 we discuss the enhancement of the effective molecular polarizabili- 
ty by the image fields induced by the metal surface. This image effect was proposed 
by King et al. [ 121 and Efrima and Metiu [ 131, who considered the model of a 
point dipole above a metallic half-space characterized by a local dielectric constant 
e(o). Although this model predicts a large effect, it requires a precise spacing of the 
dipole at distances 1-2 8, from the surface, or for a given spacing exhibits a sharp 
resonance in pump frequency. At such distances, however, it is clearly necessary to 
take into account finite molecular size and the nonlocal response of the metal. The 

modifications due to nonlocality have been discussed previously by us [14] and 
also by Korzeniewski et al. [ 151. In section 2 we show for the first time how both 
these effects can be taken into account in a calculation of the image effect. For 
reasonable models of the molecule and the metal we find that the image enhance- 
ment, while much reduced, is still significant and, moreover, does not exhibit the 
resonance structure for a point dipole. 

In section 3 we discuss the power dissipation by a dipole near a metal surface. 
The principal effects are the emission of surface plasmons and the excitation of 
electron-hole pairs. For a smooth surface these effects do not lead to an increased 
Raman signal since they correspond to surface waves which dissipate in the metal. 

Surface roughness can change this dramatically [14]. On the other hand these 
effects on a smooth surface are important for determining the lifetime of fluores- 

cing molecules, and they have been observed experimentally [ 16,171. 

2. Image enhancement 

Here we are interested in calculating the induced dipole moment p in a molecule 
situated above a smooth metal surface subject to an applied optical field E,,ehiwt. 
This calculation is particularly simple for the case of a point polarizable dipole and 
a metal described by a local dielectric constant Ed. When the distance d of the 
molecule from the surface is very much less than the optical wavelength it is appro- 
priate to use the quasistatic approximation [ 181. The effect of the surface can then 
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be represented by an image dipole a distance d below the surface of strength 

(1) 

where e1 is the dielectric constant in the medium above the surface, which is taken 
to be the x-y plane (see fig. 1). The polarizable dipole feels both the applied field 
and the field of this image, 

where cyl is the dipole polarizability and 

Image 
1 

= ~ (3Pimage * 22 - /Jimage) * 
fl CW3 

Solving for p we find the familiar result [ 131 

(3) 

(4) 

The image enhancement effect is associated with the near vanishing of the denomi- 
nators in eq. (4), which typically occurs at distances d of order l-2 A. The main 
purpose of the remainder of this section will be to calculate the induced dipole 
moment taking into account finite molecular size and the nonlocal response of the 
metal. 

Fig. 1. Schematic drawing.of an adsorbed molecule of radius a above a metal half-space. 
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2. I. General formulation 

We consider a finite spherical molecule of radius a centered a distance d > a 
from a smooth metal surface (fig. 1). The metal surface is completely described by 
the amplitude reflection coefficients for S- and P-polarized waves. To define these 
quantities, we first introduce cylindrical coordinates, p = ~2 t J$, z. The S-pola- 
rized waves have electric vectors oriented perpendicular to the plane of incidence, 
so the electric field associated with an incident plane wave of frequency w can be 
written 

E = Es eip.p i Xp [exp(-iq, z) t rsZ exp(iq, z)], z > 0 , (5) 

where p is the projection of the propagation vector on the metal surface, and 

4, =(k: -P~)“~, k: -elu2Jc2 , Re{q,l>O. (6) 

Eq. (5) defines the amplitude reflection coefficient rs, (p, o) for S-polarized waves 
incident in medium 1 on the surface of medium 2. The corresponding magnetic 
field is obtained from Faraday’s law [B = -i(c/w) curl E], 

B =~Es eip’p [(pi + qllj) exp(iq,z) t ry2(‘@ - CJ&) exp(iq,z)] . (7) 

The P-polarized waves have magnetic vector oriented perpendicular to the plane 
of incidence so the magnetic field associated with an incident plane wave can be 
written 

B = BP eio’p 2 Xp [exp(-iqrz) t rTz exp(iq,z)], z>o. (8) 

Here r’;,(p, w) is the amplitude reflection coefficient for P-polarized waves inci- 

dent in medium 1 on the surface of medium 2. The corresponding electric field is 
given by Ampere’s law [E = i(c/er o) curl B] , 

E = -,‘Bp eip.p [(p.? t qrp) exp(-iqrz) t ry,(pi; - qrp) exp(iq,z)] . (9) 
1 

In the consideration of the image-enhancement effect we will be interested in 
the near zone, distances from the dipole small compared with the wavelength of 
the incident light. In this case we can use the quasistatic approximation [18], 
which is equivalent to taking the limit c + m (4 1 -+ ip) in the above equations. In 
this limit one must keep CES and cBp finite, so the electric field vanishes for S- 
polarized waves. 

In this same quasistatic approximation, the molecule (assumed spherically sym- 
metric) is completely described by its multipole polarizabilities. These quantities are 
defined in terms of the response of the molecule to an applied multipole field. For 
the Zth multipole the quasistatic electric field outside the molecule is derivable (E 
= -V@) from a potential of the form [ 191 

@)lm a ( -r: + Ql 
--xi I”;(cos 0,) ew(Mh), 
flrl 1 rl >a, (10) 
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where rl is the position vector from the center of the molecule, OX and 4% are the 
polar angles of fl, and pz” is the associated Legendre polynomial. In (10) the first 
term is the potential of the applied multipole and the second is the potential due to 
the induced m~t~poIe moment. The coef~cient oil(w) is the Ith multipole polariza- 
bility, The radius a is the confining radius of the molecule, the radius outside which 
the fields are harmonic. 

We now address the problem of the molecule above the metal in the presence of 
a uniform quasistatic electric field. The potential in the region above the metal and 
outside the molecule can be written 1201 

where (fig. 1) 

r=p+zz=rl tdz^. 

In (1 I) the first term is the potential of the applied field, the second is that of the 
field due to the induced multipoles in the molecule, and the last is that of the field 
reflected from the metal surface. Just outside the molecule the potential must be a 
superpositioff of potentials of the form (10). .Iust above the metal surface the po- 
tential must be a superposition of potentials of the form 

a, a eiP’P (ePz - <z e-Pz), (13) 

which corresponds to the form (9) for the fields in the quasistatic limit q1 =ip, 
These conditjons at the boundaries serve to determine the coefficients in (11). 

In applying the bounda~ conditions we need a pair of crucial formulas, The first 
is 

where d, is the azimuthal angle of p. This formula holds for z > 0 and serves to ex- 
press the field reflected from the metal in terms of incident multipole fields at the 
molecule. The second formula is 

This formula holds for z < d and serves to express the induced multipole fields 
from the molecule in terms of plane waves incident on the surface. These formulas 
are derived in appendix A. 

Just outside the confining radius of the molecule rl = a, we put the expansion 
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(14) in the integral in (1 l), which gives 

cP=-di. Eo-rlEo~r^,+ 
s dpBCp)eepd 

X dp B(p)(-p)’ eCpd-im@+r 1 P;“(cos 0,) exp(im&) (16) 

Noting that (fi = CDS 8, Pi = z2,P;’ = -sin 0) 

Et, . PI = z* . Ee Pr (cos f3 r) - i(z? - i$) . E. Pi (cos 0 1) exp(i&) 1 

+ (2 + i$) . IToP;’ (cos 0 1) exp(-i$r) , (17) 

and requiring that (16) be a superposition of potentials of the form (10) we see 
that for E> 1, 

.rn 

EI (G1 hrn +& s dp Al e-pd-im@ 

The I = 0 terms in (16) simply adjust the potential at the molecule. 
Next consider the potential just above the metal surface. There we put the inte- 

gral expression (15) in the sum in (11) which gives 

Requiring that this be a superposition of potentials of the form (13) gives 

B(p) = & 5 6 Blm (;-$T-;;;-’ e-Pd+imO . 
I=1 m=-1 

(20) 

There is no inhomogeneous term as in (18) since a uniform field is compatible with 
the boundary conditions. 

Inserting the relation (20) in (18) we get in the second term on the left an inte- 
gral in ,which the only dependence on @, the azimuthal angle of p, is a factor 
eiCmVm )@, where m’ is the summation variable in (20). The integral over this 
azimuthal angle gives a factor of 2n6,~,, . The result therefore is an infinite set of 
coupled inhomogeneous linear equations for the coefficients B1, which we write 
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in the form: 

~1 ((yl)-’ BI, + c (-1)1+1’+1 
I’=1 (I + m)! (I’ - m)! F1l’B1’m 

where 

Fll*(w, d) = rclp rr2 (p, w) p’+” e-2pd . 

0 

(22) 

Since in these equations the coefficients B,,,, for different values of m are uncoup- 

led (a consequence of our assumption of spherical symmetry for the molecule), we 
see immediately 

B 1m=Q, m#O,kl. (23) 

Hence, if we introduce a new set of coefficients Al, defined by 

Bl,, = (-1)“‘i. E. Al,o , (244 

B,,, = (-1)’ i(Z - i$) . li’,, Al,l , (24b) 

BI,_~ = (-l)‘+‘(sZ + is) .Ee Al,_1 , (24~) 

the coupled equations (21) can be written in the form 

where 

It is now simple to state the formal solution of these equations using Cramer’s rule 
[21]: 

Al,,,(o, d) = cof(M~l)/det(Mm) . (27) 

Here the denominator is the determinant of the infinite matrix M” whose elements 
are the M? and the numerator is the cofactor of the 12 element in the matrix. Oper- 
ationally the meaning of (27) is the limit as n + 00 of the corresponding ratio for- 
med with the nth truncation ofiP , the n X n matrix in the upper left hand corner. 

The I = 1 terms in the sum in eq. (11) give the potential (p . r/eir3) of the 
induced dipole moment /1 in the molecule. We thus have, using (24), 

~(0, d) = Ed [AI,& Eei +.Ar,r(& - i. Eei)] , (28) 
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where we have used the fact that, since the matrix M-’ is the transpose of the 
matrix M’, Al,_, = Ar,r .The procedure for calculating the induced dipole mo- 
ment is now complete. Given the reflection coefficient rF,(p, o), we construct the 
integrals (22). Then given the multipole polarizabilities (YI we form the matrixM* 
whose elements are given by (26). The coefficients A 1 ,. and A r ,r in (28) are then 
constructed using (27). 

The importance of nonlocal effects can be seen from the integrals Flr(w, d) 
given in (22). The factor p’+’ e-*@ in the integrand peaks at p = (It 1’)/2d, which 
means that Y!* (p, w) at these values of p gives the contribution. Thus, if d is on the 
atomic scale, the dominant wavevector components are on the same scale. 

In the special case of a point dipole, the multipole polarizabilities vanish except 
for 2 = 1, where or is the usual polarizability. In this case the solution of (25) is 

simple, 

1 
-1 

alF11 
Er(1 + m)!(l - m)! 

Si,, (point dipole) (29) 

For a local dielectric response in the metal, the quasistatic reflection coefficient is 

82 = 2::; T :I (local response) , 
2 

in which case (22) becomes 

(1 + I’)! 
e’(O) - ” 

F1z’ = (2d)‘+“+’ f2(W) t Er 
(local response) . 

(30) 

(31) 

Using this in (29) the expression (28) for the induced dipole moment becomes 
exactly the expression (4) given at the beginning of this section. 

2.2. The reflection coefficients 

In this subsection we consider the calculation of the amplitude reflection coeffi- 
cients for S- and P-polarized electromagnetic waves incident on the surface of a 
metal with a nonlocal response. Since we will need the general results later in our 
discussion of the emission problem we will not make the quasistatic approximation, 
leaving this to the end where we give results appropriate to the previous subsection. 

For an abrupt metal surface it is convenient to formulate the discussion in terms 
of the surface impedances, defined by 

2 
inside 

(32) 

where the fields are evaluated just inside the metal. The notation here is that of the 
previous subsection in which i is the direction normal to the surface pointing away 
from the metal, and the variation parallel to the surface is eiP’p--wr. Using eqs. (5) 
through (9) for the fields outside the surface and the standard Maxwell boundary 
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conditions of the continuity of the components of E and B parallel to the surface, 
we obtain the following expressions for the reflection coefficients in terms of the 

surface impedances: 

$ _ (c24114~w)zs - 1 p _ 1 - (W14W1)ZP 

l2 -(c*q,/4nw)Zs t 1 ’ r12 - 1 t (oe,/47rqq,)ZP * 
(33) 

The calculation of the surface impedance depends upon how one describes the 
metal. The simplest approach which includes the features of nonlocality is the semi- 
classical infinite barrier model, which corresponds to the assumption of specular 
reflection of the conduction electrons at the metal surface [22] Here the prescrip- 
tion for computation is simple. One considers the infinite metal with bulk dielectric 
relation 

D = q&k, w) i * Ei + e&t, a)(E - si * Ei) , (34) 

where k is the propagation vector and Ed and et are the longitudinal and transverse 
dielectric constants. In this infinite metal one solves the Maxwell equations with a 
plane current source of the form 

i(r, t) = J&(z) ei(P’PVwt) , 2. J = 0 . (35) 

The surface impedances are then given by (32) with the fields evaluated just below 
the plane z = 0. The result is 

1 

Et@, w) - cz k2 /J ’ 

(36) 

(37) 

where in these integrals k* = p* t q* . 
For ep and et we choose the Lindhard form modified for a finite relaxation time 

[23] : 

eQ(k’ O) = eb(~) + (w + iv) {w t iv[fg(z, u)/fa(z, O)] } ’ 

4% 0) = Eb(a) - 
w’,ft(zt u> 
w(w t iv) ’ 

where 

(38) 

1 1 
fa(z,u)=-t- [l -(z-U)*] log 

z-u+1 ztutl 

2 82 
z_u_ 1 + I1 -(Z+u)*l l%ztu_l 
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and 

f&, u) = $(z’ -I- 3u2 + 1) 

--$ [1-(z-U)2]~log~~~~~t[l-(z+u)*]~log~~~~; . (41) 
i I 

In (38) and (39) 

z = k/2kF , u = (w + iV)/kuF (42) 

with kF the Fermi wave vector, uF the Fermi velocity, and v = 7-l the collision fre- 
quency of the conduction electrons. Also wp = (4nne*/m)r’* is the plasma fre- 
quency and Ed is a phenomenological term representing the (local) bound elec- 
tron response. We should emphasize that the band structure of the noble metals is 
much more complicated than is implied by our simple free-electron picture [24]. 
Nevertheless, this modified Lindhard form of the dielectric relation is a reasonable 
approximation which includes in a consistent manner the excitation spectrum of 
the conduction electrons. 

’ The quasistatic approximation for r12 is obtained by taking the limit c + 03 in 
(36). Then from (33) we can write 

’ -$ y Q ,&;k 
0 , 

w) 

(quasistatic) . 

’ +;‘lp s ds k*& w> 

0 

(43) 

2.3. Multipole polmizabilities 

The multipole polarizabilities are defined via (10) in terms of the (linear) re- 

sponse of the molecule to an applied multipole field. They are the generalization of 
the familiar dipole polarizability defined in terms of the response to an applied uni- 
form field. Here we discuss the calculation of these quantities for various one-elec- 
tron systems. The purpose is to gain insight into the structure of multipole polariza- 
bilities for real molecules and to obtain for special models explicit formulas useful 
for computation. 

For a system with a spherically symmetric ground state the following formula is 
the direct generalization of the well-known Kramers-Heisenberg dispersion formula 
for the polarizability [25] 

(YQ = e* C I(*i, r’Pl(cos 0) *O )I* X 
1 1 

i Et-E,-hti’Et-E~+hw (44) 
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Here the sum is over all intermediate states \ki, and 9e is the ground state. In fact, 
like the Kramers-Heisenberg formula, this formula is not very useful since, except 
for the harmonic oscillator, the sum does not converge rapidly. On the other hand, 
we do see from this formula that when.the frequency of the exciting radiation is 
well below the excitation frequency for the lowest excited state, it can be neglected 
and the polarizability becomes essentially the static polarizabi~ity. For simplicity, in 
the fo~owing discussion we consider the static PoIarizabilities. 

A more useful approach than the Kramer+Heisenberg formula is to solve expli- 
citly for the perturbed wave function [26]. Consider the perturbed Hamiltonian 

H = Ho t er’ Pl(cos 0) , (45) 

where the second term is the perturbing potential of the applied multipole field and 

Ho = -(f&‘2m)V’ + V(r) (46) 

is the unperturbed H~~ton~an, The unperturbed ground state is an eigenstate of 
Ho which we assume is spherically symmetric. 

Ho*0 =EoQo , *‘o =90(r) . 

The perturbed eigenvalue problem is 

(Ho t er’Pl> q = E\k . 

Expanding 

* = *e t JI(‘) + ,.* , E =Eo +a!?‘) + I.. , 

we find for the first order equation 

(Ho - &) Jr(‘)= -er’Pl\ko t E(‘)Jro . 

The first order energy is 

E(r) = 
s dr 9,* (r) er’ Pf(cos 0) 9,(r) = 0 , 

(47) 

(48) 

(49) 

(SO) 

($1) 

because of the spherical symmetry of the ground state. Hence, putting 

Q(‘)(r) = &(r) P,(cos 6) 

and using (46), the first order equation (50) can be written 

(52) 

1 d 2 d 1(1+ 1) 
--2J&r z r2 -t- V(r) - E, 

I 
RI = -er’ qo(r) . 

This is an inhomogeneous differential equation for the perturbed radial wave func- 
tion RI. 

Having solved the equation for RI we form the induced charge density 

p(r) = -e( I\lr I2 - I\ko 12) = -e(JIgRl t \koRf) PI (cos 0) + . . . . (54) 
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The associated electrostatic potential in a medium of dielectric constant er is 

“(r)=/-die ypr!, 
1 

where we have used the well-known expansion of )r - r’l-’ [27]. Using the addi- 
tion theorem for spherical harmonics 

P@’ F’) = Pl(COS e> Pl(COS e’> 

+2 5 (Z-m)! ___ P~~(COS e')p;"(cos 8’) cos m (G - 4,‘) ., 
m=~ (1 t m)! 

(56) 

the form (54) for p, and the orthogonality of the spherical harmonics [27], we find 

Q(I) - (cQ/E~Y~+~) P[ (COS e) , (57) 

where comparing with (10) 

4ne 
aI=-- r 2zt1 o 

drrl+l pa';;(r)&(r)+ 9&)&(r)*] (58) 

is the multipole polarizability. 
For the harmonic oscillator, 

V(r) = imwzr2 , 

\ko = [moo/dz]3’4 exp(-mw,r2/2fi) . 

The solution of (53) is 

Rr(r) = -(e/ttzwe) r’ 9,(r) . 

Putting this in (58) we find 

8ne2 
al = Z(2Z t 1) ho, 

(““)3’2 ydr r21+2 exp(-m&P) 
nR 

0 

e2 R =-_- I--l (2Z- l)!! ( ) rnwi 2mwo z ’ 

(59) 

(60) 

(61) 

(62) 

where (2Z- I)!! = 1 .3 . 5 _- (2Z- 1). For Z = 1 this is the familiar result for the po- 
larizability of the harmonic oscillator. For higher Z it is interesting that the (~1 are 
quantum mechanical, they vanish for the classical oscillator. It is also important to 
note that (YI grows rapidly with I; the harmonic oscillator is very “soft”. 
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Another model for which the solution of (53) is simple is the infinite spherical 
well, 

V(r) = 
i 

0, O<r<a 

O”, a<r ’ 

Here 

*&) =(fJ Jqg=g-@ y? 
and the solution of (53) is 

1 me a I’* 
R&j = --- - 

i ) l+1R2 2n3 
[rt cos(m/a) + a~~~~/a)/~~~) ] , 

where jt is the spherical Bessel function [28]. Inserting this in (58) we fmd 

4a21+2 

Qr = (z t 1)(2Z t 1) 7f1+3a0 ” ’ 

where 

(63) 

(64) 

(65) 

(66) 

(67) 

and a0 = fi2/me2 is the Bohr radius. Although the integrals in (67) can be per- 
formed explicitly the results are best displayed graphically. 

A third simple model which we consider is that of a uniform dielectric sphere of 
radius a, for which the cut are given by 

flYE3 - El) a21+1 

@l=k3 +(ttl)E$ ' 
(68) 

where e3 is the dielectric constant of the sphere.; 
Each of these three models has certain parameters which must be specified. 

Since we have in mind applying them to a specific molecule, we will require IY~ to 
be the same for each model. This choice fixes e’/mwi for the harmonic oscillator, 
it fures the ratio a4/ao for the spherical well, and it relates es to a and et for the 
dielectric sphere. The results for these models can now be summarized: 

I 

a~z-2(21 - l)!! 
&j&1 3 

CYz=cY, X’ 
4#-ag(f) 

(It 1)(22+ 1) r?-‘(7?/3 + l/4) ’ 
31a2i-2 

(2E+ l)t(I- l)cur/c,a”’ 

harmonic oscillator , 

spherical well , 

dielectric sphere , 

(69) 
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where for the harmonic oscillator we have introduced the classical turning point a, 

= (3R/mwe)“z and for the spherical well we have used the fact that g(1) = n3/2 + 
3n/8. Calculated results for the normalized multipole polarizabilities al/or a*‘-* are 

shown in fig. 2. Note that we must specify u/uc for the harmonic oscillator and cr, / 
era3 for the dielectric sphere. The normalized multipole polarizabilities for the 
spherical well decrease rapidly as I increases and vanish as E +=. Its response is most 
“point-like”. For the harmonic oscillator they always diverge as I -+ 00, but the 
detailed dependence changes with the a/aC ratio. For the dielectric sphere they are 
always constrained between 1 and 3/(2 + or /e1a3), i.e., the 2 = 1 and Z = 00 limits. 

2.4. Raman gain for a smooth surface 

The picture one has of the Raman scattering process for an isolated molecule is 
the following. The molecule is driven by an external field at the pump frequency 
o,, , which gives rise to an induced dipole moment I. An internal vibrational 
motion, of frequency WV, modulates the dipole polarizability of the molecule, 

IO2 
HARMONIC 
OSCI LLATO r-7-- a=0 

IO’ A c O’{ 

Fig. 2. Multipole polarizabilities as a function of I, the multipole order, as given by eq. (69) for 
three molecular models. 
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giving rise to a small induced moment, 

ti(aR) = CR/d%), (70) 

which radiates at the Raman frequency an = w0 + WV, Here CR is a small dimen- 
sionless constant characteristic of the internal structure of the molecule. In gene- 
ral CR is a tensor but for simplicity, and in keeping with our previous assumption 
of a spherical molecule, we take it to be a scalar. For a po~t”dipole molecule the 
extension of our discussion to include tensor polarizabiliti~s is only a matter of 
notation. 

The results of section 2.1. are readily adapted to calculate the Raman scattering 
by a molecule adsorbed on a smooth surface. The induced moment at the pump fre- 
quency is given by (28), 

M(%)=er I4,oh-h 4~l+~l,lf~o.~)~lll , (71) 

where EL and 611 are, respectively, the components of the pump field perpendicular 
and parallel to the surface. We see from (70) that the induced moment at the Ra- 
man frequency is the same as that produced by an external field E,-, = c&C&)/ 

a1 (0~) at the Raman frequency. Thus, in the presence of the surface, 

fl(wR) =- &:;zR, IA 1,ot WR, d) PdWo) +AI,I(WR, d) l+d~o>l . (72) 

Using (71) this becomes 

In obtaining this result we have assumed that the constant CR, being characteristic 
of the internal structure of the molecule, is unchanged by the presence of the sur- 
face. 

Since in general the radiated power is proportional to the square of the induced 
moment, we identify the image enhancement Raman gain Gr as the square of the 
ratio of the magnitude of the induced moment (73) in the presence of the surface 
to that far from the surface (d = -). From (22), (29, and (26) it is easy to see that 

A r,m (0, -) = or (a)/~, 

and, therefore, 

(74) 

(75) 

where E = El! + EL. 
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We should emphasize that this arbitrarily defined image enhancement gain does 
not include the effects of the surface on the process of radiation at the Raman fre- 
quency, nor does it include the mod~~&ation of the incident pump field by the 
surface. The radiation process will be considered in section 3, The modi~cation of 
the pump field near the surface (2 = 0) can be seen from (5) and (9), which can be 
written 

E1=( 1 +&)i* Epi, Eli = (1 - &WP - z*~EpZ*)+(1+&)&, (76) 

where En and Es are, respectively, the P and S components of the incident fields 
evaluated at the surface. For these optical fields the reflection coefficients can be 
evaluated treating the metal response as local; 

& = e2q1 - El@2 

%ql -t etq2 ’ 

L?l -42 
$2 =- 

q1 +q2 

(local) I 

where (7r is given by (6) and q2 = (Q d/c2 - p 2 1’2 For nominal angles of ino& ) . 
dence, the effects of the surface are to increase EL and decrease Eli, generally by 
factors less than 2. 

We conclude this section with a remark about the effect of surface roughness on 
the image enhancement effect. As we have seen in section 2.1, the effect for ad- 
sorbed molecules is localized in the sense that it involves primarily wavevector com- 
ponents of the metal response which are on the atomic scale. If we assume that mo- 
lecules adsorbed at steps or onto adatoms are not important, an adsorbed molecule 
will fiid itself on a surface which is planar in its neighborhood, Thus we expect 
that the image enhancement effect will be unchanged except possibly for varying 
orientations of the local surface relative to the mean surface. 

For the purpose of obtaining numerical results we have chosen the metal param- 
eters to correspond to those of Ag. The optical Q(W) corresponds to the local 
(long wavelength) limit of (38) or (39), 

e2 (~3) = eb (~0) - L$ /~(a f iv) . GW 

We have fitted the optical data in the region 450-700 nm to obtain CJJ, = 9.33 eV, 
%v = 0.058 eV, and eb = 3.6 f29j. The remaining ~aral~eters in the Lidhard dielec- 
tric relations (38) and (39) were determined using one electron per atom and the 
free electron mass, giving k~ = @~rr’)“~ = 1.2 X 10’ cm-l and UF = ~~~/rn = 1.4 X 
lo* cm/s. Note that we have fitted Q,(O) with a constant and we have treated the 
parameters oP, k~, and Q-Z as ~dependent~ while in the free electron model they 
are related. 

In fig. 3 we show the image enhancement Raman gain Gr versus d for the ease of 
a point dipole molecule with a normal electric field and either a local or nonlocal 
metal response. The molecular polarizability was chosen to be al = 11.3 A3, which 
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IO6 I 
PYRIDINE on 

- 633 nm 

----- 514 “ml 

I .o 1.2 1.4 

d(b- 

1.6 I.6 

Fig. 3. Image enhancement gain GI versus d for a point dipole with electric field normal to a 
local [E& = E(W)] and a nonlOCal [e& = e(w, k)] metal SUIfaCe. The reSUlt.9 for 2 pump fIe- 
quencies are shown and we chose cul = 11.3 A3 and WV = 1000 cm-‘, corresponding to pyri- 
dine. 

corresponds to pyridine adsorbed in an upright orientation [30]. The large peaks in 
the gain arise from the vanishing of the real part of the denominator in A r,e(o, d) 
given by (29). That is, a peak will occur when 

Re{Frr] = erlor . (79) 

In practice the Raman shifts are small enough that F, 1 (w,,, d) x F1 1 (a~, d). The 
relation (79) gives therefore the distance for maximum gain, and this gain is given 

by 

(GI)max = [Re {F, 1 }/Im {F, 1}]4 (point dipole) . (80) 

The main effects of nonlocality are a reduction of this maximum gain by two 
orders of magnitude, a small shift in the distance for maximum gain, and a weake- 
ned dependence on the pump frequency. These arise from two distinct consequen- 

ces of the nonlocal response of the metal. The first is that the inability of the con- 
duction electrons to respond to the large wavevector components of the dipole 

field (screening) reduces the real part of F, 1 and, hence, reduces the distance for 
maximum gain. This is in qualitative agreement with a static Thomas-Fermi cal- 
culation by Antoniewicz [3 11, but the reduction is substantially less in our calcula- 
tion. This is due to the presence of the local interband term eb, which is un- 
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screened. The second consequence of nonlocality is that the excitation of electron- 
hole pairs by the large wavevector (k = k~) components of the dipole field incre- 
ases the imaginary part of F, I and, hence, decreases the maximum gain. This effect 
is not present in a static calculation. 

The effects of nonlocality on the image gain, while significant, do not change 
the essential features of a maximum gain of several orders of magnitude over a 
very narrow range of distance. As we see from fig. 3, the maximum gain is =106 
and occurs over a range of a few hundredths of an A. While the peak gain is adequ- 
ate to explain the observed SERS, it is difficult to conceive that typical molecules 
would be spaced so precisely. But the size of real molecules is comparable to this 
spacing for maximum gain and on such a scale a point dipole is not an accurate 
model. 

In fig. 4 we compare the image gain curves for two different molecular models 
with finite size, the infinite spherical well and the dielectric sphere. As we indicated 
in section 3.3 the dielectric sphere model is intermediate between the “soft” har- 
monic oscillator and the “hard” infinite spherical well and, we feel, is a reasonable 
model for real molecules. Both models show that for a small sphere (S 1 A) the 
point dipole is a good approximation. This is also essentially true for all sizes with 

POINT 

D’PYE 

1.4 I.6 I.6 

d(i)4 

Fig. 4. Image enhancement gain Gl for finite-sized molecules above a nonlocal Ag metal surface. 

The molecular radius is a and the pump wavelength is 633 nm. The solid curves correspond to 

the dielectric sphere model, the dashed curves to the infinite spherical well model. In each 
case the dipole polarizability is constrained to be ot = 11.3 A3. Both models reduce to a point 

dipole for small a. 



G. W. Ford, W. H. Weber /EM effects on molecule at metal surface. f 469 

the infinite spherical well model, which behaves like a point dipole inside an impe- 
netrable shell. For the dielectric sphere model, however, the larger spheres show a 
dramatic change. The position of maximum gain is pushed out and occurs slightly 
outside the sphere radius, i.e., the sphere is nearly touching, The peak gain is much 
reduced and the gain curve is substantially narrowed, Thus while the model implies 
a reduction in gain it is striking that the peak gain occurs when the molecule rests 
on the surface, su~esting that the precise placement is not a problem for real mole- 
cules. Another effect which occurs for real molecules is the vibrational motion in 
the adsorption potential. Typical measured vibrational frequencies for this motion 
are ov % 10’ cm-’ and choosing M x: IO2 amu the amplitude of this motion at 
room temperature should be 

[(fi/2&fo~~) coth(fiwv/2k7’)] 1’2 * 0.1 L! . 

Averaging the gain curve for a dielectric sphere model with radius a = 1.8 A over 
this zero-point motion, which amounts to multiply~g the peak gain by the ratio 
of the width of the gain peak to the amplitude of the zero-point motion, we get an 
image enhancement Raman gain of =103, In view of the simplicity of the models 
for which we have been able to compute, we should view this value of the image 
enhancement Raman gain as at best an order of magnitude estimate. Nevertheless 
we feel confident that for real molecules the image enhancement gain is present 
but much too small by itself to explain the SERS experiments. 

As pointed out by Efrima and Metiu [13J, the image enhancement effect can 
be viewed as a resonance Raman effect in which the metal produces an apparent 
downward shift of the natural electronic frequency of the molecule into resonance. 
From the results shown in fig. 3 one sees that if for a point dipole at a fued dis- 
tance above a local metal the gain is plotted versus pump frequency then a nar- 
row peak occurs, analogous to that in resonant Raman scattering. For a point 
dipole above a nonlocal metal, again as indicated in fig. 3, the distance for maxi- 
mum gain is much less sensitive to frequency, so a corresponding frequency 
plot would be much broader. In either case, although the vibrational motion of the 
molecule against the surface will broaden the peak, the molecule must be precisely 
positioned to see any sign~cant gain. For a finite sized molecule our calcuiations 
indicate that positioning will be automatic and, therefore, the gain will be only 
slowly varying with frequency, with no resonant structure. Nevertheless the 
response corresponds to a strongly coupled motion of the molecule with the con- 
duction electrons in the metal, and in this sense may be termed resonant. 

We conclude with a remark concerning the image gain in metals other than Ag. 
One might think since the gain given by (80) is inversely proportional to the fourth 
power of Im (F, 1 ), which in a Zocaf c~culation is proportional to the electron scat- 
tering rate Y, that free electron metals which have a relatively large V, such as Al or 
IIg, would yield a much smaller image gain. This, however, may not be the case 
since our nunlocal calculation shows that Im{FI 1 ) is determined by electron-hole 
excitations and is essentially independent of V. On the other hand metals with inter” 
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band absorption, such as Au or Cu above Aw = 2 eV, would have a large Im {F, 1 } 
arising from a corresponding imaginary part in the local interband term fb, and 
would show a much smaller gain. Thus the key property of the metal leading to 
large image gain is the absence of interband absorption, not small electron scatter- 
ing rate. 

3. Radiation 

Here we consider the problem of the emission of radiation by a molecule above 
a metal surface. Since the wavelength of visible radiation is much larger than typical 
molecular sizes we are justified in most instances in treating the radiating molecule 
as a point dipole. We therefore treat the problem of an oscillating point dipole 
above a metal surface, extending the classical Sommerfeld treatment [32] to inclu- 
de the effects of a nonlocal dielectric relation. We should also remark that the 
results of this section apply to molecular fluorescence as well as to SERS [2,16,17, 
331. 

We consider an oscillating point dipole p(w) eeiwf situated a distance d above 
a metal surface (fig. 1). The time averaged power dissipated by the dipole at fre- 
quency 0 is 

P,,,(o) = -4~ Im&*(W) 1 E(o)) , (81) 

where E(w) is the electric field evaluated at the dipole. To find the electric field we 
must solve the Maxwell equations in the region above the metal, 

VXE-iwB=O, 
c (82) 

V XB + iei :E = -i4n FnS(p) 6(z - d) , (83) 

together with the boundary conditions at the surface of the metal, In this region 
the field may be written as a superposition of the field of the dipole in an infinite 
medium plus the reflected field from the metal, 

E = Edipore + Ereflected * (84) 

The dipole field is calculated in appendix B, while the reflected field must be a 
superposition of upward propagating P- and S-polarized waves: 

E reflected = dp ein’p [An(pi - 4rp) +Asi X@kxp(iq,z) . (85) 

To determine the coefficients A&) and A&) we consider the region 0 < z <d, 
above the metal but below the dipole. There the dipole field, given in (B.8), can be 
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expressed as a superposition of downward propagating P- and S-polarized waves: 

X [(p.2 + 4rp) .fi(p.2 + (I~@) t kt.2 X9. $ X0] exp[-iqr(z -d)] . (86) 

[The quantity in square brackets is just -kr X (kr X @).I But in this region the 
field (84) must be a superposition of S-polarized fields of the form (5) and P-pola- 
rized fields of the form (9). Hence, identifying the incident fields in these expres- 
sions with the corresponding fields in the integrand of (86), we find 

AP VW 

As= i ~ k:2 Xfi. &s exp(iq, d) . 
2wqt 

Wb) 

Putting these in the expression (85) for the reflected field and using the expression 
(B.8) for the dipole field, the total electric field (84) can be expressed in the follo- 
wing form, valid throughout the region above the metal: 

E=+P [ eiP’P S(z-d)2.@+--!- & {kl X &I W ew(iql Iz - 4) 

Here kl is given by (B.9). 
The field to be inserted in (81) is the total field evaluated at the dipole. The 

expression (88) for this field is singular at the dipole. A rule of thumb, which gives 
the correct result, is to interpret the field in (81) as the average of the field (88) 
just above and just below the dipole [34]. In fact it is not difficult to show that the 
singular terms give a real contribution which disappears when the imaginary part is 
formed in (8 I). With this interpretation we find the power dissipated to be 

(89) 

where we have performed the integral over directions of p. This formula is the basis 
for our discussion of the emission by a point dipole above a smooth surface. 

As a preliminary to discussing the expression (89), we use it to obtain the power 
emitted by a free dipole in the absence of the surface. Setting the reflection coeffi- 
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cients equal to zero we see that there is a contribution only from the range 0 < p < 
/cl ; the integrals are elementary and the result is 

Pfree = (e:%4/3C3) l/Al2 ) (90) 

which is just the classical dipole radiation formula. 
The integral in (89) may be interpreted as the integral of a p-dependent power- 

dissipated spectrum, 

P tot = J 
0 

dp$. (91) 

In fig. 5 the solid curve shows dqdp, normalized to Pfree, as a function of p for the 
case of a dipole placed at the surface (d = 0) and oriented perpendicular to the sur- 
face. The medium above the metal has been taken to be vacuum so e, = 1. We dis- 
tinguish three distinct parts of this spectrum: (1) A rising spectrum in the range 
0 < p < w/c, which is in fact not much different from the corresponding spectrum 
for a free dipole and which is associated with emission into photons above the 

surface. (2) A sharp peak at p 2 w/c associated with surface plasmon emission. (3) 
A broad peak occurring at p >> w/c which is associated with electron-hole excita- 

IO’ 

IO2 

I I I I / 

Ag 633nm 

SURFACE PLASMON POLE 

electron-hole 
exciiotion reqion 

(C/olke-h,min 

16’ 1 I 41 
(c’wl c-h,mox 

I I I I I 

0.3 I IO IO2 IO3 IO4 

(cp/w)- 

Fig. 5. The pdependent power dissipated spectrum defined in eq. (91) for an oscillating point 

dipole placed on and oriented normal to a Ag surface. The solid curve corresponds to our non- 

local model, the dashed curve to the local result. The two models are identical for small values 

ofp. 
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tions. The total power dissipated may therefore be written 

Ptot = Pphoton + pSP + Pe-h . (92) 

In table 1 we show each of these contributions, i.e., the area under the correspon- 
ding part in fig. 5, for three commonly used laser frequencies in the visible. The 
dipole is placed 1.5 A from the metal and oriented perpendicular to the surface. 

The dashed curve in fig. 5 is obtained with a local E?(W) representing the same 
optical data. The rough agreement between the two curves in the high-p region is 
misleading, since the dissipation in the local theory is proportional to the electron 
scattering rate while that in the nonlocal theory is determined by electron-hole 
excitation and is independent of that rate. 

The features of the power-dissipated spectrum shown in fig. 5 can be understood 
in terms of the dispersion relations for bulk modes in the metal, shown in fig. 6a, 
and for modes associated with the metal-vacuum interface, shown in fig. 6b. The 
propagating modes in the bulk metal are the transverse photon mode and the longi- 
tudinal plasmon mode, both occurring for o > or, which is well above the range 
of frequencies of interest in our discussion. The other feature of the bulk mode 
spectrum is the broad continuum of electron-hole excitations, which occur at any 
given frequency for values of the three-dimensional propagation vector k in the 
range [35] : 

(2mC@ + J&l’2 - kF < k < (2m‘@ + k;)1’2 , (93) 

The modes associated with the interface are shown in fig. 6b where the abscissa is 
the component of the propagation vector parallel to the interface. The photon 
modes above the metal form a continuum 0 < p < w/c coming from the projection 
of the light line, o = ck, onto the interface. The continuum of electron-hole excita- 
tions is projected into a still broader continuum, 0 < p < (2mw/fi t ki)“2 t kF, 

with the same upper edge as the bulk excitations. The new feature is the surface 
plasmon mode, a discrete surface mode with dispersion relation [36] : 

P=PsP= 
fl E2 ( ) 

1 I2 
w 

fl +e2 
-, 
c 

E2 <-q <o. (94) 

Table 1 
Computed results for a point dipole 1.5 A from and perpendicular to a Ag surface; the param- 
eters are er = 1, eb = 3.6, hwp = 9.33 eV,fiu = 0.058 eV, UF = 1.4 X 10s cm/s, and k~ = 1.2 X 

lo8 cm-l ; the powers are all normalized with respect to the power emitted by a free dipole in 
medium 1 

Rw (eV) E2 (w) Pphoton PSP pe-h 

1.96 -19.06 + 0.67i 1.24 2.34 2.63 X lo6 
2.41 -11.38 + 0.36i 1.07 3.24 1.71 x 106 
2.60 -9.27 + 0.29i 1.00 3.72 1.47 x 106 
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Fig. 6. Schematic excitation spectrum of a free-electron metal. In (a), wb = E_~‘~c+ is the 
bulk plasmon frequency. In (b), w\ = (Eb + 1)-l” wp is the asymptotic surface plasmon fre- 
quency for a local metal. The medium above the metal is vacuum. The thin horizontal line 
in (b) corresponds to the abscissa in fig. 5. 

The projections of the bulk plasmon and transverse photon in the metal are not 

shown. 

The horizontal line in fig. 6b corresponds to the frequency w used in fig. 5. The 
photon emission corresponds to the range 0 < p < w/c, to the left of the light line. 
The surface plasmon emission corresponds to the point on the surface plasmon dis- 
persion curve just to the right of the light line. Finally there is the broad underlying 
continuum of electron-hole excitations. Phase space factors strongly, weight the 
large p portions of the continua, leading to peaks near the upper end of the ranges. 

The above qualitative description has been in terms of an ideal electron gas 
model with infinite relaxation time. The spectrum in fig. 5 and the results in 
table 1 have been calculated with an electron scattering rate v appropriate for Ag. 
The effects of electron scattering are not large. If v were reduced to zero, the prin- 
cipal effects would be a narrowing of the surface plasmon peak and a decrease in 
df/dp in the range psp 6 p << kF, above the surface plasmon peak but well below 
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electron-hole peak. The results in table 1 would be changed very little. If, on 
other hand, v were increased there would be correspondingly little change until 
increase exceeded an order of magnitude. At this point, the power dissipated by 
dipole would begin to have a substantial electron scattering contribution. Such 

large scattering rates would have the additional effect of reducing the peak gains 
shown in figs. 3 and 4. A liquid metal has scattering rates in this range (5~ = 1.4 
eV for Hg) and so should exhibit a signi~cantly reduced image enh~cement gain. 

From the above discussion, we see that the photon emission and surface plasmon 
emission, since they occur at values of p << k~, can be described in the local 
approximation, in which the reflection coefficients are given by (77). For 0 <p < 
w/c we see that q1 is real and q2 is pure imaginary, corresponding to photon emis- 
sion, i.e., propagating modes above the metal and evanescent waves in the metal. 
The surface plasmon emission corresponds to a pole in the P-polarized reflection 
coefficient rp, which occurs at p = psp, given by (94). Here both 4, and q2 have 
large positive imaginary parts, corresponding to evanescent waves confined to the 
surface. In the neighborhood of the pole 

r1p2 
e_?.!_% PSP 

e’: -e:p-PSP’ 
(95) 

and, since Im {psp } > 0, the surface plasmon contribution to the power dissipated 
is in times the residue of the integrand of (89) at p = psp. After some rearrange- 
ment we fmd 

Trc2 
Psp = ; Re G-E2Yi2?$p 

e?‘2(e1 - e2) 
exp[-2(-er /e# '2p~~4 

which is a result usually expressed in terms of the decay rate into surface plasmons 
of a fluorescing molecule near a metal [16,37,38]. The results for Psp given in 
table 1 were obtained by numerical integration of (89) over the symmetrical range 
o/c < p < 2psp - oft. They agree within a few percent with those given by (96). 

The broad electron-hole excitation peak, shown in fig. 5, occurs for w/c << 

P 5 2kF, a range of p for w~lich the quasistatic approximation is appropriate, i.e., 
the P-polarized reflection coefficient is given by (43) and the S-polarized reflec- 
tion coefficient vanishes. We can thus approximate P,_.h by 

Fe-h =$I dpp2(I~~12 + $lm t2) ew2@ Im(rf2), 
iO 

(97) 

in which we use the quasistatic result (43) for rp2. The dissipation in this peak is 
not associated with any pole or with the emission of any normal mode in either 
medium, rather it is associated with what we term driven surface modes, coupled 
motions of the electric field and the electron plasma which are present only when 
there is a driving field. The dissipation is through excitation of electron-hole 
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pairs. The results for Pe_t, given in table 1 were obtained by numerical integra- 

tion of (89) over the range 2psp - w/c < p 5 00 and agree well with the approxi- 
mate formula (97). 

The distance dependence of these results can be understood qualitatively from 

our approximate formulas and fig. 5. Consider first the expression (97) for P,_n. 
The integrand for d = 0 has a broad peak with maximum at p = 2kF. The expo- 
nential factor in the integrand will cut this peak off at p 2 d’ , so P,_,, will 
diminish rapidly as d increases. When c/w >> d >> (k&l, corresponding to 
d = 50-500 A for the calculations shown in fig. 5, the local approximation can 
be used in (43) and the expression (97) for the power can be evaluated explicitly: 

Here the power is strictly speaking the dissipation due to electron scattering, not 
electron-hole excitations. In this range the power (98) is in fact negligible com- 

pared with Psp which, as we see from (96), does not begin to diminish until 

d = p&x (-~~/q)“~, which corresponds to d x lo3 A for the parameters used 
in fig. 5. For still larger d, P,p diminishes exponentially, becoming negligible 
compared with Ppt-,oton when d >> c/w. 

In applying the results of this section to molecular fluorescence we need only 
make the identification: 

Ytot = Pt,tlfi(-Q , (99) 

where Ytot is the total decay rate and P tot is the total power dissipated given by 
(89) in which /.J is taken to be twice the transition matrix element of the dipole 

operator. In the same way the partial decay rates are related to the corresponding 
partial power dissipations as in (92), 

Ytot = Yphoton + ‘YSP + Ye-h . (100) 

4. Conclusion 

We have here discussed two aspects of the electromagnetic interaction of a 
molecule with a metal surface, the image enhancement effect and the power dissi- 
pation. Both have important applications other than to Raman scattering. For 
example, the solution we have obtained for the image enhancement problem can 
be applied to the problem of determining shifts in the vibration frequencies of 
adsorbed molecules as well as to the problem of the Van der Waals forces on a 
molecule near a surface where finite size is important. 

In conclusion we wish to emphasize that, although our calculations are based 
on rather idealized models of the molecule and the metal, the electromagnetic 
effects we have discussed are surely present. The final explanation of the SERS 
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effect may involve other ingredients but it cannot ignore these basic electromagne- 
tic effects. 

Appendix A 

Here we obtain the formulas (8) and (9) using known formulas from standard 
references. We begin by writing 

eip.p-m = e-pd exp(ig .rl --pi *rr) = ge -Jq-pr 1)’ 
I=Q E! 

(2. Pr -i$.P,)’ (A.1) 

But 

I. P, =cosel and p. F, = sin O1 cos(& - 4) , 64.2) 

where & is the azimuthal angle of PI and # that of @. Using the formula (ref. 

]211, P. 55) 

(cos 0 t i sin 8 cos 4)’ = P,(cos 0) + 2 mJr (-i)” $--+ P;” (cos 0) cos mqb , (A.3) 

and the relation [39] 

P;~(cos e) = (-i)m =P~(cos e) , 

we can write 

(f.i, -ii).QL h 
mz- 1 im (If!,! -pfntcos e,) expk4h - 41 . 

Inserting this in (A.l) gives the desired formula (14). 
To obtain (IS) we begin with the formula (ref. [27], p. 68) 

dtt’e-‘CoSeJ,,,(tsine), o<e <T1/2. 

(A-4) 

(A.5) 

c4.6) 

Using (A.4) and the relation (ref. [27], p. 23) 

P/y-x) = (-l)l+m P;“(x) ) 

we can then write 

(A.7) 

_- dttrexp(tcos~,)J,,&sin~,), lr/2<e, <7r. (A.@ 
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Now (ref. [27], p. 26) 

~m(z)=~jnd~ei~cosOeimm. 
Tr 

0 

Putting this in (A.8) and replacing t -+ pr, ,@ + r#~ - @, , we get 

Xexp{iprr she, co~(~--~~)+pr, cosf3,). 

But 

pr, sine1 cos(@-@r)=p.p, rr cos 0 = z - d . 

Hence, writing dp = p dp dd, we get the formula (15). 

(A.9) 

(A-10) 

(A.ll) 

Appendix B. The fields for a point dipole 

Here we calculate expressions for the fields due to a point dipole peeiwf in an in- 

finite medium of dielectric constant .er . The dipole is placed on the z-axis a distance 
d above the xy-plane. We introduce a Fourier expansion of the electric and magne- 
tic fields: 

E(r) = Jdk eik’r a?$ , B(r) =j- dk eik’r & . (B.1) 

This is in the spirit of the Weyl approach to the Sommerfeld problem [40]. The 

Maxwell equations (82) and (83) become 

(B.2a) 

kxBktEIWE~=- & P exp(-i&d) . (B.2b) 
c 

The solution of these equations is 

Ek=- 
k X (k X P) & [P + k2 _ kt ] exp(-hd) 9 (B.3a) 

Bk=L .-!_?%- exp(-i&d) , 
2n=c k2 -k: 

(B.3b) 

where 

k: = E, w2/c . (B-4) 
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The fields are given by inserting these expressions in the integrals (Bl). If we intro- 
duce cylindrical coordinates, 

k=p+k,i, r=p+d, (B.5) 

these integrals become 

dk, exp[ik,(z - d)] P + 
k X (k X II> 1 k;-q: ’ 03.6) 

and a similar expression for B(r). Here 

q1 =(k: -p’)“’ , ImIqll>O. 03.7) 

For z > d we perform the k,-integral by completing the contour in the upper half- 
plane; the integral is then 2ni times the residue at the pole at k, = ql. For z <d we 
complete in the lower half-plane and the integral is -2ni times the residue at k, = 

-ql. In addition there is a contribution to the integral equal to 27r6(2 - d) times 
the limit as Ik, I + 00 of the quantity in square brackets in the integrand. The 
result is summarized in the formula 

E(r) = - 6 - d) 2. ,& t&k1 X (k, X p) exp(iq, lz - dl)] , (B.8) 
1 

where 

z-d 
kl =p+ql m-dl. 

The corresponding formula for the magnetic field is 

B(r) = 2 Jdp eb’PEL$!- exp(iq, Iz - dl) . (B.lO) 

These formulas express the dipolar fields as a superposition of plane waves with 
complex propagation vector kl . When p < kl = E: “w/c, the propagation vector is 
real, corresponding to radiated plane waves. When p > kl , the z-component of the 
propagation vector is imaginary, corresponding to the near fields of the dipole. 
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