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Entanglements are modelled by links which make a sliding contact between polymer networks. A formal 
solution to this problem is given using the replica formalism and the contribution of an entanglement to 
the free energy of shear is given by: 

h2(1 +r/) 
lkT ~ i+;~ii +kT%log( l+r~X 2) 

i 

where ~iare the Cartesian extension ratios and r/is a measure of the freedom of a link to slide compared 
with the freedom of movement of a chain. The expression quoted gives correct limits in the (trivial) case 
of rt zero, and r/infinity, when it is merely a negative contribution to the osmotic pressure of the network. 

INTRODUCTION 

The classical theory of rubber elasticity t contains an 
unrealistic assumption. It assumes that the polymer 
chains move through each other as 'phantoms' held only 
by crosslinks, and that the whole system is prevented from 
collapsing by the assumption of repulsive forces which 
generate a bulk modulus but are otherwise ignored. 

The neglect of repulsive effects in calculating the shear 
elasticity has been shown by two of the present authors 2 
to be reasonable for systems where the repulsions are 
screened, but this does not take into account the simple 
constraint that real polymer chains cannot pass throqgh 
each other. In any polymer system with closed loops of 
chain, this leads to permanent constraints upon the 
motion: the state of topological entanglement must be 
completely preserved. 

The complete classification of entanglement con- 
straints is an outstanding problem in pure mathematics 
and direct physical attacks upon it demand gross approxi- 
mations. However, the local consequences of entangle- 
ment are intuitively obvious, and by adopting a simple 
model of these we can convert this understanding into 
predictions of elastic behaviour. 

PHYSICAL CONSTRAINTS 

Deam and Edwards 3 replaced the full entanglement 
constraints by the constraint of conserving a partial 
description of the topology, the winding numbers between 
chains. These constraints were then added incoherently in 
an approximation which treats best the simplest con- 
figurations of constraint as shown below: 
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Essentially their calculation assumes that other chains 
intervene before multiple approaches arise, so that all the 
constraining contacts contribute independently as por- 
trayed in (2) below. However, for a solvated gel, the chains 
are highly flexible compared with the incidence of chain 
contacts, and under these circumstances the simplest 
entanglements as in (1) do not dominate. 

= . 1 . _ : .  

(2) 

The effect of the constraints is then highly correlated as in 
such configurations as: 

(3) 

Following Edwards 4 and de Gennes s, Doi and Edwards ° 
focussed attention on the feature that whatever the 
entanglements, linear chains can, given enough time, 
succeed in sliding along through them. This is illustrated 
below: 

f 

(4) 



Adopting the high density, simplest entanglements pic- 
ture of Deam and Edwards 3 leads to the concept of an 
effective tube of constraint, only within which the chains 
can move comparatively freely. This model has proved 
extremely fruitful in its application to viscoelasticity and 
molecular diffusion ~, but Graessley 8 has shown that the 
diameter of the tube, which Doi and Edwards leave free to 
parameterize the strength of entanglement, is of order 
2 nm even for a polyethylene melt. Whilst the experimental 
agreement is then by previous standards remarkable, 
except for the magnitude of the viscosity, this very large 
degree of lateral freedom somewhat contradicts the 
original picture of the tube. Even for a dense rubber, 
therefore, the constraining effect of interchain contacts 
must be highly correlated and the effective entanglement 
must be more like that of diagram (3) than (2). Some sort of 
tube concept must remain valid, but there is a motivation 
to explore other points of view. 

SLIPLINK MODEL 

A complementary view to that of the tube model is 
provided by the slipping link. Here complicated entangle- 
ments such as (3) are represented by the constraint of a 
contact through which each chain is free to slide: pic- 
torially this is equivalent to the diagram below: 

(5) 

This picture of sliplinks is rather more general than that 
discussed by Doi and Edwards 6. 

Physically the presence of other entanglements of 
proper crosslinks will in a network restrict the extent to 
which the [inks can slide independently along either of 
their connecting chains. This will be put into the calcu- 
lations as the freedom to slide only an arc length +_ a in 
any one direction: 

(6) 

The total number of sliplinks, Ns, will simply be taken as 
given, so that we will arrive initially at a two parameter 
theory. However, from the above comments we will relate 
a to the numbers of links N~ and N c What we do in this 
paper is to calculate the free energy caused by such a link. 
To do this one must firstly set up a formalism which 
permits a rigorous translation of the physical problem 
into a mathematical problem. This is accomplished by the 
replica formalism, and the tricky limiting mathematics 
contained in this method is amply compensated by the 
precision and completeness it confers on the calculation. 
However, the final results are in some ways surprising and 
the large number of authors of this paper is due to careful 
checking of results which seem at variance with con- 
ventional wisdom, a point which will be expanded upon 
later. 
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The structure of the paper will be to give the formal 
analysis of the problem in the next section. Then we shall 
present the simple limiting cases of a ~ 0  and a ~ ,  
followed by an outline of the intermediate case. The 
complete calculation is relegated to an Appendix. Finally 
the results will be discussed in a wider framework. 

THE REPLICA FORMALISM 

The formal difficulty of any study of the statistical 
mechanics of an amorphous system is that it is the free 
energy which has finally to be averaged over those degrees 
of freedom whose frozen values make the material 
amorphous. To average a free energy is much more 
difficult than the averaging of the normal partition 
function, because it is already the logarithm of the 
partition function of those degrees of freedom which are 
not frozen. The formalism will be eased somewhat by 
noting that for the purposes of this paper it is sufficient to 
consider all the chains as parts of one long chain of length 
L, the total arc length of all the chains. Thus in our 
particular case of a cross and slip-linked network let the 
chain be represented by r(s). Then suppose the crosslinks 
join points s i and s[ so that link i imposes the constre, int: 

r(s/) = r(si'). (7) 

The free energy is then a function of the incidence matrix 
(si, s'i)= S, 

= 

F(S=l= -k,Tlog f ~6(r(s,)--r(s[))e-~/k"Tp(r)(6r) (8) 

where H is the Hamiltonian of the system and S(6r) 
signifies integration over all configurations of the chains. 
The function P(r) represents the connectivity of the chains 
and is adequately represented by the Brownian random 
path formulation, succintly expressed by the Wiener 
integral: 

L 

0 

for each chain. N is the normalization (which need concern 
us no further). In this paper we do not consider the 
interaction between chains in detail, since the con- 
ventional approach of considering that repulsive short 
range forces with attractive van der Waals forces will lead 
to an acceptable bulk modulus, which need not be studied 
in detail, is an adequate viewpoint here. However, for 
completeness one can write it in pseudopotential form: 

L L 
t.I t~ 

td ,b/ 
O 0  

Finally we must ask how F is to be averaged. If it is 
assumed that the crosslinks are placed at random along 
the chain, the initial probability will be precisely the usual 
statistical mechanical formula in which the crosslinks are 
allowed to be anywhere along the chains. Thus: 

p t F = ~ (SJF(SJHd,,~, ,  i l 1) 
i 
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and 

~'(=S) = ~P(r)e-H/k,7]~fl6(r(s~)--r(s;')X6r) (12) 

In order to handle the logarithm we note that: 

log X =coefficient of n in X". (13) 

It helps to understand this representation if we 
consider: 

(14) 

a s  

... f f i  P(r')e-ZW"~' 0 ~6(r'(s,)-ff(s'~)t([Ifr" I 
d a = l  " = 1  " \ ] \ a  / 

(15) 

further, we can identify the physical free energy as the 
coefficient of n in the free energy ,9"(n) of n + 1 systems: 

e - f f ( n ) / k B T  

f""  j , :o ( f i  P,ff)e- zm/*"'"]- I ,  ==o ~5(r'(s,)-ff(s',)i \ /)~ds'ds"(, \ l]6r')., / 
(16) 

If the system is now strained with extensions 2~, the 
integral is taken over n + 1 'replicas', the first being in the 
unstrained system, and the other n replicas being taken 
over the strained volume. Since the N~ crosslinks are 
conveniently described by a chemical potential/~: 

(17 

we reach the final formula: 

/~=coefficient of n in~(n)  (18) 

where 
L 

e - ,~-(n)/ksT__ ~0 d# -~mi fifr°)O~ f (6r')exp[-~f3' ''2ds 
unstrained strained by 0 

). i ,)~ 2,/. 3 

L L  L L  

-w~ff6,r'(s)-r'(s',)dsds'+#ff~f(r',s)-r'(s'))dsds' 3 
O 0  O 0  

(19) 

Note that the crosslinks, which are fixed, appear as a 
product in the replica indices in the exponent, whereas the 
chain chain interactions, which are not fixed, appear as a 

sum in the replica indices in the exponent. This is how the 
replica formalism handles in a quite explicit and precise 
way the essential difference between these facets of the 
chain-chain relationship. 

Now we are in a position to handle the sliplinks. The 
formula for the crosslinks 

I-I6(r(s~) - r(s;)) (20) 
i 

is replaced by: 

]-16(r(si + z~) - r(s; + ~;)). (21) 
i 

This sliding z i is not a frozen variable but a full degree of 
freedom. Hence whereas in the replica formalism a true 
crosslink appears as: 

L L 

r ~ s) - r'(s'))dsds '. 
dd~=O 
O 0  

(22) 

we now have separate z integrals for each replica giving: 

L L a a 

[f f ( dz~ dz~ 6(r~(s + z~)- r~(s ' + f~))dsds' 
d d ~ = O J  .) 
O 0  a a 

(23) 

Thus a complete formal statement of the problem is 
obtained by adding equation (23) to the exponent in (19) 
with a chemical potential ~, and number N, to give the 
final, comparatively compact formula: 

e- ~(,,),k,7 _ ,nN,qd#c,,- Nclog,u,m N I ~  - N,Iog,u, 
- 'r--~'2rei ~ "~ "2hi" 

x f ~(&')exp(- W-wE + ,cXc + ,.X.) (24) 

where 
L 

0 

L L 

r. ,s, ,s, . ,  
0 0 

L L  

X,.= f f dsdsl ~5(ra(s)-ra(s')); 
0 0 

L L a a 

f[  Hff  . . . .  X~= dsds dzflz~6(r ( s+z~) - r  (s +z~)) 
J e d J 

0 0 a a 

We will not consider the imeraction of the chains in further 
detail (though see Ball and Edwards2). 

CALCULATION 

The effect of crosslinkage is to confine chains to a well- 
defined region, and their mean positions must be transfor- 
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med approximately affinely under strain; indeed for a 
Gaussian network the mean positions will be exactly 
affinely deformed. However, the chain has considerable 
freedom about this mean position and this suggests the 
method of transforming to collective coordinates so that 
each r ~ is close to the affine value f~. The most symmetric 
way to do this is by using the roots of unity in the 
transformation employed by Deam and Edwards: 

X,~ = T~#.P (26) --(i)'i 

but it is more convenient to keep all the coordinates real 
by using, for example, the transformation given in 
Appendix B. This is an orthonormal transformation and 
therefore: 

~ r  '~2 = ~ X  "2 (27) 
ct 

and 

I-I(r=(s) - r'(s')) = H6(X=(s)  - X=(s')). (28) 
0t ~t 

To evaluate equation (24) we can employ a trial function: 

L 

- 1 n 2 2 

Q=- fd 21qq, 
61J '==1 i 

0 

(29) 

to mirror the crosslink 6 function, and employ the 
variational principle that: 

~eA+~>~e A+<~> where (B)=~ee~A B. (30) 

Then for the functional integral in equation (17) (with 
w= 0) we obtain 

e-"-o+Q+,.x. +,,x.>>. fe -w-g+<g+~,x`+~',x,>. (31) 

Note that the exponent of the r.h.s, depends on the 
chemical potentials/t,, and Pe purely linearly. It follows 
that we may unravel directly the use of the chemical 
potential to obtain: 

e- ~-(")/k"r>. fe-W-Q+<O>(X,~>No(x~> N'. (32) 

(It should be noted that as long as we are working in the 
3n + 3 dimensions, 3 r- is a conventional free energy and 
the above calculation is a conventional variational calcu- 
lation of a free energy. However, when the calculation is 
complete, then we take the limit n~0 ,  and F being the free 
energy of a system in which not all degrees of freedom are 
accessible, need not have the conventional properties of a 
free energy.) 

Let us first consider the case of crosslinks only. The 
evaluation of the various expressions is quite straightfor- 
ward and is discussed in detail by Deam and Edwards and 
recapitulated briefly by Ball and Edwards. (Note that 
these do not take qi to depend on i, but the extension is 
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trivial.) The value of ~e -"-Q is: 

e-"E~q,L 6 (33) 
i 

and 

/ qi \n, 2 L 2 

(34) 

where 

1 
~ ,  = ( 6 ( X o ( s ) -  Xo(s'))). (35) 
Vo 

The quantity V o is the volume available to Xo(s), which 
ranges over the cuboid generated by the three edges: 

VI:3(1, 0, 0, [21, 0, 0In times) and similarly for y and z 
(36) 

these are each of length V 1/3 (1-{-/'/Ai2) 1/2, respectively. 
Thus 

1 1 
Vo=~,]-[( 1_ :  +n2i2)-1:2 (37) 

It is in this rather oblique way that the replica method 
reproduces the classical results, for variation now gives: 

6NI 
qi -  L (38) 

(confirming the earlier neglect of dependence upon i). 
Hence: 

P = ½Nck ~ T~212 + (terms independent of deformation). 
i 

(39) 

Now we turn to the sliplink problem. The only new term 
with which we are confronted is the configurational 
average of a replicated sliplink appearing as (Xs) in 
equation (32). 

TWO SPECIAL CASES 

With the advent of slip the linkage function X~ is not 
isotropic in the replica indices, in other words when we 
write it in terms of the usual transformed coordinates X~(s) 
it does not transform into anything simple. As this will 
force further approximations upon the calculation, it is a 
helpful check to consider the two limiting cases of a = 0 
and a-- ,~.  The first merely gives back the case of an 
ordinary crosslink, whereupon we obtain, neglecting 
wasted loops: 

. ~ 2  ( q, ~ t/2n 
(X )  = ~o-o ]-iI. \~-~/ (40) 

F 
and k~T =1~2~ per link. (41) 

POLYMER, 1981, Vo122, August 1013 



Elastici ty o f  entangled networks." R. C. Ba l l  et al. 

In the case of a--* oo we can ignore configurations where 
any two slip coordinates s + r~ are close along the arc. The 
n + l  6-functions in Xs can then be averaged inde- 
pendently and we obtain: 

S 2 
<X,> = ~ -~  (42) 

and a free energy per link given by: 

P 
kBT = l°glI-]2~l' (43) 

i 

This latter is simply a correction to the osmotic pressure, 
and expresses the fact that a completely sliding contact 
does nothing save reduce the number of perfect gas 
degrees of freedom by one, joining together two mo- 
lecules. These limiting values are to be demanded of the 
computation for general a. 

ELASTICITY CALCULATION 

For intermediate ranges of slip it is still trivial but now 
rather tedious to perform the configurational average of a 
slipping link constraint. In appendix A this is shown to 
give: 

I 2 / ' , 1  \ l t2n ( "l 

f f l d e t - " . + G , + G ' , ) t  t44t Vo i \ z x }  t i 

where the curly brackets {} denote the outstanding 
average over slip coordinates: 

f a : : o  
--a - a  

(45) 

and the determinant is taken over the replica indices 
fl = 1... n only. The matrix G~ has components: 

G#i #' - 

] 
qi~,Ti T~ T, '~0(~ , )min( IT~l , l~ , l ) -~  e-3 I~,-~.~f. 

==' ( qi 

(46) 

The transformation matrix T~ "p is precisely the same as 
that introduced through equation (26). 

A simple and tractable approximation which gives the 
exact results for the two limits of large and small slip a, is 
to average the matrix G~ itself where it occurs in equation 
(14) using: 

{l-Idet - '/2(1 + G, + G~)} I> l-Idet- '/2(1 + {G,) + {Gi}) 
i i 

(47) 
= I-[det - 1 / 2  (1 + 2{Gi}). 

i 

This inequality is derived in appendix A together with 
possible improvements. On averaging, G i is the n x n 
matrix: 

2/2 + n22(1-- 22) 0 0 0 ... 

r/(xk 0 22 0 0 ... 

2 o 0 o ... 
(48) 

where the xi are dimensionless parameters of the slip: 

x i = alqi/3 (49) 

and the function ~/(x) is given by: 

~(X)  = X - 2(X - -  X 2 + ~ X  3 - -  e-  Xsinhx). (50) 

This function is monotonic in x 1> 0 and has asymptotes as 
follows: 

l 2 3 ._~ q(x)=3x +orde rx  asx 0 (51) 

t/(x)=~x +order  1 as x--*m. (52) 

The approximation (47) can then be evaluated and 
substituted back into equation (44) to give the result: 

L 2 , - - (  q, q(x,)X2(l - X 2 ) )  
(X,)=VoeXpin~. '~log~-~+logl l+q(xi)221+ l+q(x i )22-  ~' 

(53) 

Now we must return to construct formula (32) to obtain 
the replicated free energy, incorporating Nc crosslinks as 
well as N s sliplinks. The component parts are given by 
equations (33), (40) and (53) taking the terms of order n 
from each gives the free energy of deformation as: 

ff - } ( N , +  N~)~(22+ log~-~ ILq, kBT . +-]~-  + ~ ( l o g [ 1  + 

,TIx,)#l-+ )) (54) 

where all the qi-dependent terms have been retained. 

Determination of parameters q~ 
The variational parameters qi only occur in3r-(n) to 

relevant order in as much as they appear in F given above. 
They can therefore be determined by minimizing the free 
energy of deformation (equation 54). Writing all the qi in 
terms of the xi, and setting to zero the first derivative of P 
with respect to the latter then gives: 

x,-2a(NL-+ N<)(1 

where 

(55) 

q'(x) = d~r/(x). (56) 
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The correction to the value in the absence of slip: 

x~ _ I(N~ + N~) 

a L 
(57) 

is always small, being of order x 2 at small x and N f f N  ~ 
+ N~ at large x, so it is always reasonable to take it to first 
order only. To evaluate the free energy to first order in a 
perturbation requires only a zero order evaluation of the 
quantities q~. This is because the free energy is made 
stationary with respect to such variational parameters 
and so at first order is insensitive to their variation. This 
amounts to neglecting slip in the evaluation of the % 
whereupon in terms of the x~ they take the value given by 
equation (57). 

RESULTS 

The deformation dependent part 
(equation 54) now reduces to: 

of the free energy 

k.T=-~N"Y)'{ " i+q2~ +logl l+r/2{I  (58) 

where the argument of r/is given by equation (57). Note 
that the required limits of a ~  and a--,0 are obtained 
since they give r/~ < and q--*O, respectively, which in turn 
yield the perfect sliding and hard-link free energies (43) 
and (41). 

The parameter a can be neatly eliminated if we return to 
the rationale for its introduction. If each sliplink can on 
average slide as far as the centres of its topologically 
neighbouring links, then we have: 

4a(N, + N ,) = 2L (59) 

1 1 
giving x~ = 1 for all i and q = ~1( 1 ) = 6 + 2e = 0.2343 ... 

DISCUSSION 

The intuitive picture of the behaviour of a sliplink under 
shear is that it will respond to the shear by moving until it 
locks onto another entanglement or crosslink, whereupon 
it behaves as a genuine crosslink, possibly of higher 
functionality. This means that a sliplink hardens with 
deformation. Ours softens. That result is reasonable when 
considered as a function of the freedom to slip a, for as we 
have seen the two limits of large and small a are correctly 
covered. What the result implies is that as the deformation 
2 increases, the sliding distance in space is also increased 
and the link weakens. The difficulty appears to be in 
thinking of a network as if it were made of rubber piping, 
thus behaving in a fashion which hardened on defor- 
mation. However the true network is dominated by 
Brownian motion. Our free energy has the standard form 
of attributing the shear energy solely to entropy. In such 
cases it is the amount of phase space that matters and 
mechanistic pictures, which are really internal energy 
pictures, are misleading. This is not to say that if higher 
order corrections were studied in which the multiple 
correlations of links appeared, then some such effect as the 
intuitive picture might not appear. The experimental 
situation, however, is well served by the expressions 
deduced as discussed below. 
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In the study of the tensile force under elongation: 

~ 1 1 
~2F(2,2- 2,2- 2 }=J (60) 

it is customary to plot the quantity: 

(kBT)- 1(,~ --/~ - 2 ) -  if. (61) 

This we find to be given by d o - d~ e for small deformations 
2 = 1 + ~, where 

and 

do = N,  + N~ 1 + 6q + 3r/2 
(1 _+_ q)2 = N , +  1.69N~ (62) 

d 1 =Ns4q 1 +6q + 2q 2 (1 + q)3 = 1.25N,. (63) 

The numerical values given in equations (62) and (63) are 
those based on equation (59): they are not sacrosanct. For 
large deformations expression (61) takes the value 
N~ + Ns/J. 2. 'Large' in this form may not be a reasonable 
limit to consider since, given an arc length between links of 
a ~ ml, where m is a small number for a well-linked system, 
a taut polymer configuration is obtained for 2 ~ m ~/2 and 
the analysis presented above is inadequate. However, the 
formula for small deformations is well borne out by 
experiment, exhibiting the decrease in modulus which is 
often expressed by fitting to the Mooney-Rivlin 9 
expression. 
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APPENDIX A 

7he arerage oJa slipping link 

As explained in the text, we require to average the 
slipping link constraint against the harmonic Green 
function, and subsequently also to integrate over slip 
coordinates. Using curly brackets {~j to denote the 
average (45) and angular brackets ( ) to denote averaging 
over monomer positions the problem is to evaluate: 

L L 

 '-fff n (~X, , ) - (  dsds' 3[r~(s + G ) -  r=(s' + z'~)] } ) (A.1) 
2=0 

0 0 

Parameterizing the 8-functions and ignoring wasted 
loops (i.e. s ~ s') the average becomes: 

/ . AJ,V \ 
L | H ~ i < ~ e x p [ ~ , ~  .r (s+G)})<{e E,~ .r ( + % ) ] } )  

(A.2) 
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where L is the total arc length of material and half of each 
of the slip averages is now redundant: the same notation 
will still be used, however. Now we make the usual 
tra~asformation of the position coordinates from r" to X~ 
where 

Xai-- ~ Ti=flrfli : r~= Z Tp'XI~i. (A.3) 

The only conditions other than orthogonality 

imposed on T by the preceding calculations are: 

1 

T~°°=(I +n~.~)-2 • T ° ' = 2 , T ° ° a > 0 .  (A.4) 

Each of the averages in (A.2) now becomes: 

({exp[i~2'T~'Xa,'s+z.Q})={aOo(eXp[i~2'T~=Xa,(s+z.'}} } 

where the averaging operations have been commuted and 
the fact that the propagator is separable over fl has been 
exploited. Next we proceed to evaluate each of the 
configurational average factors in (A.5). From f l=0  we 
have 

(exp[i~21T~°'Xo~(S+ z,)l> = 

VIa ~2~T~ °" exp -½ Y. a,T~ /.,, T v <Xo,(r,)Xo,,(r,,)> 
• o i \ ~  / L it'==' 

(A.6) 

where )(o(Z~) = Xo(s + % ) -  Xo(s). (A.7) 

The a-function has come from the freedom of Xo(s ) to be 
anywhere in the volume V o, and we have used the fact that 
the distribution of the rest of the coordinates is joint 
Gaussian. The correlation function appearing is given by: 

<.e~ Oi(~',)z](0i,('t',,)> = iJii,A'" 
6 1 = min(l'c,l.l"r <.l) (A.8) 

where O(x) = 0, x < 0; O(x) = 1, x >~ 0. 

For each/3 > 0 we obtain: 

( exp[ i~ 2~ Tff'X a,( %) ]) = 

ex p l -  ~ii,~ ,,;.~' T/n=).~,' T/, p',<X,;(z')X,i,(r`,)> ] 

where 

(A.9) 

. . . .  2q i "" 
(A.10) 

The f l>0  factors of (A.5) can then be combined to give: 

e x p [ - ½ ~  S" 2~'T~T~'B "~'] 
1 cz,,iiS~>O i - - i - - i  i i j (A.11) 

and we can use the identity 

Tf'Ty=iJ,, ,-  T~°'T~ °~' (A.12) 
, a > 0  

together with "== t t~ i =~-qi to reduce this to 

exp[ -¼~12r2r+½~)'r2r'Ti°'Tf='Br' '~,` q, ~='i 3 (A.13) 

Now we can combine results (A.6), (A.8) and (A.13) to 
obtain (A.5) as: 

_! 1-I6(Z,~'T/O"] exp - 
Vo, \ , "  ) 

¼yl-x>  - ½ x xt r°'r°"(A =' - . ? ) 1 .  (A 14) 
, i  qi =,'i ) 

It is natural to transform the 2" by T also, to give new 
variables of integration 

ItilJ= Z Tie').~ (A.15) 

in terms of which (A.14) becomes 

1 ( [- ,.-,1 

(A.16) 
where G~ a' is the messy product: 

G~i~'=qi~ Ti~'Ti°:'Tf'" Ti°"(A'"- B~ "') a.17) 

and expression (A.2) can then be reconstructed as 

L2r-dd3J'~{6(#°)'~z [- iv-1 ( ,~. 1 , z .,.,,,} ]. 
/A.18) 

The Jacobian between the integrands/~,j and ),~ is unity 
since T is orthogonal. The squared f-function is really a 
Kronecker 6 in origin and hence its square is simply: 

°) 
,} - Voo " (A.19) 

Let us distinguish the different slip coordinates in the two 
occurrences of the matrix G in expression (A.18) by a tilda 
over one of them to obtain: 

_ L2  / ql \''' _ voi\/i7-1-H~} {det ~{I+G+(~)}. (A,20) 
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