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It is our purpose in this paper to investigate the relationship between two 
classes of ideals in regular local rings R: prime ideals P such that R/P is 
factorial, and prime ideals Q which are minimally generated by htQ + 1 
elements. These latter ideals are called almost complete intersections. 

Peskine and Szpiro [ 121 say two unmixed ideals Z and J in a regular local 
ring R are (geometrically) linked if Z and .Z have no common minimal prime 
ideals and if there is an R-sequence xi ,..., x, such that (xi ,..., x,) = Zn.Z. 
We will delete the word “geometricaly” throughout this paper; linkage will 
always be used in the sense above. Murthy [ 1 l] essentially showed that if R 
is a regular local ring and P is a prime ideal such that R/P is factorial, then 
P is linked to an almost complete intersection. In Section 1 we provide a new 
and simple proof of this result using a generalization of a theorem of 
Hartshorne [2] concerning the connectedness of Spec(R). 

Recall that a ring R is said to satisfy Serre’s condition S, if the following 
condition holds: 

depth R, > min [d, htJ] 

for all prime ideals J of R. R is said to satisfy condition R, if R, is regular 
for all prime ideals .Z of height at most d. If R is a local ring satisfying S, 
and R,, then R is an integrally closed domain [lo]. Suppose R is a regular 
local ring and Z is an ideal such that R/Z satisfies R, where j < 3. Then for 
“most” ideals .Z linked to Z (see [ 121 for a precise definition of “most”), R/J 
will also satisfy Rj. Now let P be a prime ideal in a regular local ring R such 
that R/P is a factorial domain satisfying S,. As R/P satisfies R, in this case, 
most ideals Q linked to P will have the property that R/Q satisfies S, and 
R, . In particular, Q will be a prime ideal, and R/Q will be integrally closed. 
We observe that if R is complete with an algebraically closed residue field, 
then R/P factorial implies R/P satisfies S, [3]. 
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The above discussion shows that if P is a prime ideal in a regular local 
ring R such that R/P is a factorial ring satisfying S,, then P is linked to a 
prime ideal Q such that Q is an almost complete intersection and R/Q is 
integrally closed. In Section 2 we reverse this question. If Q is a prime ideal 
in a regular local ring R such that R/Q is integrally closed and Q is an 
almost complete intersection, then is it linked to a prime ideal P such that 
R/P is factorial? Surprisingly we obtain a satisfactory answer. 

THEOREM 2.3. Suppose R is a regular local ring and P is a prime ideal 
such that P is an almost complete intersection and such that P, is a complete 
intersection for all prime ideals Q of R such that dim(R/P), < 1. Let k be 
the least number of generators of P and set S = R(T,,..., Tk) be the 
polynomial ring in k-variables over R localized at the maximal ideal of R. 
Then there exists a prime ideal Q in S, linked to P, such that S/Q is 

factorial. 

Observe that dim(S) = dim(R) and S is a faithfully flat extension of R. 
From this comment and from Peskine-Szpiro [ 121 it follows that S/Q is 
Cohen-Macaulay if and only if R/P is Cohen-Macaulay. 

If P’ is a prime ideal in R such that R/P’ is integrally closed and 
Gorenstein, then as is well known, the general ideal P geometrically linked to 
P’ will be an almost complete intersection such that R/P is an integrally 
closed domain. By Theorem 2.3, there is a faithfully flat extension of R, S, 
with dim(S) = dim(R), such that P is linked to an ideal Q such that S/Q is 
factorial. This discussion shows 

COROLLARY 2.1. Let R be a regular local ring and let P’ be an ideal 
such that R/P’ is an integrally closed Gorenstein domain. Then there is a 
faithfully flat extension S of R of the same dimension and an ideal Q of S in 
the same linkage class as P’S such that S/Q is factorial Gorenstein ring. 

The study of almost complete intersections relates to the syzygy 
conjecture of Evans and Griffith. Suppose R is a regular local ring. A 
module K is said to be a kth syzygy if there is an exact sequence 

O-+ K+ Fk-) . . . +F, 

where the F, are free R-modules. Evans and Griffith conjecture there are no 
non-free kth syzygies of rank less than k. This question is still open even for 
the case k = 3 and rank k = 2. The syzygy conjecture has now been solved 
by Evans and Griffith. Bruns et al. [ 1 ] show if such a module K exists, then 
there is a hight two prime ideal Q in a regular local ring R, generated by 



ALMOSTCOMPLETE INTERSECTIONS 181 

three elements, such that R/Q is not Cohen-Macaulay. If, in addition, K, is 
free for prime ideals J # M, the maximal ideal of R, then one can asume that 
Q, is a complete intersection for all prime ideals Q such that dim(R/Q), < 1. 
Bruns et al. also show that the existence of such a syzygy implies the 
existence of a height two prime ideal P such that R/P is a non- 
Cohen-Macaulay factorial ring. Theorem 2.3 shows the existence of such a 
prime ideal P in a more natural way, linked to Q, and allows one to exploit 
this linkage. Indeed, using the local duality theory developed by Hartshorne 
and Ogus [3] we are able to prove 

THEOREM 2.3. Let R be a regular local ring and P a prime almost 
complete intersection satisfying the conditons of Theorem 3.1. If depth(R/P)c 
is at least one-half the dimension of (R/P), for every prime ideal Q 
containing P, then R/P is Cohen-Macaulay. 

Unfortunately, this result does not help in the basic cases of the syzygy 
problem. 

All rings in this paper will be commutative Noetherian with identity. If I 
is an ideal, grade I will denote the length of a maximal R-sequence in I. For 
additional terminology and notation, we refer the reader to Matsumura [lo]. 

1. MURTHY'S THEOREM 

In [2] Hartshorne proved the following theorem. 

THEOREM 1.1. Let R be a commutative Noetherian ring such that 
Spec(R) is connected. Let I be an ideal with grade(Z)> 2. Then 
U = Spec(R) - V(I) is connected. 

This result is essentially equivalent to the lemma below. 

LEMMA 1.2. Suppose R is a commutative ring, I and J two non-nilpotent 
ideals such that IJ = 0, and I + J # R. Then grade(I + J) < 1. 

This lemma bounds the grade of the ideal I + J, but gives no information 
concerning the possible grade of prime ideals associated to I + J. However, 
provided grade(I + J) # 0, more can be said. 

THEOREM 1.3. Let R be a commutative ring and let I and J be two non- 
nilpotent ideals. Suppose I + J # R, IJ is nilpotent, and grade(I + J) > 1. 
Then, 

Ass(R/I + J) E Ass(R/I) U Ass(R/J) U {P ) depth R, Q 1). 
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Proof. We note that the assumption grade(Z + .Z) > 1 forces 
grade(Z + J) = 1 by Lemma 1.2. However, we will recover Lemma 1.2 from 
the theorem. 

By raising Z and J to a suitable power, we may assume ZJ = 0. As Z + J 
and I” + .Z” have the same nilradical, this does not change the grade of Z + J. 
Suppose P is associated to Z +J but P is not in Ass(R/Z) U Ass(R/J)U 
{P 1 depth R, < I }. We may localize at P and assume it is maximal. Since P 
is associated to Z +J, (Z+J: P) @Z +.Z. Also grade(Z+.Z: P) > 1 since 
grade(Z + J) > 1. By the well-known prime avoidance lemma [8] we may 
conclude (Z + J : P) is not contained in the union of Z + J with all associated 
primes of (0). Choose an element w in (Z + .Z : P) which is not in this union. 
Then w is not a zero-dvisor and w @! Z + J. Hence P s (Z + J : w) # R, and 
since P is maximal, P = (Z + J : w). 

By assumption, the grade of P is at least two, and P is not associated to 
either Z or J. Consequently, we may choose an R-sequence x, z such that 
neither x nor z is contained in any associated prime of Z or J. By the 
discussion above, there are equations, 

wx = i, +j, 

and 

wz=i,+j,. 

In these equations, the i, are in Z and the j, are in J. Since ZJ= 0, it is easily 
seen that 

wxi, = wzi, . 

Since w is a non-zero-divisor, this shows 

xi, = zi, . 

However, x and z form an R-sequence and so there is a y in R such that 
xy=i,. Since x is not a zero-divisor on R/Z, y must be in I. The equation 
wx = xy + j, shows x(w - y) = j, and this forces w -y to be in J. But then 
w = y + (w -y) is in Z + J, which contradicts the choice of w. 

Lemma 1.2 follows from this theorem. We may assume R is reduced and 
then replace Z by (0 : (0 : I)) and J by (0 : I). Then Z + J is contained in 
(0 : (0 : I)) + (0 : I) and this latter ideal has grade one. The conclusion of 
Theorem 1.1 shows that any minimal prime ideal containing this ideal has 
grade at most one, which is the required conclusion. 

Let R be any commutative local ring and let P be a prime ideal in R such 
that R, is regular. We will say an ideal Z is generically linked to P if there 
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exists an R-sequence x, ,..., x, in P such that (xl ,..., xn)R, = RR, and 
I = ((x1 )...) x,): P). In this case, In P = (x1 ,..., x,) so that I and P are 
linked. 

PROPOSITION 1.1. Let R be a Cohen-Macaulay local ring and let P be a 
prime ideal such that R, is regular, R/P is factorial, but P is not generated 
by an R-sequence. Let Q be generically linked to P. Then Q is generated by 
k + 1 elements where k = htP, and if x1,..., xk are the R-sequence such that 

(x 1 ,*-*, x/J = p n Q, 

then x , ,..., xk are part of a minimal generating set of Q. 

Proof. Set Z = (x1 ,..,, xJ. Let R denote the ring R/I and by the overbar 
the map from R to R/I. Clearly m= 0. Neither P nor Q can be nilpotent 
since I # P and IP = P, . By Theorem 1.1, 

-- -- -- 
Ass(R/P + Q) c Ass(R/P) U Ass(R/Q) U {J] depth RJ < 1 }. 

We may read this back in R and obtain: 

Ass(R/P + Q) G Ass(R/P) U Ass(R/Q) U {J ] depth R, < k + 1 }. 

Since Q = (Z : P), Ass(R/Q) E Ass(R/I) c {J ] depth R, < k + 1). By 
assumption, R is Cohen-Macaulay so that 

Ass(R/P+Q)E{JIhtJ<kt 1). 

However, (Z: P)Q & P and so ht(P + Q)> k t 1. We conclude P t Q is 
unmixed. 

Consider the ideal (P + Q)/P in R/P. This is a height one unmixed ideal. 
Since R/P is factorial, it must be principal. We may assume there is a y in Q 
such that 

(P + Q>/P = V', Y >/P. 

We claim Q = (I, y) which will prove the proposition. For Q c (P, y) shows 

Q E <Q nf’,y) = (Ivy). 

COROLLARY 1.1. Let R be a regular local ring and let P be a prime 
ideal such that R/P is factorial. Then P cannot be an almost complete inter- 
section. 

Proof. This is immediate from [9], where Kunz showed almost complete 
intersections of finite projective dimension cannot be generically linked to 
almost complete intersections. 



184 CRAIG HUNEKE 

THEOREM 1.4 [Ill. Let R be a Gorenstein local ring and P a prime 
such that R, is regular and R/P is a Cohen-Macaulay factorial ring. Then 
R/P is Gorenstein. 

Proof. Set A = R/P. As is well known (see [14], for example) A is 
Gorenstein if and only if A is Cohen-Macaulay and Exti(A, R) is 
isomorphic to A, where s = height(P). As in Proposition 1.1, choose an R- 
sequence x, ,..., x, in P which generates P generically. Let the overbar denote 
reduction modulo the ideal generated by the xi. Then, a result of Rees [ 131 
shows 

ExtS, (A, R) N Ext&l, R) = Horn,-(A) R). 

As is easily seen, 

Horn,-@, R) N (Z : P)/Z. 

By Proposition 1.1, (Z : P) = (I, y) for some y and so 

Horn,-(A,R)1: (Z, y)/Z-(y)/(y)nZ=R/(Z: y)=A. 

By our comments above this finishes the proof, since if P is a complete inter- 
section, then A is trivially Gorenstein. 

3. ALMOST COMPLETE INTERSECTIONS 

In this section we prove the results on almost complete intersections stated 
in the Introduction. The main tools we will use for this were proved in [6] by 
this author, relying on the theory of d-sequences developed in [5]. Before we 
state these results we recall some facts about the symmetric algebra of a 
module. 

Suppose M is a finitely generated R-module. The symmetric algebra of M, 
denoted S,(M), is a non-negatively graded algebra with the following 
universal property: if S is an R-algebra and JM+ S is an R-module 
homomorphism, then there exists a uniquef*: S,(M) -+ S extending the iden- 
tification of M as S’(M). Recall that by definition S,(M) is defined to be the 
tensor algebra T(M) = R @ M @ (M @ M) @ . . a modulo the submodule 
generated by elements of the form a @b -b @ a. We will denote the nth 
graded piece of S,(M) by S”(M). 

There is an alternative description of the symmetric algebra which we 
shall use. If M has a presentation 
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then S,(M) can be identified with the ring R [T, ,..., T,,]/J, where J is the 
ideal generated by the m linear forms C: a*jTj. 

Before stating the results of [6] which will be needed, we recall the 
definitions of two algebras. 

Let R be a commutative ring and let I be an ideal of R. The Rees algebra 
of I, denoted 941, R), is the subalgebra R[It] of the polynomial ring R[t]. 
The graded algebra of I, denoted gr,(R), is the non-negatively graded 
algebra, 

R/I @ I/I* @ I*/I’ @ . . . , 

or equivalently, gr,(R) = 9(1, R)/IA?(I, R). 
It is clear there is always a surjective homomorphism from S,(I) onto 

9(1, R). 
The following theorem can be found in [7]. 

THEOREM 2.1. Suppose P is a prime ideal in a Cohen-Macaulay ring R 
such that R, is regular and P is an almost complete intersection. Then 
9(P, R) is isomorphic to the symmetric algebra S,(P). 

THEOREM 2.2 [6]. Suppose R is a Cohen-Macaulay local ring and P is 
a prime ideal such that R, is regular and P is an almost complete inter- 
section. Then the following are equivalent: 

(1) gr,(R) is a domain 

(2) P2 = P(2), where P(“) = nth symbolic power of P = Pin R. 

(3) P” = P@)for all n > 1. 
(4) P, is generated by an Ro-sequence for all prime ideals Q 

containing P such that dim(R/P)c is at most one. 

Of the above conditions, (4) is generally the easiest to verify. We can now 
state and prove the promised theorem. 

THEOREM 2.3. Let R be a regular local ring and P a prime’ideal such 
that P is an almost complete intersection and P* = PC*‘. Set height (P) = k, 
and set S = R [T, ,..., T,, 1 ], where m is the maximal ideal of R. Then there 
exists a prime Q in S, linked to P(in S) such that S/Q is factorial. 

Proof. By Theorem 2.2, gr,(R) is a domain. It is well known [4] this 
implies 9(P, R)[t-‘1 is factorial. Theorem 2.1 shows we may identify 
9(P, R) with S,(P) = R [T, ,..., Tk+ i]/Q, where Q is the ideal generated by 
the linear forms JYJ:z: biT* with C bGi = 0, where P = (xi ,..., xk+ ,). Under 
these identifications, T, is identified with x,t, consequently xi/T* = t-‘. Now 
Q s mR [T, ,..., Tk+l] = m” and m* is a prime ideal of R [ T, ,..., Tk+ 1]. Set 
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S = R(T, ,..., Tk+ 1) = R [T, v..., T,, l]m+. Hence S/Q = S,(P), . Since 
Ti 6? m*, t-i E S/Q. Thus S/Q is a localization of 9(P, R)[t-‘I, and S/Q is 
factorial. We will show Q is linked to P which will prove Theorem 2.4. 

Set Li = xiT, - x,T, for i = 2 ,..., k + 1. We may choose x, ,.,., xk+, in such 
a way that any k of them form an R-sequence and (x2,..., xk+ l)P = P,. Then 
it is easy to check that L2,..., Lk+, form an S-sequence. Notice 
(L * ,***, Lk+l,~,)=(~ ,,..., x~+~)=PS. We claim (L, ,..., L,+,:x,)=Q. To 
prove this it is enough to show Q is contained in (L 1 ,..., L,, 1 : x,) since Q is 
prime, S is Cohen-Macaulay (in fact regular!), and L2,..., Lk+, is an S- 
sequence of length equal to ht Q. 

Let Cf2ii biTi be in Q. Then CFi: bixi = 0; hence x,(JJf,‘: biTi) = 
Cp’l bi(xlTi - xiTi) which is in (L2,..., Lk+ 1). Since (x2,..., xk+ I& = P,, it 
follows (L, )...) L,, l)P = Pp. It is now immediate that 

CL 2,“‘, Lkf I) =pn Q. 

COROLLARY 2.1. Let R be a regular local ring and suppose P is an ideal 
such that R/P is an integrally closed Gorenstein domain. Then there is a 
faithfully flat extension S of R and an ideal Q of S such that S/Q is a 
Gorenstein factorial ring and Q and PS are in the same linkage class. 

Proof We may lind an ideal J in R, linked to P, such that R/J is an 
integrally closed domain. Since R/P is Gorenstein, J is an almost complete 
intersection and R/J is Cohen-Macaulay. Theorem 2.3 shows we may find a 
faithfuly flat extension S of R and an ideal Q of S linked to PS in such a 
way that S/Q is factorial. As S/PS is Cohen-Macaulay, so is S/Q [ 121. By 
Murthy’s theorem [ 111, S/Q is Gorenstein. 

We will now apply the theorem of Hartshorne and Ogus [3] to this 
situation. Their result states 

THEOREM 2.4. Let R be a regular local ring and let P be a prime ideal 
such that A = R/P is factorial. Suppose for every prime ideal Q in A, 

depth A, > min{dim A,, (dim A,/2) + 1 }. (*I 

Then A is Cohen-Macaulay. 

To apply this result we need an easy lemma found in [6]. 

LEMMA 2.5. Let R be a local ring of depth at least k + n. Suppose 
x, ,***, xk is an R-sequence and c is an element of R satisfying 

depth R/(x, ,..., xk, c) = m < n. 

Then depth R/(x, ,..., xk : c) > m + 1. 
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THEOREM 2.6. Let R be a regular local ring and let P be a prime ideal 
of R satisfying the conditions of Theorem 2.3. Set A = R/P and suppose that 
for all prime ideals Q in A, the following condition holds: 

depth A, > (dim A,/2). 

Then A is Cohen-Macaulay. 

Proof. By induction on the dimension of A we may assume A, is 
Cohen- Macaulay for all prime ideals Q # mA, the maximal ideal of A. The 
conditions on P show dim(A) > 2 if A is not Cohen-Macaulay. 

Let S and Q be as in Theorem 2.3, and let I = PS n Q. Since P is an 
almost complete intersection, PS = (1, y) for some y in S. In this case, 
Q = (1: y). Since P and Q are linked, I is generated by an S-sequence. Set k 
equal to the length of this sequence, and put n = dim SIPS. Then 
depth S = k + n and by assumption depth SIPS = depth A = m > n. Using 
Lemma 2.5 we may conclude depth(S/Q) > m + 1. 

Peskine and Szpiro [ 121 show that if Z and J are linked, then R/I is 
Cohen-Macaulay if and only if R/J is Cohen-Macaulay. It easily follows 
that (R/Q)J is Cohen-Macaulay for all prime ideals Jf m,, the maximal 
ideal of R. On the other hand, 

depth(S/Q) > depth(S/PS) + 1 

2 (dim A/2) + 1 = ((dim(S/Q))/Z + 1. 

It follows that (*) of Theorem 2.4 is satisfied. Hence S/Q is 
Cohen-Macaulay and by Peskine-Szpiro, SIPS is also. Since R -+ S is 
faithfully flat, we conclude R/P is Cohen-Macaulay. 
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