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The Bravais lattice operator and the quasimomentum are shown to form a complete set of conjugate operators in one

band of a solid.

In elementary quantum mechanics it is customary
to describe the motion of a spinless particle by means
of its coordinate r and momentum p operators. In
such a description any physical operator is necessarily
a function of r and p, and in this sense r and p form a
complete set of operators [1]. In solids one often
works with a one-band approximation which consider-
ably restricts the freedom of motion of the particle.
One should expect that in describing physical phenom-
ena in one band the set of r and p will turn out to be
too broad and that a more restricted set of operators
should suffice for this purpose. This was actually
shown by Mclrvine and Overhauser [2] who derived
the superlattice representation by localizing simulta-
neously the quasimomentum k and the Bravais lattice
vector R for one energy band. In approaches to ele-
mentary dynamics of solids it is a common procedure
to use one-band operators in the effective hamiltonian
theories. This is shown in a comprehensive article by
Blount [3] who has defined a mixed representation
for dealing with band operators in the framework of
Wigner’s density matrix [4]. It is well known from
both experiment and theory that an isolated band in
a solid is a relatively stable entity under different per-
turbations and it seems that the physics of the prob-
lem takes place entirely in one particular band. It
should be of interest to have a set of elementary oper-
ators complete with respect to one band in the same
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sense asx and p are complete with respect to the
whole physical space.

In this letter we define an operator R, for a Bravais
lattice in a solid. The quasimomentum X is shown to
be conjugate to this operator and together they form
a complete set of operators for one band in a solid.
Any one-band operator is expressible as a function of
k and R,,. The eigenfunctions of R,, are shown to be
the coordinate minimal uncertainty Wannier functions
for a given band. We actually show that in the frame-
work of one band R,, defines a quantum mechanical
representation. This raises the known Wannier represen-
tation in quantum mechanics. The operators k and R,,
in one band are in complete analogy with p and x, res-
pectively, in the whole physical space. By means of &
and R,, one can develop quantum mechanics in one
band of a solid.

Let us start with the calculation of the coordinate
uncertainty Ax in a general Wannier state in the kq-
representation

exp [1¢n (k)] ‘l"nk(q) 3 (1)

where ¢,,(k) is an arbitrary phase for the band n. In
(1) the fact was used that a Wannier function in the
kq-representation equals the corresponding Bloch
function in the x-representation [5]. The following
normalization is assumed in (1) ( is the lattice con-
stant):

[ @12 dg=aj2m . )
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The expectation values of x and x2 [x,,, and (x2),,, ]
in the state (1) are

X = (X, (k)) — (06, (K)/OK) , (3)
D) = 25 (X g () Xy ()

— 2[3¢,,(k)/3k] X, (k) + <[00, (K)/3k]%) , (4

where

@)
K= 21 [ (@) i g ©)

and the singular brackets denote an average over the
band. Thus, in general,

n/a
<A,,(k)>=§ [ Ay dk. (6)

—nla

In (5), u,;(q) is the periodic part of the Bloch func-
tion. From (3) and (4) one can find the following ex-
pression for the square of the coordinate uncertainty:

(AX)Z = (Xz)nn - (xnn)2 = Z>,(Xnm (K) X (K2

+([3¢,, (k)oK — X, (k)]
— [3p,(k)/0k — X, (k)] , ™

where the prime in the sum means that the term with
m = n is excluded. Since, as can be checked, the sum
in (7) is phase independent, (Ax)? achieves its mini-
mal value when

39, (k)/0k — X,,,(k) = const. (8)

This is an equation for the phase ¢,,(k) that minimizes
the coordinate uncertainty in the Wannier state (1). In
order to find the physical meaning of ¢,,(k) let us re-
write eq. (8) in the form of an eigenvalue equation
(with the constant replaced by —R})),

[i 8/0k + X,,, (k)] exp[ig, (k)] = R, explip, (k)] . ()

Eq. (9) has a simple physical interpretation. It can be
best seen by using the Adams representation [6] for
the coordinate x,

Xy (K) = 1(3/3K)8 yy + Xy () - (10)
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By comparing (9) with (10) we see that the operator
in (9) is nothing else but the diagonal part of the coor-
dinate x in the Adams representation. We shall call this
quantity R,,,

R, =i03/ok+ X, (k). (11)

In ref. [3] it was shown that R,, in (11) behaves like
an operator under a phase transformation. What this
means is that no matter how the phase is chosen in
Ui (@), R, will have the form (11) with X,,, (k) de-
fined in (5). With this in mind we are in a position to
claim that the phase exp[i¢, (k)] that minimizes the
coordinate uncertainty in the Wannier state is an
eigenstate of the operator R, in (11).

It is easy to find the eigenvalues R;, and the eigen-
functions @, (k) of eq. (9). We have

Ry, ={Xp, (k) +av, v=0,%1,42, ., (12)
k

‘I’nv(k)=exp(if [Xnn(K) =Ry, | dk’). (13)
0

The eigenvalues R;w in (12) cover (up to the constant
(X,,, (%)) all the points of the Bravais lattice. The solu-
tions (13), as can easily be checked, are covariant un-
der any phase transformations and by writing them in
(1) we can construct covariant minimal uncertainty
Wannier functions,

a,,(k,q) = exp (—ivak
k
i [ Do) — Ko D] dk') V@ . (14
0

The eigenfunctions (14) of the operator (11) form
a complete set in the subspace of one band. This
means that the operator R, defines by itself a quan-
tum mechanical representation [1] (similar to x in the
full space). Since its eigenvalues assume all integer mul-
tiples of a (up to the constant (X,,, (k))), R,, — (X, (k)
can be called the Bravais lattice operator. An alterna-
tive way of constructing a Bravais lattice operator R,,
was given by Weinreich [7] who used for this purpose
minimal uncertainty Wannier functions. A detailed dis-
cussion of the meaning of R,, is given by Anderson [8].

Having shown that R,, defines a quantum mechan-
ical representation we can now look for an operator
which is conjugate to it. This is not hard to find know-
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ing that in the Adams representation the wave function
B, (k) is periodic in k with the period 2m/a. This means
that the translation operator T which in the Adams re-
presentation is given by T = exp(ika) also defines by it-
self a quantum mechanical representation (this should
be compared with the angular coordinate [9]). In ad-
dition we have for the commutator of R,, and exp(ika)

[R,, exp(ika)] = —a exp(ika) . (15)

This is the same relation as is satisfied by angular mo-
mentum and angle. The quasimomentum, given by T
= exp(ika) is therefore the conjugate operator to R,.
This shows that R, and T is a pair of conjugate oper-
ators which replace x and p in the one-band frame-
work, It is worthwhile to point out that the quantities
R =10/0k and k have been intuitively used over years
in many textbooks as a pair of conjugate operators.
What we have shown here is that R, in (11) and
exp(ika) can be put into an exact quantum mechani-
cal framework (note that i 8/0k by itself is not an op-
erator because it is phase dependent [3]). Thus, in
quantum mechanics in one band of a solid we can talk
about the R, -representation (replacing the x-represen-
tation) and the k-representation (replacing the p-re-
presentation). In the former, the eigenfunctions of
R, are the complete set of the (now covariantly de-
fined) Wannier functions (13) or (14) for one band,
while the eigenfunctions of exp(ika) are the complete
set of Bloch functions for one band. This completes
the proof that the operators

R, =18/0k+X,,(k) and T =exp(ika) (16)

form a complete set of conjugate operators in one
band of a solid.

The Wannier functions have been known for more
than 40 years [10] and they are widely used in solids for
defining what is called the Wannier representation. Strict-
ly speaking, however, only in their covariant form (14)
do the Wannier functions a,,,(k, ¢) relate to a quan-
tum mechanical representation defined by the band
index n and the site index v given by the eigenvalues
of the hermitian operator R,,. The additional demand
that they be eigenfunctions of R,, gives the site index
v a well-defined meaning and raises the Wannier repre-
sentation to the status of a representation in quantum
mechanics.

It is of interest to look at the superlattice repre-
sentation [2] in view of the above developed quantum
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mechanics for one band of a solid. Let us choose a
fixed integer L and define the following operators:

exp(ikLa), exp(iR, 2n/La). 17

These operators commute and they can be used for de-
fining a kg-representation in the quantum mechanics
of one band in the same way as the operators

exp(ipa), (18)

define the usual kg-representation [5]. It can be shown
that the superlattice representation is defined by the
operators conjugate to (17) in the same way as the
Bravais and reciprocal lattices [11] are defined by the
operators conjugate to (18). A detailed discussion of
this problem will be given in a future publication.

The one-band quantum mechanics sheds also some
light on another important problem. Consider the Stark
ladder for a Bloch electron in an electric field. The lat-
ter is obtained by solving the following one-band equa-
tion in the Adams representation [5,10]:

€ (K)B,, (k) + eE(i 3/0k + X, (K))B,, (k) = B, (K) . (19)

The eigenvalues €,,, and the eigenfunction B,,, (k) of
eq. (19) are

€ny = (€, (k) + eE(X,,,(K)) + eEav ,

exp(ix 2m/a)

(20)

.k
Bas)=exp( 25 [ nk) + eBX,n®) — 5] dk').
0 2D

This is called the Stark ladder in solids. As can be seen
the eigenvalues and eigenfunctions of R,, [egs. (12),
(13)] are identical with the results (20) and (21) for
eE = 1 and €,(k) = 0. What this means is that the actu-
al ladder structure is introduced by the operator R,
itself. Eq. (19) can now be interpreted as describing a
Bloch electron in the potential eER,, rather than in the
electric field potential eEx. By comparing the results
(20), (21) with eigenvalues and eigenfunctions [egs.
(12), (13)] of R, we see that the ladder structure of
R,, is very stable and is not disturbed by the introduc-
tion of the periodic hamiltonian €, (k).

The results of this paper can directly be generalized
to a three-dimensional crystal containing a center of in-
version. This can be seen by generalizing the operator

R, in (11) to three dimensions,
R, =10/0k + X,,(K) . (22)

This is a vector and it is possible to find eigenvalues
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and eigenfunctions of R,, [like in egs. (12), (13)] if its
components commute. It is easy to check that the com-
mutator of any two components R, and R, of R, is
given as follows:

[Rps Rg) =ilrot X, ()], , (23)

with &, 8, v forming a right cycle. When the crystal has
a center of inversion rot X, (k) is zero [3] and the
components of R,, commute. For crystals with rot
X,,,,(k) = 0 eqgs. (8) and (9) can be replaced by their
corresponding three-dimensional versions. Solving
these equations is analogous to finding the potential
¢, (k) for a given electric field X,,, (k). This is, in prin-
ciple, a solvable problem and has to be considered for
each particular solid separately. Having ¢, (k) we can
construct covariant Wannier functions for three-dimen-
sional solids in the form (13) or (14). These functions
form a complete set and the operator R,, will there-
fore define a quantum mechanical representation.
Again, one can then claim that R, and exp(ik - a;)

(a; are the unit cell vectors) form a complete set of
conjugate operators in one band of a solid. They re-
place r and p for a spinless particle.

It is interesting that in the general case where rot
X, (k) # 0 one can still define the Bravais lattice op-
erator (22). The minimal uncertainty of its square will
lead to the usual condition on the phase of the Wannier
function [3,7]. However, R, can no longer be used in
the general case for defining a quantum mechanical rep-
resentation in one band by constructing eigenfunctions
of R,,. Is there another physical way of doing this *19

In conclusion, let us make the following remarks.
First let us mention that when more than one band
plays a role in the physics of the problem the relevant
operators in addition to being functions of R, and
exp(ik - a;) will also be matrices in the band index.
One can therefore extend the above results directly to
a number of bands. Having established the properties
of the Bravais lattice operator one can look now at
Wannier functions as being eigenfunctions of R,

*1 While this letter was being considered for publication two
papers by the author and J.-P. Rouyet were published on
the same subject {12]. In the second of these a three-di-
mensional Bravais lattice operator is defined.
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- (Xnn(k)5 and the band index operator B,,. A physi-
cal way of choosing the latter is B,, = (e, (k)). These
two operators define the Wannier functions in the
same way as the Bloch hamiltonian and the quasimo-
mentum define the Bloch functions. The results of
this letter put therefore the Wannier functions and the
Bloch functions on an equal footing of being eigen-
functions of physical operators. This is of particular
interest in connection with the recent study of the
contrasting properties of the Bloch and Wannier func-
tions by means of Fourier analysis [13].

As a final remark let us mention the problem of
superlattices [14]. In this case the operators (17) will
generate symmetric coordinates in one band in much
the same way as the finite translations (18) generate
symmetric coordinates in solids.

It is a pleasure to thank Dr. G. Weinreich for his in-
terest in this work and the Physics Department at the
University of Michigan for its kind hospitality.
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