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Abdraet- An optimal design problem is formulated as a system of not&near equations rat&r than the 
extremum of a funetionaf. Based on the Chow-Yorke algo~thm, another globally convergent homotopy 
method, and quasi-Newton methods, two aigorithms are developod for solving the nonlinear system. 
Ahhougb the base algorithms are globally convergent (under certain fairly general assumptions), there is 
no theoretical proof of global convergence for the new methods. Some low dimensional numericsl results 
are given. 

1.S 

Most engineering designs are based on linear theories 
of physical phenomena But since the parameters in 
the design problems arc treated as variables, the 
mathematical fo~~tions of the design problems are 
nonlinear. The usual formulation of an optimal design 
problem is to seek the extremum of a functional. If the 
optimality conditions are stated as differential or 
algebraic equations, the optimal design problem can 
be formulated directly as a system of nonlinear equa- 
tions. 

The kite element method is used to approximate the 
ditkential equations. The resulting nonlinear algebraic 
system is the projection of the original optimal design 
problem into a &rite dimensional space. The solution 
of the algebraic system approximates that of the 
original problem. The algorithms developed here are 
based on globally convergent algorithms that have 
been used successfully in situations where Newton’s 
method for nonlinear systems fails to eonverge. Ex- 
amples of this approach are some nonlinear two-point 
boundary value problems [I J, some fluid mechanics 
problems [2], the nonlinear complementarity problem 
[3], and the generalized plane stress problem of 
elasticity [4]. 

Two algorithms are developed here. One is a hom- 
otopy method and the other is a least change secant 
update (q~si-N~on~ method. To illustrate the tech- 
niques, in this paper they are applied to a nonlinear 
algebraic System originating from a generalized plane 
stress problem of elasticity. This same model problem 
was solved in [S] by a globally convergent homotopy 
method. The homotopy map used iu [4] was rather 
complicated, more so in order to be able to prove 
global oonvcrgonce than from practical necessity. The 
homotopy map used here retains some of the essential 
features of the map in [4], but is much simpler, hence 
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easier to implement. Unfortunately prelimiiy 
numerical results indicate that the homotopy method 
is not globally convergent. Creation of a new homotopy 
method is justified because both Newton’s method and 
standard continuation diverge (unless the starting 
point is dose to the solution) for this model problem 
[4]. Quasi-Newton methods are not theoretically 
globally convergent and in tact are known to fail for 
the model problem here [4], but a quasi-Newton 
method with a twist was very successful on the model 
problem. 

The generalii plane stress problem of elasticity is 
chosen as a model problem of optimal design. The 
thickness of the sheet is assumed variable. The goal is 
to 5nd the optimal thickness distribution of a given 
loading such that the strain energy density is uniform 
in the sheet. 

The problem reduces to a nonlinear algebraic system 
by the use of the finite element approximation given 
in the next section. 

2-m 

A generalized plane stress problem of elasticity 
describes the behavior of an elastic sheet under edge 
loading conditions. The sheet can be manufactured 
with an arbitrary thickness ~t~bution. The optimal 
design problem is to seek a thickness diibution for a 
given loading such that the strain energy density is 
constant. This design uses material optimally in the 
elastic range. If the given load increases proportionally, 
the elastic limit of the material will be reached simul- 
taneously throughout the sheet. 

The problem must satisfy the equations of equilib- 
rium, 
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where h is the thickness and u,, CI,? and uyy are the 
components of the stress tensor. 

The elastic material properties are described by the 
generalized Wooke’s law 

au 1 
a7; - E @xx - vuyp) = 0 

au 1 

IC(Ql = f (2.8) 

at&u=1 i=l,...,m 

where t is an m-vector: u is an n-vector and f is a given 
vector (m rn). The stiffness matrix has the structure 

6 - ~(Q”-v~,f=o 

au do 

ay+dx -EU 
at+4 &) 

t2.a 

where the Ki are the element stiffness matrices which 
are positive semideflnite. 

where a, u are the dispiament components in the x, y 
directions respectively; E is the Young’s modulus; and 
v is the Poisson’s ratio. 

There are six unknowns in the system of eqns (2.1)- 
(2.2) in terms of the thickness stress and displacement 
components, 

3.I-KMmXYALGogmM 

If the thickness is regarded as a known parameter, 
the problem can be interpreted as an operator equation, 

0 0 
a a 
iFi ;i;; O Ii 

a a 
0 0 0 iG 6 u 

a -I 

3G”o O 
V 

Ei q,=o (2.3) 

a a 
6% O---- -20+4 o q2 

Eh 

The algorithm developed here has the same theo- 
retical basis as the fixed point algorithm in [5] and [6]. 
The theory i” summarized in the following lemmas. See 
[S] for the proofs and [6] for an elementary exposition. 
Let F denote n-dimensionsi real Euclidean space. 

Lemma 1. Let p:E” x [O, 1) x E”+E” bea C” map such 
that the Jacobian matrix D&r, 1, x) has full rank on 
p-‘(O)=& 5 X&J& 5 x)=0). Then for almost all 
SE”, the Jacobian matrix of pA& x)-&r, I., x) also 
has full rank on p:‘(O)= {(A xlp& x)=0). 

0 
a v 

;j;Ei O $ cl 

where’ 
41 =he,, q2 =hlr,, q3 =&r (2.4) 

are the edge stress res&ants. The differential matrix 
operator is a function of the thickness. A finite element 
method given by Jespersen [S] may reduce (2.3) to 
an algebraic system, 

K(lr)u = f (2.5) 

where K is an n by n positive definite matrix called the 
sti&iess matrix, h is the vector of @&ases of the 
elements, a is the nodd displacement vector and f is 
the load vector. If h is known, (2.5) may be soived 
uniqudy. 

We shall assume the strain energy density 
1 

w,, - QyJ2 f 4, = uo (2.6) 

to be constant, U, everywhere. In terms of displace- 
ments, (2.6) is a differential equation. By the same 
finite element schema the condition (2.6) for each 
element has the form 

This is expressed in di%rentiai geometry jargon by 
saying if p(a A, x) is transversal to zero, then for almost 
all a p,(l, x) is also transversal to zero. “Almost all” 
means every point except those in a set of Lebesgue 
measure zero. ~t~ativeiy one could say p&, x) is 
transversal to zero with probability one. Lemma 1 is 
known as a “parameterized Sard’s Theorem”. Now 
suppose p,, is chosen such that po(O, x) = s(x) is a simple 
function with unique zero x = CL, and p&l, x)=_#-(x) 
is the function for which a zero is desired. The next 
lemma merely spells out the implications of Lemma 1. 

,!+emmu 2. Under the hypothesis of Lemma 1, for almost 
ah a there exists a zero qurve y of p, emanating from 
(0, a) along which the Jacobian matrix Op,@. x) has 
hrll rank. y is a simple C’ curve, is disjoint from any 
other zeros pn might have, and either wanders off to 
infinity or reaches a zero off(x) (at 1= 1). 

Note that if the zero curve y is bounded, it must reach 
a zero off(x). In general terms, the homotopy method 
is: construct the homotopy map p.$, x), then track 
the zero curve y em&nating from (O, a). If y is bound&, 
then the algorithm is gfobaily diueqent with proba- 
bility one. It turns out that y is bounded for many 
important problems [l-6], hence there are globally 
convergent algorithms for these problems. The hom- 
otopy map p. may be simpie, as for the Brouwer fixed 
point probfun [6J, or quite complicated, as for the 
optimal design problem [4]. 

u’Bp=l i=l,&...,m (2.7) 

where the BI are n by n positive semide&nite mmkes, 
and the constant U, is used for normalization. The 
total number of elements m is usually smaller than the 
number of nodes n. 

Another observation is that this homotopy alaorithm 
is not just continuation or embedding a is not an 
embedding parameter that increases monotonicaIly 
from 0 to 1, but is a dependent variable that can both 
increase and decrease along y. Furthermore, the full 
rank of Dp, along y and the way in which the algorithm 
is implemented guarantee that there are never any 
“singular points” along y. Singular points occur 
frequently in standard embedding techniques, resulting 
in their failure. 

The nonlinear system under consideration here is 
(2.8). For comparison, the homotopy map used in [4] 

Since the thickness h is non-negative, let hi= tf. The will be given. Define 
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u’[aJ3,+(1-ZJe&Ju-l-(1-~)b, 

where e, is an n-Victor with 1 in the jth component and 
zc~os elsewhere, diag (t:, . . .) is an nx n diagonal 
matrix with diagonal elements s;,.... Now regard 
4b,i,uas~g~m~mv~o~sotbat~definesa 
ComplGx map 

&@+” x 10, If x c?*“-+c*+“. 

Next convert cv~ry complex vector tl=(ul, ul , . . .) to 
a real vector (Re q, Im u,, Re u2,. I 4. This converts 
~backto~rcalmap 

p:E2**3!lV x [a, 1) x El”‘+ 2r-+E2n+ ‘“, 

and 

is the homotopy map acturilly used The obtuse de&i- 
tion of JI and the complexification of J/ make it possible 
to prove that the mo curve y of p1 ananating from 
(0, a) reaches 8 ztfo of (2.8) at 1s 1. 

The prow here is to use a simpla $, but the same 
cumplexi&ation process. Let u = (t, I& 

and take 

$(& n, uf=ZF(l$+fi -xxi+a). 

ConVGrting # to complex aBd back to real a@ as 
above leads to the homotopy map 

P#&, x~=x(x)+(l -A)&--& A34 

where x~E~~‘~“. Lemmas 1 and 2 apply to this p,,, 
hence the proposed homotopy method is to track the 
zero curVe y of pd emanating from 10, d). There is no 
proof that y Tea&es A- 1 but it is possible to prove 
that y cannot turn back toward fi = 0. 

ThG details Of tracking y are in [6-j, so that aSpcct 
will oniy be skGt&ed hGrG. Parameterize y by arc 
length so i = J(s), x=x(s) along y, and 

P&M tis))~~@os))+U -%W&)-d)=O. 

Then 

and since the parameter is arc length, 

(3.3) 

?%US y i5 thG &SjCCtOXy Of the idid V&G prcrblmr 
(3.2H3.3) with initial conditions 

n(O)=O, x(O)=d. (3.4) 

Nate that (3.2) does not explicitly speci@ the derivative 
(cu/ds, dx/ds), which is required by any ODE sub 

KXItinG. HOWGVGX, thG fd mnk Of &t,@(S), X(S)), thGGOtP 

ditkm (3.3), and thG continuity of (d#is, d&k) dong y 
permit the unique determinaticxk of thy derktive. 
The details of the nmnerkal apron of &A/d& 
dx/ds) are in [6] for dense Dp, and in [43 for sparse 
&Q 

The initial value problem (Z&2)-(3.4) is most efficiently 
solved by a variable step, variable order Adams 
algorithm as in [73, for example. Since the ultimate goal 
is to solve G(x)==0 and not to track p, some sp&al 
strategiGs are called for. ThGse strategic based on 
computational expGriGnce, are diszussed in [6] and [I]. 
Since 1 is a dtpendent variable and the ODE soh%r is 
taking disclete step% it is unlikely that d will hit 1 
exactly. As soon as ys)> 1, inverse intGrpolation with 
previous points saved by the ODE solver yields an 
S such that n(S)= 1. The corre$ponding x(S) is a zero of 
G(x). Note that no extra derivative evatuations or 
steps by thG ODE solver are required for the inverse 
interpolation. 

Detine u=(t, u) and 

JW -f 
I&U-l 

%I= : 

L ‘, d&&i - 1 

as in Section 3. The most modern quasi-Newton 
methods, known as least change seCant update methods, 
are based on solving 

F(u)=0 

by minim&g 

f W)L‘ 
When ~te~~g~tly mourns they iuc in pmctice 
usually globally convergent -use ttrty guarantee a 
decreasG in jlF(u)11 at each move [IO]. This feature is 
necessary for robustness, but it results in their failure 
on (2.8X because jIF(u)ll has local minima at which 
F(u)+O. 

A iGest change secant updare method applied 
directly to F(u) will gGneraIiy fail (unless tht starting 
point iS sl&iCiGntiy &W t0 the solution), TbG pro- 

pod here is to apply the least change StQLnt update 
method in [f23 to the comptexifiutin 

GIN 

of F(u), where G is the same as in Section 3. At least for 
the model problems tried here, this trick worked very 
well. G(x) does not have the local minima diiulties 
af3icting F(Y). The drawback is that thy dimcnsiori 
of the problem doubks, but clever programming can 
partially 0vGrcome this. 

Least change wnt update mGthods haVG the form 
,(k+ *), tik) wyHkG(x’*‘), 
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where H, is an appro~tion to the inverse of the 
Jacobian matrix DGfx”‘), and y is chosen to guarantee 
certain desirable properties of the sequence (x’“‘). H, 
is updated at each iteration in O((n+m)2) operations, 
compared to 0((n+m)3) for Newton’s method. The 
precise details are complicated, and can be found in 
[lo]. The efficiency per iteration, ultimate superlinear 
convergence, and robustness make least change secant 
update methods very attractive. 

To illustrate the dependence on m and n, the problem 
(2.8) was solved for various m and n using the data 
described below. Let n-km, and K, be an n x n block 
diagonal matrix with k x k diagonal blocks. All the 
diagonal blocks are zero except the ith, which is 

Thus 

-1 
2 

-1 

0 

l- 

.o ’ . . . 

(5.1 

8, 1s an nx n block diagonal matrix with the same 
block structure as K,. and has the form (4.11 with 
B = I. f is an n-vector with the jth component being 
O.Olj. 

Table 1 shows the results. The execution times are 
in seconds on an IBM 3701158. The stopping criterion 
was jG(x)l, , c IO--‘. and the starting points were 
chosen arbitrarily, but always at least a distance I 
from the solution. Failure of the homotopy method to 
converge is indicated in Table 1 by a dash. The number 
of Jacobian evaluations IS reported in parentheses 
after the CPU times. The computer code used for the 
homotopy method was the Iixed point code in [II], 
which also produced the numerical results in [l] and 
[6]. The quasi-Newton code used was the FORTRAN 
subroutine HYBRJ, part of the MINPACK package 
being developed at Argonne National Laboratory [ 123. 

The CPU times in Table 1 are from codes which 
assume that the Jacobian matrix is dense, and use 
direct (elimination) methods to compute the kernel 
of the Jacobian matrix Dp,(l, x) (for the homotopy 
algorithm) or factor the Jacobian matrix Z(x) (for 
the quasi-Newton method). Typically the Jacobian 
matrix in optimal design problems is very sparse. and a 
production code would use iterative sparse matrix 
techniques to find the kernel of Dp, or factor DG. An 
important aspect of Table 1 is the number of Jacobian 
evaluations, which would be the same inde~ndent of 
how the matrix calculations are done. Note that the 
number of Jacobian evaluations is relatively insensitive 
to the dimensions m and n for the homotopy method 
which is typical behavior [6]. Since the whole point of 
quasi-Newton methods is to avoid explicitly calculating 
the Jacobian, the quasi-Newton CPU times are the 
important figures. 

Large scaIe computational results for a reahsttc 
generalized plane stress problem in elasticity will be 

Table 1 

- 
m 

- 

2 

2 

3 

4 

3 

2 
- 

5 

4 

3 

5 

4 

10 

5 

6 

10 

15 
- 

CPU time 

n total dimension homotopy quasi-Newton 

4 12 8.8 (95) .4 (1) 

1 

.6 (1) 

: / :p, j 1::: / .9 (1) 

8 24 98.0 (109) 1 8 (1) 

9 24 80.1 (86) 2.0 (1) 

10 24 60.0 (70) 3.0 (2) 

10 30 ____ 3.6 (1) 

12 32 ____ 8.3 (2) 

15 36 ____ 20.8 (4) 

15 40 ____ 18.9 (2) 

20 48 _""_ 61.1 (4) 

20 60 -_-_ 41.0 (1) 

30 80 
I 

____ 
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reported in a future paper. 
In condusion, recall that Newton’s method, quasi- 

Newton methods and standard ~ntin~tion fail when 
applied directly to (2.8). A complicated nonlinear 
bomotopy based on the Chow-Yorke algorithm was 
developed in [4], and proven globally convergent for 
(2.8). The existence of a globally convergent homotopy 
algorithm for (2.8) motivated the algorithm of Section 
3. Unfortunately the simple homotopy algorithm of 
Section 3 is not always globally convergent, which 
suggests that the intricacies of the h~otopy map in [4] 
may be necessary. Hence there is no ~mpIetely 
satisfactory homotopy algorithm for optimal design 
problems of the form (2.8) yet. The Section 4 algorithm 
is perhaps obvious, but it is interesting that it works. 
At present the best least change secant update methods 
destroy spar&y (I& is dense even though DG(x) may 
be very sparse), and thus the quasi-Newton approach 
is (at present) infeasible for large m + n. There are sparse 
matrix techniques for the quasi-Newton updating and 
factoring of a new q~si-Ne~on method (which retains 
sparsity and superlinear convergence) [ 13-161, but the 
global behavior and ultimate convergence rate of this 
new method are untested on real problems. Sparsity is 
maintained by sacrificing other desirable features of the 
quasi-Newton update (such as symmetry or positive 
definiteness), and a satisfactory compromtse remains 
tc be found. Note that the kernel of a nomotopy 
Jacobian can be computed by sparse matrix algorithms. 

There is no simple, globally ~nv~g~~ feasible 
algorithm for large dimensional problems like (2.8). 
The advantages of both homotopy and least change 
secant update methods are to great to rule either 
approach out, and both should $ pursued with regard 
to optimal design problems. 

1. L. 1. Watson, An algorithm that is globally convergent 
with pro~bility one for a class of nonlinear two-point 

boundary value problems. SIAM J. Namer. Anal. 16, 
39&401(1979). 

2. L. 1. Watson, T.-Y. Li and C.-Y. Wang, Fluid dynamics 
of the elliptic porous slider. J. Appl. Me& 45,43ti36 
(19783 

3. L. T. Watson, Solving the nonlinear complementarity 
problem by a homotopy method. SIAM J. Control 
Optimization 17,36-46 (1979). 

4. L. T. Watson and W. H. Yang. Optimal design by a 
homotopy method. Applicable Anal., 10,275-2&t (1980). 

5. S. N. Chow, J. Mallet-Paret and J. A. Yorka Finding 
zeros of maps: homotopy methods that are constructive 
with probabiiity one ~~~. Comput. 32,887-899 (1978). 

6. L. T. Watson, A globally convergent algorithm for 
computing fixed points of C* maps. Appl. &t/r. Comput. 
5.297-311(1979). 

7. L. F. Shampine and M. K. Gordon. Computer Solution 
of Ordinary dtjj~rential Equations: The Initial blue 
Problem. W. W. Freeman, San Francisco (1975). 

8. D. Jespersen, A least squares decomposition method for 
elliptic equations. PbD. thesis, Department of Mathe- 
matics, Univ. of Michigan. Ann Arbor, Michigan (1976). 

9. J, E. Dennis. Jr. and J. J More, Quasi-Newton methods, 
motivation and theory. SIAM Rev. 19.46-89 119771. 

10. J. E. Dennis, Jr. and A. SchnabeL @m&Newton 
methods for unconstrained nonlinear problems. Book 
Manuscript (19791. 

11. L. T. Watson and D. Fenner, Chow-Yorke algorithm 
for fixed points or zeros of C2 maps. ACM Trans. Math. 
Sofiwure 6.252-260 (1980). 

12. J. J. More. MINPACK documentation, Applied Math. 
Div.. Argonne National Lab Argonne, Illinois, 1979. 

13. Ph. L. Toinf On sparse and symmetric matrix updating 
subject to a linear quation. A4urfi. Complct. 31.954-961. 
(1977). 

14. Ph. L. Toint, Some numerical results using a sparse 
matrix updating formula in unconstrained optimiza- 
tion. Math. Comput. 32 839-851 (1978). 

15. Ph. L. Taint, On the superlinear convergence of an 
algorithm for solving a sparse minimization problem. 
SIAM J. Numer. Anal. 16,1036-1045 (1979). 

16. M. J. D. Powell and Ph L. Toint, On the estimation of 
sparse Hessian matrices. SIAM J. Ntmer. A&. 16, 
lOi% (1979). 


