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Abstract— An optimal design problem is formulated as a system of nonlinear equations rather than the
extremum of a functional. Based on the Chow—Yorke algorithm, another globally convergent homotopy
method, and quasi-Newton methods, two algorithms are developed for solving the nonlinear system.
Although the base algorithms are globally convergent (under certain fairly general assumptions), there is
no theoretical proof of global convergence for the new methods. Some low dimensional numerical results

0045-7949/81/0101 15-05502.00/0
Copynght © 1981 Pergamon Press Lid

are given.

1. INTRODUCTION

Most engineering designs are based on linear theories
of physical phenomena. But since the parameters in
the design problems are treated as variables, the
mathematical formulations of the design problems are
nonlinear. The usual formulation of an optimal design
problem is to seek the extremum of a functional. If the

optimality conditions are stated as differential or
algebraic equations, the optimal design problem can
be formulated directly as a system of nonlinear equa-
tions.

The finite element method is used to approxinmate the
differential equations. The resulting nonlinear algebraic
system is the projection of the original optimal design
problem into a finite dimensional space. The solution
of the algebraic system approximates that of the
original problem. The algorithms developed here are
based on globally convergent algorithms that have
been used successfully in situations where Newton’s
method for nonlinear systems fails to converge. Ex-
amples of this approach are some nonlinear two-point
boundary value problems [1], some fluid mechanics
problems [2], the nonlinear complemengarity problem
[3} and the generalized plane stress problem of
elasticity [4].

Two algorithms are developed here. One is a hom-
otopy method and the other is a least change secant
update {(quasi-Newton) method. To illustrate the tech-
niques, in this paper they are applied to a nonlinear
algebraic system originating from a generalized plane
stress problem of elasticity. This same model problem
was solved in [4] by a globally convergent homotopy
method. The homotopy map used in [4] was rather
complicated, more so in order to be able to prove
global convergence than from practical necessity. The
homotopy map used here retains some of the essential
features of the map in [4], but is much simpler, hence
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easier to implement. Unfortunately preliminary
numerical results indicate that the homotopy method
is not globally convergent. Creation of a new homotopy
method is justified because both Newton’s method and
standard continuation diverge (unless the starting
point is close to the solution) for this model problem
[4]. Quasi-Newton methods are not theoretically
globally convergent and in fact are known to fail for
the model problem here [4], but a quasi-Newton
method with a twist was very successful on the model
problem.

The generalized plane stress problem of elasticity is
chosen as a model problem of optimal design. The
thickness of the sheet is assumed variable. The goal is
to find the optima! thickness distribution of a given
loading such that the strain energy density is uniform
in the sheet.

The problem reduces to a nonlinear algebraic system
by the use of the finite element approximation given
in the next section.

2. FORMULATION

A generalized plane stress problem of elasticity
describes the behavior of an elastic sheet under edge
loading conditions. The sheet can be manufactured
with an arbitrary thickness distribution. The optimal
design problem is to seek a thickness distribution for a
given loading such that the strain energy density is
constant. This design uses material optimally in the
elastic range. If the given load increases proportionally,
the elastic limit of the material will be reached simul-
taneously throughout the sheet.

) The problem must satisfy the equations of equilib-
rium,
.1
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where # is the thickness and o,,, 0,, and o, are the
components of the stress tensor.

The elastic material properties are described by the
generalized Hooke’s law
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where u, v are the displacement components in the x, y
directions respectively; E is the Young's modulus; and
v is the Poisson’s ratio.

There are six unknowns in the system of eqns (2.1}~
{2.2) in terms of the thickness, stress and displacement
components,

If the thickness is regarded as a known parameter,
the problem can be interpreted as an operator equation,
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are the edge stress resuitants. The differential matrix
operator is a function of the thickness. A finite element
method given by Jespersen [8] may reduce (2.3) to
an algebraic system,

Kihm={f 2.5)

where K is an n by n positive definite matrix called the
stiffness matrix, h is the vector of thicknesses of the
clements, u is the nodel displacement vector and f is
the load vector. If h is known, (2.5) may be solved
uniquely.

We shall assume the strain energy density

(axx - ayy)z + aiy = UO (2'6)

to be constant, U, everywhere. In terms of displace-
ments, (2.6) is a differential equation. By the same
finite element scheme, the condition (2.6) for each
element has the form

vBa=1 2.7

where the B, are n by n positive semidefinite matrices,
and the constant U, is used for normalization. The

total number of elements m is usually smaller than the
number of nodes n.

Since the thickness h is non-negative, let #,=t2. The

i=12...,m
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nonlinear algebraic system 1s
K{tm=f
u'Bu=1

(2.8}
i=i,...,m

where t is an m-vector: u is an n-vector and f is a given
vector {m<n). The stiffness matrix has the structure

Kit)= fi 13K,

=l

(2.9

where the K; are the element stiffness matrices which
are positive semidefinite.

3. HOMOTOPY ALGORITHM
The algorithm developed here has the same theo-
retical basis as the fixed point algorithm in [5] and [6].
The theory i” summarized in the following lemmas. See
{5] for the proofs and {6] for an elementary exposition.
Let E" denote n-dimensional real Euclidean space.

Lemma 1. Let p:E*x [0, 1) x E"=E" bea C? map such
that the Jacobian matrix Dp(a, 4, x) has full rank on
p Y 0)={(a, 4, x)lp(a, 4 x)=0}. Then for almost all
acE", the Jacobian matrix of p (4, x)=p(a, 4, x} also
has full rank on p; *(0)={(4, x){p {4, x)=0}.

This is expressed in differential geometry jargon by
saying if p(a, 4, x) is transversal to zero, then for aimost
all a p (4, x) is also transversal to zero. “Almost all”
means every point except those in a set of Lebesgue
measure zero. Alternatively one could say p,(4, x) is
transversal to zero with probability one. Lemma [ is
known as a “parameterized Sard’s Theorem”. Now
suppose p, is chosen such that p (0, x)=s(x) is a simple
function with unique zero x=«, and p {1, x)=f(x)
is the function for which a zero is desired. The next
lemma merely spells out the implications of Lemma 1.

Lemma 2. Under the hypothesis of Lemma 1, for almost
all a there exists a zero curve y of p, emanating from
(o, ) along which the Jacobian matrix Dg (4. x) has
full rank. y is a simple C* curve, is disjoint from any
other zeros p, might have, and either wanders off to
infinity or reaches a zero of f(x) (at 1=1).

Note that if the zero curve y is bounded, it must reach
a zero of f(x). In general terms, the homotopy method
is: construct the homotopy map p,(4, x), then track
the zero curve y emanating from (0, a). If y is bounded,
then the algarithm is globally divergent with proba-
bility one. It turns out that y is bounded for many
important problems [1-6], hence there are globaily
convergent algorithms for these problems. The hom-
otopy map p, may be simple, as for the Brouwer fixed
point problem [6], or quite complicated, as for the
optimal design problem [4].

Another observation is that this homotopy algarithm
is not just continuation or embedding. A is not an
embedding parameter that increases monotonicaily
from 0 to 1, but is a dependent variable that can both
increase and decrease along y. Furthermore, the full
rank of Dp, along y and the way in which the algarithm
is impiemented guarantee that there are never any
“singular points” along y. Singular points occur
frequently in standard embedding techniques, resuiting
in their failure.

The nonlinear system under consideration here is
(2.8). For comparison, the homotopy map used in [4]
will be given. Define
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VB x 0, U x [0, DX E"x E"E™*"
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u'[AB,+(1 = Ae ehJu—1~(1—1)b,
where ¢, is an n-vector with 1 in the jth component and
zeros elsewhere, diag (¢3,...) is an nxn diagonal
matrix with diagonal elements ¢},.... Now regard
a, b, t, u as being complex vectors, so that § defines a
complex map
P:Cmx [0, P x CmH i Cmen,

Next convert every complex vector v=(v;, v;,...) to
a real vector (Re vy, Im vy, Re v,,...). This converts
¥ back to a real map

p:EZn*-fln x [0, I)X E2m*23MElm+1n,
and .
Pals x)=pld, 4, %)

is the homotopy map actually used. The obtuse defini-
tion of ¢ and the complexification of i make it possible
to prove that the zero curve y of p, emanating from
(0, &) reaches a zero of 2.8) at A=1.

The proposa! here is to use a simpler , but the same
complexification process. Let v=(t, u),

K{u~f
#Bu—1
Flo)=

wBou—1
and take
¥a, 4, ty=AF(v)+(1 —v—a).
Converting ¥ to complex and back to real again as
above leads to the homotopy map
pald, X)=AG(x)+{1 ~ AYx ~d), /3.1

where xeE*"*?", Lemmas 1 and 2 apply to this p,
hence the proposed homotopy methaod is to track the
zero curve ¥ of p,; emanating from (0, d). There is no
proof that v reaches A=1 but it is possible to prove
that y cannot turn back toward A=0.

The details of tracking y are in [6}, so that aspect
will only be sketched here. Parameterize y by arc
length so A= JA(s), x=x(s) along y, and

Pa(As), x(8)= A$)G(x(s)) + (1 — As)Xx(s) —d)=0.
Then

< palkis) x(s)=Dp . ) (‘;ijjj)=o. 62
and since the parameter is arc length,
di dx
,(d—s, d—S)L= 1. (33)
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Thus y is the trajectory of the initial value problem
{3.2-(3.3) with initial conditions

A0)=0, x(0)=d. (3.4)

Note that (3.2) does not explicitly specify the derivative
(dA/ds, dx/ds), which is required by any ODE sub-
routine, However, the full rank of Dp £A(s), x{s)}, the con-
dition (3.3), and the continuity of (d1/ds, dx/ds) along y
permit the unique determination of the derivative.
The details of the numerical calculation of {di/ds,
dx/ds} are in [6] for dense Dp, and in [4] for sparse

Dp,

‘The initial value problem (3.2)-(3.4) is most efficiently
solved by a variable step, variable order Adams
algorithm as in [ 7], for example. Since the ultimate goal
is to solve G{x)=0 and not to track 7, some special
strategies are called for. These strategies, based on
computational experience, are discussed in [6] and [1].
Since 4 is & dependent variable and the ODE solver is
taking discrete steps, it is unlikely that A will hit |
exactly. As soon as A(s)> 1, inverse interpolation with
previous points saved by the ODE solver yields an
§ such that A(5)= 1. The corresponding x(35) is a zero of
G{x). Note that no extra derivative evaluations or
steps by the ODE solver are required for the inverse
interpolation.

4, QUASENEWTON ALGORITHM
Define v={(t, u) and
K(tu—~f

utBiu""‘l

Fo)j=

u'Bu—1
as in Section 3. The most modern quasi-Newton

methods, known as least change secant update methods,
are based on solving

F(p)==0
by minimizing
(IF (*31!2-

‘When intelligently programmed, they are in practice
usually globally convergent because they guarantee a
decrease in ||F(v)]| at each move [10]. This feature is
necessary for robustness, but it results in their failure
on (2.8), because ||F(v)]| has local minima at which
F(v)#0.

A least change secant update method applied
directly to F(v) will generally fail (unless the starting
point is sufficiently close to the solution). The pro-
posal here is to apply the least change secant update
method in [12] to the complexification

G(x)

of F(v), where G is the same as in Section 3. At least for
the model problems tried here, this trick worked very
well. G{x) does not have the local minima difficulties
afflicting F(v). The drawback is that the dimension
of the problem doubles, but clever programming can
partially overcome this.

Least change secant update methods have the form

x(k+ D x{k) WVHkG(xik))’
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where H, is an approximation to the inverse of the
Jacobian matrix DG(x™), and 7 is chosen to guarantee
certain desirable properties of the sequence {x%}. H,
is updated at each iteration in O{(n-+m)?) operations,
compared to 0{(n+m)®) for Newton's method. The
precise details are complicated, and can be found in
{10]. The efficiency per iteration, ultimate superlinear
convergence, and robustness make least change secant
update methods very attractive.

5. NUMERICAL RESULTS
To illustrate the dependence on m and n, the problem
(2.8) was solved for various m and n using the data
described below. Let n=km, and K, be an n x n block
diagonal matrix with kx k diagonal blocks. All the
diagonal blocks are zero except the ith, which is

2 -1 0
-1 2 -1
0 -1 2 O
B..-:
o .
-1 2
Thus
4]
K= 0 O {5.1)
B
0

B, 1s an nxn block diagonal matrix with the same
block structure as K, and has the form (4.1} with
B=1I. fis an n-vector with the jth component being
0.01j.

Table 1 shows the results. The execution times are
in seconds on an IBM 370/158. The stopping criterion
was ‘§G(x)h , <107 and the starting points were
chosen arbitranily, but always at least a distance |
from the solution. Failure of the homotopy method to
converge is indicated in Table { by a dash. The number
of Jacobian evaluations is reported in parentheses
after the CPU times. The computer code used for the
homotopy method was the fixed point code in [11],
which also produced the numerical results in [1] and
[6]. The quasi-Newton code used was the FORTRAN
subroutine HYBRJ, part of the MINPACK package
being developed at Argonne National Laboratory [12].

The CPU times in Table 1 are from codes which
assume that the Jacobian matrix is dense, and use
direct {elimination) methods to compute the kernel
of the Jacobian matrix Dp4, x) (for the homotopy
algorithm) or factor the Jacobian matrix DG(x) (for
the quasi-Newton method). Typically the Jacobian
matrix in optimal design problems is very sparse. and a
production code would use iterative sparse matrix
techniques to find the kernel of Dp, or factor DG. An
important aspect of Table 1 is the number of Jacobian
evaluations, which would be the same independent of
how the matrix caiculations are done. Note that the
number of Jacobian evaluations is relatively insensitive
to the dimensions m and n for the homotopy method,
which is typical behavior [6]. Since the whole point of
quasi~-Newton methods is to avoid explicitly calculating
the Jacobian, the quasi-Newton CPU times are the
important figures.

Large scale computational results for a realistic

generalized plane stress problem in elasticity will be
Tabie 1.
CPU time
m n | total dimension homotopy quasi-Newton
2 14 12 8.8 {95) 4 (1
2 16 16 6 (1)
3}s 18 9 (1)
4 |38 24 98.0 (109) 18 (1)
319 24 80.1 (86) 2.0 (1)
2 {10 24 60.0 (70) 3.0 (2)
5 |10 30 3.6 {1}
4 |12 32 —n 8.3 (2)
3 115 k] 20.8 (4)
5 |15 40 —— 18.9 (2)
4 |20 48 61.1 (4)
10 20 60 41.0 1)
5 {25 60 1311 {4)
6 130 72 - 262.6 (4)
10 i3 80 310.4 (3)
15 {30 90 - 183.5 {1)
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reported in a future paper.

In conclusion, recall that Newton’s method, quasi-
Newton methods and standard continuation fail when
applied directly to (2.8). A complicated nonlinear
homotopy based on the Chow—Yorke algorithm was
developed in [4], and proven globally convergent for
(2.8). The existence of a globally convergent homotopy
algorithm for (2.8) motivated the algorithm of Section
3. Unfortunately the simple homotopy algorithm of
Section 3 is not always globally convergent, which
suggests that the intricacies of the homotopy mapin [4]
may be necessary. Hence there is no completely
satisfactory homotopy algorithm for optimal design
problems of the form (2.8} yet. The Section 4 algorithm
is perhaps obvious, but it is interesting that it works.
At present the best least change secant update methods
destroy sparsity (H, is dense even though DG(x) may
be very sparse), and thus the quasi-Newton approach
is (at present) infeasible for large m +n. There are sparse
matrix techniques for the quasi-Newton updating and
factoring of 3 new quasi-Newton method (which retains
sparsity and superlinear convergence) [13-16], but the
global behavior and ultimate convergence rate of this
new method are untested on real problems. Sparsity is
maintained by sacrificing other desirable features of the
quasi-Newton update (such as symmetry or positive
definiteness), and a satisfactory compromise remains
t6 be found. Note that the kernel of a homotopy
Jacobian can be computed by sparse matrix algorithms.

There is no simple, globally convergent, feasible
algorithm for large dimensional problems like (2.8).
The advantages of both homotopy and least change
secant update methods are tog great to rule either
approach out, and both should Be pursued with regard
to optimal design problems.

REFERENCES

1. L. T. Watson, An algorithm that is globally convergent
with probability one for a class of nonlinear two-point

11.

12.
13.

14,

15,

16.

119

boundary value problems. SIAM J. Numer. Anal. 16,
394-401 (1979).

. L. T. Watson, T.-Y. Li and C.-Y. Wang, Fluid dynamics

of the elliptic porous slider. J. Appl. Mech. 45, 435-436
{1978).

. L. T. Watson, Solving the nonlinear complementarity

probiem by a homotopy method. SIAM J. Control
Optimization 17, 3646 (1979).

. L. T. Watson and W. H. Yang, Optimal design by a

homotopy method. Applicable Anal., 10, 275-284 (1980).

. S. N. Chow, J. Mallet-Paret and J. A. Yorke, Finding

zeros of maps: homotopy methods that are constructive
with probability one. Math. Comput. 32, 887899 (1978).

. L. T. Watson, A globally convergent algorithm for

computing fixed points of C* maps. Appl. Math. Comput.
5,297-311 (1979).

. L. F. Shampine and M. K. Gordon, Computer Solution

of Ordinary differential Equations: The Initial Value
Problem. W. H. Freeman, San Francisco (1975).

. D. Jespersen, A least squares decomposition method for

elliptic equations. Ph.D. thesis, Department of Mathe-
matics, Univ. of Michigan. Ann Arbor, Michigan (1976).

. 1. E. Dennis, Jr. and J. J. More, Quasi-Newton methods,

motivation and theory. SIAM Rev. 19, 46-89 (1977).

. J. E. Dennis, Jr. and A. Schnabel. Quasi-Newton

methods for unconstrained nonlinear problems. Book
Manuscript (1979),

L. T. Watson and D. Fenner, Chow-Yorke algorithm
for fixed points or zeros of C2 maps. ACM Trans. Math.
Software 6, 252-260 (1980).

J. J. More. MINPACK documentation, Applied Math.
Div., Argonne National Lab Argonne, Illinois, 1979.
Ph. L. Toint, On sparse and symmetric matrix updating
sut?'ect to a linear equation. Math. Comput. 31.954-961.
(1977

Ph. L. Toint, Some numerical results using a sparse
matrix updating formula in unconstrained optimiza-
tion. Math. Comput. 32 839-851 (1978).

Ph. L. Toint, On the superlinear convergence of an
algorithm for solving a sparse minimization problem.
SIAM J. Numer. Anal. 16, 1036-1045 (1979).

M. J. D. Powell and Ph L. Toint, On the estimation of
sparse Hessian matrices. SIAM J. Numer. Anal. 16,
1060-1074 (1979),



