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Introduction

Our objcctlve is to descnbe the clcsed 3-manifolds M whose universal covering
naturally admiits the structure of a Lie group G. Consequea*ly, G contains a uniform
discrete subgroup r and M y be ;denhﬁ ‘d’with r \G The map G->M is a
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- In the first section we shail quickly sketch the first 3 cases of the table. The bulk of
: tl;g paper concentrates on 4(b). In the next section we examine discrete subgroups I"
of a Lie group G with K a compactsubgroup. On I'\G = M we describe the invariant

‘ tub .llar nenghborhoods of the orblts of the nght K -actxon (I”\G K )i in terms of the

e ‘Euler number of the SO(Z)~secnon, i, e. . the Setfert wp
‘be determine d*, This is done in Sections 5 and 6.
) nd4 H reductnon of our problem is made in Section 4 to the special
cases of G in its adjomt form, G.. That is, G, can be regarded as a group of
onematxon preserving lsometnes of a simply connected surface having constant
Gauss curvature The 1dennﬂcat10n of I'\G is then captured from I"\\G, by cxamin-
ing how the Seifert invariants change under nice cyclic coverings, Section 4.

These results were announced in the informal report of the algebraic topology
Conference at Oberwolfach in September 1973. The authors apologize for the
subsequent delay in publication. Part of the problem has been the many alternative
versions and approaches to these results. We have adopted here what we think is the
most straightforward approach and one which generalizes somewhat to other
interesting situations. Also as a bonus for this particular presentation we are able to
sketch a couple of other approaches in Section 7.

For readers conversant with the terminology of Seifert manifolds we shall now
formulate our main resuits (In cases 3(a) and 4). The usual normalized Seifert
invariants are used. For other readers the necessary definitions, notations, and
references are given in the text at the appropriate times. In particular we use the
standard notations of [9], [8] and [7].

Theorem 1. Lét G«Q be the universal covering of PSL(2, R) and I' be a uniform
discrete subgroup of Go. Then M = I'x\Gx, as an SO(2)-manifold, has the form of

"{8 b (a1, Bl)s cey (am Bn)} ,
if and only if, there exists a divisor r of
[ TRRE a,(2g~2+‘n - ‘:’, l/a,)
« - jml ~
prime to each «; so that
Br=-1moda; and rb=(Q2g—-2)- -Z{k"'

where

3;1' = 1 + k;a,-.
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T will be a subgroup of index r in the'gmupsli,‘%pffts(rx)s': where Pt GG =
PSL(2, R) is the covering and I'y = p1\(I's) is a Fuchsian group with signature (g;
ay, ..., as). The condition that I'y exists is 2g—2+n~Y._, 1/a;>0. In particular,

M\G,={g;b=2g~2; (wi,a1=1),..., (@man—1)}.

o/ G will be a r-fold centrai cov'rmg of F;\Gz To=1 and hem:e, rQ\Gw
\01 =I\PSL(2, B) if and on!v ifr= e g

The reader may wish to compare the present statement thh the versnon m [6;
Theorem 3.1] which uses the unnormalized Sezfert mvammts (‘I‘he reader is reques-
ted to observe that a typographical error, in 3.1 has g appeanng in the formulae
where 2g is what is intended.)

It is also appropriate to pointout thatif g=0,n =3, 1/ety + 1 /az+ 1 Jas>1, then
we 2are in case 4(a). The same formulae as above applies since the proofs are
essentially the same. However, the list is correspondingly smaller We shall hst all of
them below. The triples refer to (a;, a3, as)

(2,2,n)  I'\SUQR)={0;-2,(2,1),(2, 1), (n,n - 1)}.

These are the prism manifolds. There fundamental groups are the binary dthedml
groups, n =2.

(2,3,3) INSUR)={0;-2;(2,1),(3,2),(3,2)}

The fundamental group is the binary tetrahedral group.
(2,3,4 I\Su@)={0;-2,(2,1),(3,2), 4, 3)}.
The fundamental group is the binary octahedra! group.
(2,3,5) ISU2)={0,-2;(2,1),(3,2),(5,4)}.

The space is the Poincaré homology sphere with fundamental group the btrary
icosahedral group.

For n <2 and g = 0, we are in the case of I cyclic. Then F\SU(Z)orI‘;\S(B}m:cur
as lens spaces. They are all of the form L(p,1) (or L(p, —1) depending upon
orientation conventions). As SO(2)-manifolds they have many representations
(unlike all the other cases). For I' = SO(3), one can choose the right circle subgroup
and write '\'SO(3)as{g =0, b= -2, (a, a —~ 1), (a, a —1)} Itis of the form L (2a, 1).

Case 3(a) occurs for 2g—2+n —Y ., 1/a; = 0, g =0, (with the exception of T* in
which case g =1, n =0). We may also, using the same argument, list these possi-
bilities:

(a) (2, J;!, 2,2,)e{0:-2;(2,1),(2,1),(2,1) 2, D}

(c) (3. 3 3)9{0, -2;3,2),(3,2),3,2)}

(@ (2,3,6)<{0;-2;(2,1),(3, 2), (6, 5)}.

(e} The 3-toruse>{1;0}.

These are the flat orientable 3-manifoids with holonomy Z/2, Z/3, Z/4, Z/6, and 1.
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Because the ‘“‘Euler number” [6] is 0, these manifolds cover themselves and so when
one looks at any cover of I (2) nothing new is found,

- Of considerable interst is the situation where " = PSL(2, R) 2ad I'\PSL(2, R) is not
compact but I' is finit:ly presented. More grierally, I'c < G 50 that I, is finitely
piesented. I'o\Ge will be an SO(2) manifold and-its orbit space, I'o\Gw/SO(2),
will be an open 2-manifold which needs i >0 points to compacti‘y it to a surface of
genus g. If we again let p,: I, I'y be the projection then I'; will have “signature”:
{g;hiay,...,an}

~Analagous to Theorem 1 (but obtained with less difficulty) we are already able in

Section 4 to prove -

Theorem 2. M =I'\Gw, an SO(2) mar fold, has orbit invariant:
{(ah pl)) oy (am Bn)}

if and only if, there exists a positive integer r so that

Br=-1 moda.

As before I' is a subgroup of index r in the group I* = pi' (I").

Note that in the closed case the number of distinct r’s is finite. In the open case
there are an inﬁnitp’ number of r’s but only a finite number of manifolds since the 8,’s
are normahized ‘bet.ween 0< B, <a;. As before, if I =, thatis r = 1, then the orbit
invariants of I'}\G, are

{(ah @)= l)a ceey (am on — 1)}

Finite presentation of I = PSL(2, R) turns out also not to be a necessary assumption
for a version of Theorem 2; see the Remarks at the end of Section 6.)

‘As an illustration, it is amusing to consicer the complement, M{(a, b), of an (a, b)
torus knot, K (a, b), in the 3-sphere. Here, ¢ and b are relatively primeand 2<b <a.
M(a, b) admits the structure of an SO(2) manifold with exactly 2 exceptional orbits
(@, b7")=(ay, B1), and (b, a™'}=(as, B2) and orbit space the open 2-disk. As
normalized invariants this means that 8, is the integer reduced modulo a, = a, sc
that 86 =1 mod a. Similarly, 8, is the integer ireduced modulo b so that B,a =1
mod b. We see, by a simple calculation, that only the trefoil knot K (3, 2) ca: appear in
the form I'\PSL(2, R). In fact, it is readily seen to be PSL(2, Z)\PSL{(2, R). A more
standard form of this knot space is SL(2, Z)\SL(2, R). Of course, they are the same
space. Again a simple calculation shows that for K (a, b), (a, b) # (3, 2), M(a, b) is of
the form I\G, r#1. In facs, r satisfies the simuitaneous congruences rg8,=
—1mod.a and r8;=-1mod b.

- One would expect manifolds of the form I'\G to be geomemcally mterestmg In
[6] one can find preofs that all the Seifert manifolds which are integral homology
spheres are of the form I'\G. Characterizations for complete intersection of
Brieskorn varieties to be of the form I'\G are also given there. See also [S] and [3].
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1. Abelian, nilpotent, and solvabie groups A

We make use of the convenient catalogues in [1] and [4] of the 3-dimensional Lie
algebras. All of the associated Lie groups contain uniform discrete subgroups except
for one family on non-unimodular solvable Lie groups.

1.1. Abelian case. I'\G must be a 3-dimensional torus.

1.2. Nilpotent case. Let I' be any torsion free nilpotent finitely generated group.
Then according to Malcev, see for example [10], there exists a unique, up to
isomorphism, simply connected nilpotent Lie group G and an embedding "> G as a
lattice in G. All such embeddings are equivalent via an automorphism of G. If C is
the center of G, then it is not hard to see that C is connected #1 and center
(I')= C NI Moreover, ' N C isdiscrete in C. Therefore, in I'\G, we have an action
of the torus K = C N I'\C. This action is free since I N C\I' is a nilpotent subgroup of
G/C (We shall see, in general, that the K stability groups are isomorphic to torsion
subgroups of I'N C\I" which, in the present case, is torsion free). Since G/C is
nilpotent and I' N C\I" acts freely we see that I'\G is a principal K -bundle over the
nilmanifold ((I" N C\M\(G/C).

In the special case of dimension 3 this means that X is a circle and I'\G is a
principal circle bundle over the 2-torus. As an SO(2) manifold its Seifert invariants
are {g = 1, —b = Euler class of the SO(2) bundle}. Explicit matrix representations are
fovnd in[1, 4] and in Table 1.

1.3. Solvable (non-nilpotent) case. There are two non-isomorphic, 3-dimensional
solvable Lie algebras whose corresponding simply connected Lie groups S; and S»
admit lattices, [1] and [4]. The adjoint form of S; is the Euclidean group, E*(2),
and so S; is R*>R', where R' operates on R* by the rotations induced from
SO(2) = E*(2). The center of S, is infinite cyclic, corresponding to 7, (SO(2)). Let
p:S2- E*(2) denote this covering projection. For cach lattice I in S, the projection
p(I"y=T/I N{center S,) is a uniform lattice in E*(2). Hence I'N Z is irfinite cyclic
and I'\S, is diffeomorphic to (I" N Z\S,)/ (/' N Z). This is a finite cyclic covering of
p(PO\E*(2). It will turn out, as we shall observe later, that the two manifolds in
question will be diffeomorphic. Therefore the determination of p(IM\E™*(2) to be
accomplished in Section 6 will determine all the possibilities of I'\§,.

Let us now assume that '< G is unifor.» and G =§;. Using the fact that
S1 =R, R' with I" r\R? and (projection I') n 12 is discrete, it is shown in [1] that I”
has no center and I"\G is a torus bundle over a ircle. I'\G admits no §*-action, since
I' has no center. The eigenvalues of the geometric monodromy are also described.
Since any torus bundle M over a circle is described completely by a matrix
@ e GL(2, Z) we see that to obtain M as I'\G above we need a ®eSL(2, Z),
diagonalizable, with both eigenvalues positive. If '@ e SL(2, Z) is diagonalizable but
has both eigenvalues negative and not —1, then ‘®* will have the desired properties.
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If*A{ corresponds to ‘®, then a double covering M corresponding to (‘®)* will yield a
manifold of the type I'\S;.

2. I'G asa K-space

Let I' be a discrete subgroup of the Lie group G and K a compact subgroup of G.
Consider the (right) action of K on ' =I'\G. Let mpe M and K be the isotropy
subgroup of K at my, i.e. {k € K|mok == mo}. The proposition bzlow shows that a
K-invariant neighborhood in M of the orbit through mo depends (as a K -space) only
on the triple (G, K, Ky). In particular, I" and the coset mo=I"goc M are totally
irrelevant, More specifically we consider the adjoint action of G on its Lie algebra g.
If we restrict this action to K it leaves invariant K's Lie algebra, . Thus we get an
induced action of K on g/1. If K, is any subgroup of K we can further restrict ar.d
obtain an action of K, on g/1. We may form the associated vector bundle over Ko\K,
(g/%) x x, K. This is, by definition, the set of K,-orbits of the diagonal left action,
koX (v, k)= (vkg’, kok), of Ko on (g/t) x K. There is an obvious right action of K on
(8/?) Xk, K induced from right multiplication on the right hand factor in g/t x K.
Thus, (g/t) X x, K is a right K-space. Note that the O-section is a single K -orbit. The
isotropy subgroup of the point (0, e) is K,. (We denote the image of an element of
g/t x K in (g/t) x x K by enclosing it in the bracket “( , )".)

2.1. Proposition. Let I', G, K be as above. There is a K equivariant diffeomorphism
between a K-invariant neighborhood of the K orbit through mo=Ig,€ I'\G and the
K-space (/%) x x K. Furthermore, the map takes my to {0, e) and the K-orbit through
my to the 0-section of the vector bundle (g/%) X ¢ K.

We emphasize that K, acts on g/t via the K action on g/t induced from the adjoint
action.

Proof. We shail deduce this from the slice theorem, (see [2; VIII] for a convenient
proof), and we shall recall its statement. The orbit moK is in an obvious way
diffeomorphic to the coset space Ko\K. This is a smooth submanifold of M. If N
denotes the fiber of its normal bundle at the point m,, the differential provides us
with a (right) linear action of K, on N. We may form the vector bundle N x K
which, by definition, is the space of K,-orbirs of the following left K, actiow on
N XK; ko (n, k)= (nkg’, kok). It is possible to identify N with a Ko-invariant subset
of M transverse to moK in such e way thatthe map N x K - M: (n, k} = nk induces 2
diffeomorphism of N XK onto a K invariant neighborhood of moK. The
diffeomorphism is gbviously K -equivariant relative to the obvious (right) K -action
on N XK. Furthermore, it takes the O-section of the vector bundle N XK
diffeomorphically onto meK.

In view of the slice theorem we see that the problem is to show tnat the right linear
action of K, on N is independent of I' and the point mo = 'go and, in fact, depends
only on the triple (G, K, Kp).
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Our task reduces to verifying that we can identify the linear space N with g/f and
the action of Koon N with the restriction to K, of the adjoint inducec action of K on
g/t. For this, we consider the map p: G > M =TI"\G defined by p(g) = I‘gog It isa
K -equivariant map if we let K act by right multiplication on G. It is
diffeornorphism (since I" is discrete) taking e (e = the identity of G)to m : ;
differential of pate ndentnﬁesg T(G), wnth T(M ),..,, Further, 1t 1dent|ﬁes P with

action (define k, - n tobe nku Jforallne N, koe Ko) then the ad) in {

G is equivariant, via p, with the new left K, action on M. If we nc»w recall that
Ad{ko):g-gis defined to be the cifferential at e of the map g - kog ko G -+ G, the
result follows irnmediately.

2.2. For future reference iet I" be a discrete subgroup of G and K a comﬁabt
subgroup of G acting on the right. Form the left transitive G-space G/K and the
right K-space I'\G. If x = gK € G/K, then

G,=gKg™' and I't=gKg'ArI.

Let I'g =ye I'\G, then Ky = g ' I'g A K. O'wviously, g ' I',g = K,. The restriction to
I' of the G action on G/K is properly discontinucus and thus the orbit map
G/K - '\(G/K)=TI\G/K is a branched covering map. Thus if b = I‘gK represents
a point in M G/X, then the K -orbit over b, {I'g)K, is isomorphic to the coset space

K,\K, and the I"-orbit over b, I"(gK), is isomorphic to I'/ I'.. Hence, branchmg occuis
exactly when K, =TI’ is not trivial. We may also represent a tubula" nelghborhood to
the I" -orbnt of x in G/K as (I, I'xr, g/1). Here{ is the Lie algebra of the subgroup
gKg™', conjugate to K. The tangent space to gK is naturally represented by g/i
(=g/1), the action of I, =gKg ™' nTI on g/i is induced by the restriction of the
adjoint action of gKg™' on g/f. This we see by considering the I™-equivariant
mapping q : G -» G/K, defined by q(&) = g gK, and taking the diffzrential at e. Note if
yel'ngKg '=T,, then

q(ygx™ ") = ygeK = vq(g).

Thus, the actions of I', = K|, are equivalent 0 the normal disks g/ fand a/t after we
take into account shifting from left to right a:tions. :

3. Dimension G =3

To treat the remaining cases 3(a) and 4 {(as well as 2) of our table from the
ntroduction, we specialize to dim G = 3, K compact, connected and 1-dimensional,
with I" discrete in G. First note I'\G is always orientable. Note further that K .is
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isomorphicasa Lie groupto $'={z € C||z| = 1}. We obtain a,righ‘:t: actionof S'onI'\G
wnhout fixed points.

- These actions are studied and classified in [8] and our purpose is to describe which
of the possibilities in [8] arise in this way. These § ! manifolds all admit the structure
of a Seifert fiber space, [9], with the orbit mapping corresponding to the fibering and
the excepttonal orbits correspondmg to the smgular (or multiple) fibers.

- Choose an xsomorphxsm 6:8'~ K (there are two such and the effect on the
invar mnts of making the other choice is easily understood, see [8, p. 631}, and obtain
a'right action of S" on the 3-manifold I'\G. In [8], . actions are studied but S" is
abelian and so we may view ur right action as & left action; that is if z € s', and
mel\G then 2z - m will me«n the point prevnously denoted by m8(z). (Needless to
say other conventnons ¢ould be made with at least as much rationale.) As stated
above, I'\G is orientable but of course, not oriented; here again we have a choice and
the effect of the choice on the resulting invariants is easily understood |8, p. 63)).
Consider

S'-L K24 Aut(g/1).

From the above analysis this composition is non-trivial. It follo v« if:crefore that we
may choose a real lincar isomorphism ¢ : C - g/t so that

3.1)  (Aded)z)@A)=¢(z'2)

for some positive integer r; (indeed r equals cardinality of the kernel of the
composition (#°Ad)). Any two such isomorphisms differ by a rotation of C; in
particular by an orientation preserving isomorphism of C. Thus by using sucha ¢ to
transfer the usual orientation of Cto g/t we have thus oriented g/%. This, of course,
ornents g for 1 is oriented by d8: R 3  and the usual orientation of R, (here we are
thmkmg of Ras being the Liealgebraof S, 1 t>e>™ S, forteR). Thisorients G and
thus I'\G. In summary, the special nature of the pair (G, K) is such that once we
choose an isomorphism 6:$ 'K we may orient G; if we choose the other
|somorph|sm S1 +>K we would have arnved at the same orientation on G.

Letus return to the problem of determmmg the orzemed Sezfert invariants (a, 8) of
an excepnonal orb:t in these cases, see [8, p. 61] Suppnse x € M == I'\G is a point on
the excepttonal orbit. Then we know « is the cardinality of the isotropy subgroup.
Furthermore, 8. satnsﬁes 0<pB<a and 8v=1mod a where » describes the slice
representation. Now a describes the isotropy subgroup, {z € 81]z% =1}. We will refer
toy= ez"” “ as the “generator” of this group despite: the obvious objections to this
usage. Now if we identify the fiber at x of the normal bundle to the orbits with C, via
the asomorph' mdescribed above, we see that the action ofyonreCis v~ 'A.Hence
v is determine by o<v<a and + =« —rmod a. The minus sign comes from the
conversion of a nght action to a left action and the remarks about the adjoint action.
The general theory of [8] shows that » is relatively prime to a. Since —r=v mod a,
this limits (for the pair (G, K) which determined r) the a’s that can arise for a
particular pair (G, K). Summarizing we have ~
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Proposition 3.2. Let r be the cardinality of the kernel of the ma
Let x € I'\G be an exceptional orbit. Its oriented Seifert invariant is {(a, B =t}
cardinality of the isotropy subgroup of x,0< 8 <aand ~rp =1 mod a. (In pamwlarr
and B are relatively prime to a.) v i

3.3. We shall be especially interested in the fol!owmg sxtua
orientation preserving isometries of a complete szmpiy connected §
(Gauss) curvature k. Thus, G acts on S (on the left) Via the d
U(S), the bundle of unit tangent vectors of 5. G acts transmvely o
isotropy group of point x € S, then K = G, acts eﬁectwely and transmv
the unit tangent vectors to S at x. Thus each G, isa circle and a ,
conjugaie. These subgroups are the only such subgroups of _, Gﬂ,‘ Now_ r— 1 ns
equivalent to the assertion that K acts freely on the unit vectors at the poiut in
question. Hence,

Proposition. g =« —1.
Although this material is undoubtedly familiar we will be ever. more explicit.

3.4. Case I. Curvature « is negative. We may choose as the model of the surface, S,
the interior of the unit disc, provided with the Poincaré metric. W :  will choose 0in S
to be a special point. G is equally well described as the set of complex analytic
automorphisms of S and is naturally identified with PSL(2, R). K i: then the set {f} of
the form f(z) = yz for some y € S". This, of course, gives a preferred nomorphlsm
S' =K. The orbit space of K-orbits, G/K, is naturally isomorphic to S. Thus, g[ tis
identified with the tangent space of S at 0. Via the map ¢: C=g/t, used above in our
orientation conventions, w. have managed to identify C with the tangent spaoe to the
interior of the unit disk at the origin. Our conventions were chosen S0 that this i is the
usual isomorphism. (More precisely, since ¢ is not completely specxﬁed we shall say
that the usual isomorphism is a permxssable ¥.) P
In this case a discrete group I" automaticrily a:is prooerlv chscontmu usl onw S
and I'\S is compact if T is uniform. As is well known S > I" S is a branche ng
space; I'\S inherits a complex structure from § and is hence a (com
uniform) Riemann surface. It does not, in general, inherit the Rlema
structure despite the fact that I’ Operate 1sometncally, at the branch
differential of the map $-+I"\S is not & lirear 1somorphlsm (lnde”
However, in the special case in which there is no br anchmg. (I’ is torsnon,free). F\S is
naturally a Riemannian manifold of constant ::egative curvature, By what was satd
above, I'\G is the unit tangent bundle of I'\S - '\(G/K) = I"\G/K w torswn
free. In any case when I is an arbitrary discrete subgrouvp of G, I‘\S is identified w:th
I'\(G/K)=1"\G/K = the set of K orbits of the K-action on M*=TI'\G. Lo
‘The classical analysis of this situation yield:. a presentatlon of I' of tbe form S

(3 5) (a19 b'h---aaga bg;‘llv---’q"s th !sl ' )
V=qyqa -+ - qulita - lay, bl] <o fag bylqt = =g =‘1),
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Here[x, y}=xyx'y™", and I, for convenience is assumed finitely presented, g is the

‘genus of the Riemann surface having s-holes (s = 0):and » is the number of branch
points (n =0). The e;’s describe the branching and are consequently integers 2.
‘Indeed, e is the a; associated with the exceptional K- orbit which lies ovei the branch
point, (by 2.2). Tis uniform 1f and only if s =0, ie. there are no *“i”’-generators. The
algebranc st 'uc.ture, when Iis not umform, Just reduces to

CZaewZ @) e

where we have 2g+s5—1 free factors There is the restriction

imn

2-2g- Y (1-¢7')<0

i=1

in the uniform case and
n+2g+s—-1>1

in the non-compact case. As is well known this classical presentation does not
determine the embedding of the abstract group I" in G (not even up to conjugation).
In I there are n-conjugacy classes of (maximal) finite subgroups; thase are represen-
ted by the cyclic subgroups of order e; generated by g;. Thus, the abstract group I’
determines the integer n, the integers ¢; = a;, g, and s = 0. Since we know 8, =a; - 1,
these invariants of the abstract group come very close to describing the action (S’,
I'\G) in the uniform case. According to [8] only one further integer the (normalized)
“b”-invariant, is needed to complete the description in the uniform case. We will
later exploit the relation: to the unit tangent bundle of I'\S to show that this last
integer invariant is determined by the abstract group as well.

In the non-compact case the b -invariant is not needed but the abstract finitely
presented group only determines the integer g -+ s. However, I’ © G, and so the genus
of the compactification of I'\G/K is g, say. Two different embeddings determine the
same g if the orbit  spaces I'\G/K are homeomorphic. (This information is contained
in our presentation of I'). Therefore, all the Seifert invariants are known for the
K-action (I'\G, K) and is given by:

(3 6) {ga s, (ah ay— - 1)) ney (am dn 1)}

This determmes the topological type of I'\PSL.(2, R) whken I is finitely presented and not
umform

3.7. Case II. Curvature = 0. S = R? with the usual Euclide:an metric. K is the isotropy
subgroup of the origin again. K is
[ cos @ sin 8]
—-sin@ cos @

in the usual matrix description of G = E*(2) relatnve tc an oriented orthonormal
bases of R?. The matrix above corresponds to 2 S’ and we thus get cur iso-
morphism §' =K. Again r = 1 for essentially the same reason; thus again 8 =a —1.
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The a’s are very restricted in the uniform case. The list has been gwen in- the
introduction under the discussion of 3(a). (For geometric reasons I" can be presented
as in 3.5 for I in PSL(2, R), E*(2) or SU(2). The expression

2-2¢ “.-.i, (1-1/a;)

heing <0, 0, or >0 determines, in the uniform case, whether I" is contained in
PSL(2, R;, E*(2) or SU(2), respectively.) The “b”- invarian: still needs to be
determin:d. ' '

In the non-uriform case we are also severely restricted, namely:

(i) g=0,n=0,5s=1, I =¢ and (G, K) is equivalent to
R xS, Y,
(ii) g=0,n=1,s=1,I'=2Z,, and (I'\G, K) is equivalent to a linear
R* %z, S, 5"
on a solid torus, and
(iii) g=0,n=0, s =2, I'=Z and (I'\G, K) is equivalent to
(R'x ,R")x S", §7). ’
3.8. Case III. Curvature is positive. Here we may take S to be the unit sphere in R’
with the metric inherited from the usual one in R’.
G=S0(3)={AeGL3,RjA'=A"")},
where A’ is the transpose of A.
K =S0(2)={AeS0(3)|A e3 =3},
where e; is the unit vector along z-axis. Again in an obvious way

cos@ sind O
6:8'->K, ¢’ |-sin® cosé® 0|sGL(3,R).
0 o 1

Again r=1and so 8 =a - 1. Since G is compsct the I"’s involved are finite. In our
presentation for I' above we need only take g =(, s=0,n=3 and 1/a;+1/az+
l/a3>1,0rg =0,s =0, n<2. The orbit invari: nts are listed under our discussion of
(4a) in the Introduction. The “b”-invariant al« needs to be determined.

4. Reduction of the problem to the adjoint fo'ms of G

4.1. To describe the general situation in 3(a) and 4 of Table 1 we need to‘désc;ribe all
quotients I\G where G is simply vonnected. In the previous section we have
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examined not simply connected G, but the adjoint forms of G, namely PSL(2, R),
E*(2) and SO(3). It is the purpose of this section to show: that this, together with a
technical fact about centfal cychc covermgs of Senfert ﬁber spaces is sufficient to
prove the Theorem. T T :

'For the following facts about lattmes and centers of lattxoes in semi-simpie Lie
groups we refer the reader to [10; particularly V, 5.18]. For the special case at hand,
PSL(2, R), which is all that we are concerned with, the reader may also consult
[1.84]

Let G be the universal covering of PSL(2, R) = G,. The center of G, 3(Gm), is
isomorphic to Z. If I'y, is a lattice in Gu, thon3(l'w) = w1 3(Gw) and must be an
infinite subgroup, rZ, ¢ 3(Gw). Moreover, if pp : Go = Gm = G/ mZ is the central
covenng prdjectnon, then the Iamce I'ci is pto;ected into a lat-ice

'Pm(roo)=f' =I'co/(mlnl"m) in G

Induced is the finite cyclic (mZ/lcm(m, r)Z) covering projection: I’ x\Gw = I, \G .
This may be controlicd as follows: Project I'x, to G, where 3(I'x) = rZ, then I'o\Go is
naturally dxﬁeomorphnc to F,\G Now, observe for any lattice '< G, 3(IN)=
3(Gw)T. We may take I =p;! (I"), a lattice in Go=p;, (Gn), eand I"\G will be
dlﬁ‘eomorphlc to I'\G,.. Therefore, we may as well assume, without any loss of
generallty, that:

(1) T, is a lattice :n G,

(2) I is centerless.

We note that as K, -space, I\G,, the action of K, is effective since the center of [, is
trivial (and a3(G.)=2/rZis in each conjugate of K;). So to determine 'x\Gw it suffices
to determine I\G, as a K,-space. ,

“On the other hand, we may make yet another snmphﬁcatlon If we now project
G.~ G, =PSL(2,R) thea [’ is projected isomorphically onto the lattice I'y in G,
since 3(!’ )=1, and I'\G, > I'\G, is an r-fold cyclic covering projection. This is
gtven by dwnding out the center Y 4 / rZ c K < G, We obtam the following:

4.2. Reduction pmposlﬂon To determine all I's\Go we need only examine laitices
I'y in G, and determine I'\G; as a K;-space. We then obtain Il possibilities by
considering the finite number of cyclic Z/r coverings G, of G for which I'y lifts to
I'yx2/r and determining I')\G, as a K,-spacz.

It is exactly this proposition that enables us to carry out the classification for
T's\Gx: We know all the possible I'’s from Section 3 and we have already
determined all of their orbit invariants (cxcept the ‘b’ -invariant when I', is
uniform). We now shcaw how one determmes the mvanants for I';\G, once those of
rx\Gx 8!‘& known

4.3 Pmpodﬁon (19 §14] cf. [6 1 3]) Let (S M) be any 8'-3 manifold (acting
without fixed points) with orbit invariants {g; b; (m, B1), ..., (an B,). Let C, be the set
of rth roots of 1€ 8", Let C, act as a subgroup of S' on M. Then,
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(1) C, acts freely on M if and only if r is relatively prime to each of the a:. ,
Let M' denote the orbit space M/ C. of this free action. Then, $YC. =S acts
effectively on M'. The covering map p: MM’ induces a bijection of the set of
exceptional ovbits and a diffeomorphism of orbit spaces. The new invariants are
(2) {b';8"; (@1, B1)s - . ., (an, Bn)} where R '
(@) a;=ai, 0=i=n, . '
(b) r8;=8! mod ux;, 0<B: <a;, 0< B} <a,.
Letting 18; = Bi + ki, then
(¢) h+Xici ki=b',
d g=g"

We have given the form of the theorem for a closed manifold M. For an open
manifold the “b”-invariant will not appear and so the proposition in this case
remains unchanged from above except that 2(c) does not appear.

Propositions 3.3, 4.2 and 4.3 comp!=te the p:nof of Theorem 2

The argument of 4.2 for the coverings of PSL(2, R) can be adapted to the coverings
of E*(2). The co-compact lattices in the universal covering of E*(2) project to the
crystallographic groups in E*(2). Outside of Z®Z, there are just 4 isomorphisms
classes of such groups isomorphic to (Z®Z) ¢, (Z/kZ) where k =2, 3, 4 or 6, as is
well known. Now, except for T, g =0 and we shali see in § 6 that b = —2. The list
of allowable a s is given in the Introduction and comes from the discussion in Section
3. So applying 4.3, we see that the allowable r-fold coverings all yield exactly the same
orbit invariants as I'< E*(2). This involves only a small calculation but if one
switches to unorie:sited orbit invariants and replaces the “b"-invariant with the
equivalent Euler number which in this case turns out to be 0, then all the aliowable
coverings must also have 0 Euler number (cf. [6]) and unchanged ““B’'-invariants.

For SO(3), the finite subgroups are well known. In the non-cyclic case, the group
I'y = SO(3) always lifts tc a non-trivial cent-al extension I" of Z/2 by I'y. Therefore
I'\SO(3) as a K space is exactly the same as/"\SU(2). Therefore, in both 3(a), and
4(a), the result for the adjoint form is all that is needed.

§. The “b"-invariant

Let E 5 B be a principal G-bundle, with (; connected. Let B be triangulated as a
cell complex. Let us assume s: B" - E is a s:ction over the n-skeleton, We try to
extend it to the (n + 1)-skeleton. On each (n +1)-cell e choose a section o, :e = E.
Then if x € =~ '(¢), we can write x uniquely - ¢ ¢.(m(x)) - g = x. For y € d¢, we have
s(y)=a.(y) - f.(y), where f,:3e - G. This dfines a map $" "' - G, and the homo-
topy class of this map is independent of the choice of the section .. The assignment
e-[f.], where “[ ] is the homotopy class, defines an obstruction cocycle. The
cohomology class of this cocycle is the characteristic class sought.
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 We now explain the “b”-invariant for an §'-action without fixed points. For
background see [9, pp. 18-185], [8;p. 68] or [7]. Triangulate M* as a cell complex
and surround each exceptxonal orbit with 2 cells e;=N¥ (i=1,..., n), and with
boundary components q;. Choose x§, an ordinary orbit, in interior N¥, where
N3 e M*-{Ji<1 N}. Denote M*—|Ji., interior N; by M"*. The orbit mapping
M'-» M ic 1 principal SO(2) bundle projection, (this bradle is trivial unless n =0,
and M* i compact.) M"* is an oriented 2 manifold with boundary components
q%,...,q%. Choose cross-sections 7i,...,q, over qf,...,qa*. (The N, must be
sewn-in in a prescribed equivariant way to extend the SO(Z)-act-ion to obtain M asan
$O(2)-manifold.) Now this partial cross-section can b extended to a section s on all
of M"™*-interior N§. If M is not compact, it can be extended to all of M'*). We can
therefore choose o, and ., = s|., and so £, is constaat for all e except possibly eo. We
orient M* and the cells coherently and compatibly with the orientation of M and so
the homotopy class of f,,:deo— S' i» a well-defined integer. Since

W“(eo) '—"Nogp2 X Sl,

the cross-sectional curve s(q¥) = go, where s:q¥ - 7 ~'(3¢3), is a homology class in
Hy(aD?*x S"). With the obvious notation for homology classes in Fi;(aD*x §"), we
put [mo]=(1,0) and [A]=(0, 1), where “[ ]’ denotes the homology class of an
oriented closed curve. That is, we think of m, as the oriented image o|s.,:9€0->
aD*x1and h as0xS"in D*x §* = =~ (eo). Now [go] = [mo] — b[h]for some integer
b. Thatis, —b =[f.,]. This “characteristic class” is represented by a cocycle which has
value 0 on all the 2 cells but one, (¢o), and on that 2-cell it has value —b. Thus, via the
obvious isomorphism,

H*M™ q¥u - ugt; 2)=2Z,

the characteristic class is —b. (Observe that if M'* is not compact, then this
obstruction class vanishes which means that s extends over eo. This is why the
“b"-invariantis not needed for open manifolds). Of course, ‘b is an ir:variant of the
S'-action as explained in [9] and [8]. Moreover., {5; g; (a1, B1), . . . , (@n, Ba)} fOrms a
complete set of invariants for the oriented S*-action. Actually, (with the exceptions
of n<2 when g=0), they are, up to change of orientation, a complete set of
invariants for the topological type as well as the fundamental group of M, see [7].

6. Calculation of “b” for G =I"(S(x))

We return to the notation of 3.3-3.8 where I is a discrete uniform subgroup of G,
the group (=PSL(2,R), = *(2), SO(3)) of orientation preserving isometries of a
complete simply connectad Z'dxmensxonal surface S of constant curvature (k <
0, =0, >0, respectively).

The proof of Theorem 1 will be complete when we obtain the

6.1. Proposition. The “b” -invariant for I'\G is precisely 2g—2.
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Proof. Let us choose xo€ S and vo among the unit tangent vectors to § at xo. Via
the differential, G acts simply transitively on the entire unit tangent bundlez U(S).
We may, therefore, identify G with U(S) via: g -» gvo € U(S),s,. The right action of K
o G becomes a right action on U(S). This is, of course a free actmn, the orbxts are
just the circles {U(S),}, x€S. ot ~ :

Denote the surface I'\S by §; we assume it given a C -structure in the nstml ‘way.
Let dmr: T(S) - T(S) denote the differential. If x € § and m(x) is not a branch point
die: T(S)x = (T(S))wix) is an isomorphism; if 7(x) is a branch pomt dm, =0.

Let V < § be the complement of the branch pointsand V =" (V) r operates on
T V) and we clearly have I'\'T(V) = T(V). Since I operates isometrically, we may
introduce a Riemannian metricin T(V)so that ¥ = I'\V “inherits” the geometry of
coastant curvature of S. Thus, U(V) makes sense anrd MU(V)=U(V).

On the other hand U(V)c U(S)=G; indeed MU (V) is preclsely the eomple—
ment in I'\G of the exceptional fibers.

Thus we have an explicit identification of the complement of the excep:tonal orb:ts
and the unit tangent bundle of V. (V =the complement of the branch points in
S=I\8)

If there are no exceptional fibers, the proof is easy. The ‘b -invariant is the
negative (Section 5) of the obstruction to a section of (IM\G-"\S). By the
identification just described and Hopf's Theorem this obstruction is the Euler
characteristic of I'\S and equals 2 —2g, (g = *he genus of I'\S).

However, in general, there are finitely many branch points, yy, ¥2, ..., ya On I'\S.
A in Section 5, choose arbitrarily small disk shaped neighborhoods. NT of the y;’s
and specific sections, g; defined over N =g of the y;’s of the bundle P. (P=T"\G-
(exceptional orbits); P “="" U(V)<(T(V)) < (T(I"\S)), where “prime” denotes
the non-zero tangent vectors.) We car: assume that N¥ are 2-cells in a regular cell
decomposition of I'\S. Let y be a partial section of (T(I"\S))’ defined over the 1
skeleton and agreeing with the g, on dN¥. Let F be the 2-cocycle which is the
obstruction to extending x over all of I'\S. By Hopf's theorem: !

Euler characteristicof (I'\§)=2-2g=3F (ez),

whe.re the sum extends over all the 2-cells in I'\S. In view of P “=" U(V) the

b -invaiiant equals —~XF(e?), where the sum now extends only to the cells other
than the {NF ... Therefore,

2-2¢=-b+ Y F(NY¥).
i=]
To coraplete the proof we establish

6.2, Lemma. Fori=1,2,...,n, FIN¥)=(.

Geometrically, this means that g, viewed 23 a non-vanishing vector field defined
on N, has an extension to N¥ which never vanishes.
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We describe F(e?) homologically:
(T(e®)) =e*x (R*-0),
(T(3e?))’ = e x (R*~0).
The image x of e detesmines an element of
H\((T(3e2))) = Hi((9¢2) xR*~ 0) ~ ZDZ

of the form (/, k). Since x is a section /=1, and Fl(e;) will be /.. For e>=N¥,
x(0e2) =gy, [q:)e Hi((T(@NT))). So, via the isomorphism [¢;]= (1, k). We wish to
show that k must be zero. (We drop the *i" for convenience.)

Letx € S be a point ! ,ing over y € I'\S with a the branching index at y. Relative to
suitable coordinate patches the map »:8-I'\S is described by z - 2% We can
assume N* is a small enough neighborhood so that y corresponds to 0 under the
mapping. Put X = U/(N'*), the partof I'\G lying over N*. Let N be the component of
the part of § lying over N* and containing x. Now U(N), the part of G lying over N
has image X under the map G- I'\G.

Since X is a solid torus and represents an invariant tubular neighborhood of the
exceptionai orkit y, we have oriented curves g, m, h on X and satisfying the following
homological relationship [8]:

[m]=alq]+B(r].

h is a principal orbit on 3., q is our cross-sectional curve and m is the boundary of a
normal disk to the exceptional orbit and its homology class is characierized by:

(i) [m]is an element of the kernel H;(6.X) - H,(X). (In fact, it is the generator of
this infinite cyclic group.)

(ii) Via H,(3X)- H,(dN™), the class [m] goes to a[aN*].

Suppose v: N =+ U(N) is any section. Let m, be the oriented closed curve v(dN).
Then [m,]e H,(U(8N)). We claim that [m,] goes to [m] in H,(U(3N))-> H(3X).

(i) [6N) € kernel H,(dN) - H:(N) ard so [¢,(0N)]=[m,]< kernel H;(U(N)~>
H\(U(N)).So ro[m,]l€ H,(6X)is in the kernel H,(8X) - H1(X), where 7: U(N) > X
is the a-fold branched covering.

(ii) As v(dN)= 3N - 3(N*) commutes with v(dN) - ~{V(3N)) - a(N*) and since
aN -+ a(N*) is an a-covering, we have that r,[m,]={m].

Let us make use of our special coordinate systems:

U@N)=(T(D-x)) =(D-x}x(C-0),
- UENY)(T(D*-y) =(D"~y)x(T-0).
The incluéions ~aicf homotopy ecjuivalencés and so we may compute either in
(T(D —x)) or U(BN) and U(3N*) or (T(D*—y))' as we wish.

Since m:D - D* is given by z->z%; dm: (7D —x))' > (T(D*—y)) is given by
(z, v) > (z% az* 'v). The coordinate system for v - U(N) is described by v(z)=
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(z, f(2)), where f: N »(C—0). The curve m, gets mapped to the curve
z-(z% az* f(z)) e (T(D*-y)), ze(@N).

Now oN is of degree 1 in D —x so the curve z -» z* has degree a in D*—y,
Similarly, z » ez "'f(z) has degree a — 1. (Recall f:aN-> C 0 has an extenszon to N
and so has degree 0). Hence,

[mle Hy(@X) = Hi(T(D*~y)))=Z®Z “is” (a,a-1),

in terms of éD* and the fiber C-0.
Since A is a principal orbit over a point in IN*, we see thar

[hle H\(T(D*-y))=2®Z *“is” (0,1).

So [m]=a[aD*]+a —1[h). Now, H,(3X)3 H\((T(D*-y))) is generated by [q]
and [/x] while m also satisfies [m]= «[q]+ B[h]. We know q is related to 3D* and A
by [q]=a[aD*]+c[h]. But the orientations must be compatibls, so a =1 and we
easily deduce ¢ =0 from 0<8 <a, and (a, 8) = 1. Consequently, B*a -1, and
[q]1=[aD*]*=" (1, 0). This completes the proof.

6.3. Remark. Observe that 8 =« —1 was deduced in the course of the proof of
Lemma 6.2. In fact, the deduction of 8 = « — 1 does not require either the compact-
ness of I"\G nor the finiteness of the number of branch points. This means, in effect,
that we could have dispensed with some of Sections 2 and 3 only retaining what is
needed to establish notations, orientations and the reduction proposition of Section
4. However, the peint of Section 2 is that Proposition 2.1 is a general fact which has
implications for all Lie groups. Moreover, in the next sectlon we shall give a more
sophisticated proof of our theorem which utilizes Sections 2, 3 and 4 but dispenses
with parts of Sectior:s 5 and 6.

7. Neumann’s method of finding the “5” invariant

As mentioned earlier, the problem that has been considered is so rich that one
expects to find many alternative methods for obtaining proofs of Theorems 1 and 2.
Our alternative proofs are based upon either the Gauss-Bonnet Theorem, the
Hurwitz formula for branched coverings of surf:ces, or injective actions of Conner-
Raymond and the cohomology of Fuchsiar and crystallographic groups. The proof
we have given seems to us to be the most a*:ractive of our arguments.

W.D. Neumann has shown us an elegant . nethod for obtaining the *5”'-invariant
aiso utilizing the Hurwitz formula, his unnormalized Seifert invariants, and the Euler
number «ssociated to a Seifert fibering, (see: {6] for deﬁnmons) We sketch
Neumann’s argument here.

Let I" be a uniform discrete subgroup wf G ===P‘3L(2 R) or E¥ (2) Let I‘; be a
normal, torsion free subgroup of index . <. The projection $-I%\$ is an
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unbranched covering, while I';\S +I"\S is a branched covering of index k. The
“b-invariant for I'|\S is easily 2g, ~2, by the remark made in 6.1, Therefore the
Euler number, ¢(M,), of I''\G is 2 —2g,, where g; is the genus of I'|\S. The k-fold
covering projection I''\G -+ I'\G is clearly an S'-equivalent map; and so using the
formula for the resulting Euler number [6, Theorem 1.2] we have:

228, = k(e(M))
..=k(_(,,+£1+ - +&))

al an

= k(—(b Jott e "—-1-)), (by 3.3)

ay ay,

=-—k(b+n-—- i -1-)

i=1Q;

Now using the Hurwitz formula for I'}\S - I'\S we have

2g,—2=k(2g—2+n— ¥ —1—),

iml @

where «; is the multiplicity of branching. Now substituting for 2g,—2 we have
b=2g -2, where g is the genus of I'\S.

This argument also can te adjusted for I < SO(3). We just take M, to be SO(3)
itself and I', and the identity element of I'. Then k = |I'}, and SO(3) as the unit sphere
bundle of the tangent bundle of the 2 sphere has Euler class 2 (as a principal SO(2)
bundle). It follows that b = -2,
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