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In the first se&on .we shall quickly slketch the firs 3 casesof the stable. The bulk of 
the x~conloentrates on 4(b). In’the next section examine discrete subgroups r 

da 8 Compact Subpup On f”\G = M we describe the invariant 
tub&r neighborhoods of the orbits of the right K-action (f \G, K) in terms of the i 
Lie algebra g/t and the a&i&of the isotropy group & on g/f induced from the 
adjoisrt AcbdVbm speciahzed to 3-dimensions this enables us io determine the 
slice invariants (cyb &) of the resulting SO(2)-action, Forthe non-compact case this is 
egsent@y all the inform#ion needf -1 to determine r\G. However, in the compact 
case @~&or inwant, the @r&i nu~&r of the SO(2)+ection, i.e. the Seifert “b” , i 
in~utiarot, inust bi det*rmmed. J’his is done in Sections 3 and 6. ” 

For Cases 3(a) &d 4 e reduction of our problem is made in Section 4 to the special 
cases of G in its adjoint form, G. That is, Gl can be regarded as a group of 
orientation preserving isometries of a simply connected surface having constant 
Gauss curvature. The identification of r\G is then captured from rl\G1 by c;rxamin- / . 
ing how the Seifert invariants change under nice cyclic coverings, Section 4. 

These results were announced in the informal report of the algebraic tolpology 
Conference at Oberwolfach in September 1973. The authors apologize for the 
subsequent delay in publication. Part of the problem has been the many alternative 
versions1 and approaches to th&e results. We have adopted here what we think is the 
most straightforward approach and one which generalizes somewhat to other 
interesting situations. Also as a bonus for this particular presentation we are :able to 
sketch a couple of other approaches in Section 7. 

For readers conversant with the terminology of Seifert manifolds we shall now 
formulate our main results (In ases 3(a) and 4). The usual normalized Se$ert 
invariants are used. Par other readers the necessary definitions, notations, and 
references are given in the text at the appropriate times. In particular we use the 
standard notations of [9], [S] and [7]. 

lheoresl 1. Let G, k the universal covering of PSL(2, R) and r” be a uniform 
t&crere subgroup of Coo. ?%en M = &XL, as an SO(2)-mani$uld, has the form of 

if Qnd My i’ there exists a divisor r of 

&r Al modcur and rb =(2g-2)- g ki, 
i-1 

where 

i- i* 



164 F. Riqvnmd, A.‘P Vdsqutx / 3A&m~iitx who& unWd~&@ cltc 1% gwq?s 

fao wilf Be Q SUbgRWp t?fittdd?X r in tk @?t@~rS~iVii), WkWPi:- CL+OP 
PSL(2, R) is thtLe covering and rI =t)#&) is a~fick&m @vUp with signarUm (g-; 

Ql, . . . 9 @abe ITie cmdition that & exists is 2g - 2 + n - CymI l/al VOe lit partikular, 

r,\G1=~g;b=2g-2;(rri,an-f),~**,(a,,a,--)}. 

JY- /G, will be a r-fold cepttrai mvwi#g of k#&. r&+ = fs and hence, ~&&= 
b;\Gl = rJPSI.42, R) if and uky Q?r = 1. 

The reiader may wish to compare the present statement iv&h the versiori in [6; 
Theorem 3.11 which uses the unnormalized Seifert invdriants. (‘he reader is reqtie!- 
ted to observe that a typographical error, in 3.1 has g a +ring iti the fcmdae 
where 2g is what is intended.) 

It is alsa, appropriate to point out that if g = 0, n = 3, I /‘CQ + l/a2 + l/at3 v 1, then 
we are in case J(a). The same formulae as above a$plia?s sike the prods are 
essentially the same. However, the list is correspondingly smaller. We shall list all of 
them below. The triples refer to (al, CQ, as) 

(2,2, nT T+\SW(2) = (0; -2, (2, I), (2, l), (n, n - 1)). 

These are the @PPZ wtan~&k There fundamental groups are the binary dihedral 
groups, r’t * 2. 

(2,3,1,4 r\su(2) = {O; -2; (2, I), (3,2), (3,2)}* 

The fundx~mental gro,up is the Birsary tetrahedrtzl group. 

(2,3,*1) r\Nm = 10; -2, (2, ‘1)s (39% (4 3)). 

The fundamental group is the binary octahedra! group. 

(2,379 zISU(2) = (0, -2; (290, (3,2), (5,4)* 

The space is the foincark homology sphere with fundamental group the bitmy 
icosahedral group. 

For n s 2 and g = 0, we are in the case of r cyclic. Then I”\SU(Z) or ~'~\~~(~)oux~F 
as lens spaces. They are all of the form L(p, I) (or L(p, -1) depending upon 
orientation conventions). As SO(2)-manifolds they have many representations 
(unlike all the other cases). Rx r c S0(3), one can choose the right CircZe subgroup 
and write .f \S0(3) as (,el= 0, b = -2, (ar, cy - 1). (cy, a - 1)). Xt is of the f&n L (k, 1). 

Case 3(a) occurs for 2g -2 + n --CymI l/ai =* 0, ;: = 0, (with the exception Of T3 in 
which case g = 1, n = 0). We may also, using the same argument, list these possi- 
bihties: 

(a) (2, L, 2,2,)4+(0: -2; (2, I), (2, I), (2,l) ‘.2, l)Ia 
(b) (2,4,4b+(o -2; (2, I), (4,3), (49 3% 
k) (3,3,3b+@, -2; (3,2), (3,2), (3,241. 
(d! (2,3,6)4+{0; -2; (2, I), (3,2), (459% 



Because the “‘Euler number” [6] is 0, these manifolds cover themairc'ives and so when 
one looks at any cover of E+(2) nothing new is found. 
L CM considerable !nterst is %he situation where ;S c PSL(2,R) and l7PSL(2, R) is not 

compact but r is fir&sly presented. More gt:erally, &, c Gas so that &, is finitely 
pi-esented. I&\G,, will be an SO@) .manifold and+@ orbit space, C,JG,/S0(2), 
will be an open 2mmauifold which nee& h > 0 points to compactify it to a surface on’ 
genus g. If we again let ~1: IL + r~ be the prqiection then r~ will have “signature”: 
{g; hial,. . . 9 amI 

Analagous to ‘Theorem 1 (but obtained with less difficulty) we are already able in 
Section 4 to prove 

Thwmm 2. M = Em\Gm, an SO(? j mar: Told: has orbit invariant; 

if and only if, there exists a positive integer r so that 

m = -1 mod ai. 

As before C,, is a subgroup of index r in the group P = P;’ (rI). 
Note that in the closed case the number of distinct r’s is finite. In the open case 

there are an infinite: number of r’s but only a finite number of manifolds since the &‘s 
are normalized between 0 < 81~ ai. As before, if P = f‘,, that is r = I, then the orbit 
invariants of rl\C, are 

Oh, a~ - l), . . . s (an, an - 1)) 

Finite presentation of r c PSL(2, #Q turns fsut also not to be a necessary assumption 
for a version of Theorem 2; see the Remarks at the end of Section 6.) 

As an illustration, it is amusing to consicier the complement, M(a, b), of an (a, 6) 

torus knot, +K(a, b), in the 3-sphere. Here, c1 and b are relatively prime and 2 G b < CL 

M(a, b) admits the structure of an W(2) manifold with exactly 2 exceptional orbits 
(a, b-l)= (al, &), and (b, a-‘)= (aa, &) and orbit space the open 2-disk. As 
nomukd invariants this means that /9, is the integer reduced module (xl= Q, so 

1 mod a. Similarly, & is the integer rrzduced module b so that &a = 1 
mod 6. We see, by 8 simple calculation, that only the trefoil knot K (3,2) car;p appear in 
the form r\PSL(2,@). fn fact, i-t is readil een to be PSL(2,Z’,\PSL(2, W). Pa mare 
standard form of this knot space is SL(2, \SL(2, I?@. Of courrie, they are the sa.me 
space. Again a simple calculation shows that for .K.(a, b), (a, b) St (3,2), M (a, b) k of 

the form r,\G, 1. 1t-t “fact, r satisfies the simultaneous congruences rflu = 
-1 moda and rdjr 

One would expect manifolds of the form S\ 
n find proofs that all the Seifert m 



We make use of the convenient catalo in 
bras. .4111 of the associated Lie group tai 
ne ffanoily on non-unimodular solvable Lie 

nal Lie 
ewept 

l Abdim case. F\ci’ must be a 3-dimensional torus. 

W ~fpam! case. t r be any torsion free nilpotent finitely generated group. 
n accaxding to alcev, see for example [lo], there exists a unicpre, up to 

isomorp:hism, simply connected nilpotent Lie group G and an embedding r -) G as a 
lattice iw CL All such embeddings are equivalent via an automorphism of 6. If C iis 
the cent’er of G, then it is not hard to see that C is connected #l and center 
(r) = C f7 I’. Moreover, I’ f7 C is discrete in CT. Therefore, in r\G, we have an action 
of the torus K = C n r\C. This action is free since f f’l C\r is a nilpotent subgroup of 
G/C (We shall see, in general, that the K stability groups are isomorphic to torsion 
subgroups of f/i C\r which, in the present case, is torsion free). Since G/C is 
nilpotent and r n C\f acts freely we see that r\G is a principul K-bundle over the 
nilmanifold ((r fl C)\r)\(Qs/C). 

In the special case of dimension 3 this means that K is a circle and I*\G is a 
principal. circle bundle over the 2-torus. As an SO(2) manifold its Seifert invariants 
are {g = 1, -6 = Euler class of the SO(2) bundle). Explicit matrix representations are 
found in [ 1,4] and in Table 1. 

3. Soloable (non-nilpotent) case. There are two non-isomorphic, 3-dimensional 
solvable Lie algebras whose corresponding si ply connected Lie groups S1 and S2 
admit lattices, [l] and [4]. is the Euclidean 
and so Sz is lR* Q by the rotations 
SC(2)c E’(2). The center of corresponding to nl @O(2)). Let 
p : St + E’(2) denote this covering projection. ttice r in Sa the projection 
p(r) = r/r n (center S 2 is a uniform lattice in E*(2). Hence rf7 ) is infinite cyclic 

me plossibililties of T’\$a, 
Usi 

r has no center. 



e, proposition b:lo~ shows that a 
ugh rno depends (as a~ space) on ty 
the coset ptoo == I-g0 (2 are totally 

irrelevant, More specifically we consider the adjoint action of 4i on its Lie algebra g. 
If we restrict this action to K it leaves invariant 
induced action of K on p~/t. If KO is any subgro 
obtain an action of Ko on 9 jt. We may form the 
(s/r) x ~b K. This is, by definition, the set 
&ox (v, k)+ (vk& kok), of KO on (g/t) x 
(8 jf) x ~0 K induced from right multipli 
Thus, (g/t) x &K is a right space. Note that the O-section is a single K-orbit. The 
isotropy subgroup of the point (0, e) is K+ (We denote the imqe of an element of 
B/IX K in (s/f) x &K by enclosing it in the bracket “( , )“.) 

2.1. Praw~n. Let r, G, K be as above. There is a K equivariani diffeomor,hism 
between a K-invariant neighborhood of the K orbit through mo = lYgo~ r\G and the 
K-space (g/t) x GK. firthermore, the map takes m. to (Q, e) cand the K-orbit through 

’ rno to the O-section of the vector bundle (s/t) x GK. 
We emphasize that Ko acts on gl/t via the action on g/f induwd from the adjoint 

action. 

Roof. We shall deduce thb from the slice theorem, (see [Z.; VIII] lfor a convenient 
proof), and we shall recall its statement. The orbit r&K is in an obvious way 
diffeomorphic to the coset space KO\K. This is a smooth submanifold of 

ht) linear action of 



the action of & on IV with the restriction to Ko of the adjoint induce 
g/t. For this, we consider the map p: G + = r\G defined by p(g) fz: rgOg. It is a 
K-equivariant map if we let K act by right multiplication on G. It !S ,a 10~~1 
diffeornorphism (since r is discrete) taking e (e = the identity of 'G)-to ti&l[lfi& th6 
differential of p at e identifies g = T(G), with T(M),. Further, it identifies,i with the . 
tangent space tt, the orbit m&; thus it identifies s/t with N h the fib&$ &tie r&ma~ 
bundle to the orbit m& at the point mo. It remains to find the act&n 6f .84$ cm&L $ ii 
easily lterified that Ko = (golfgo) n K. Hence it ~follows that p(&&“) = ptgj‘ Ei;‘, 
for all1 k. E MO and all g E G. If we convert the right action, ‘in thi fa.miliaVway; ‘to’8 left 
action (define ka . n to be nk i’, for all n E N, ko E dye) then the adjoitit a&& of’qO un 
G is equivariatlt., via p, wi?h the new Left Ko action on M If we now reti that 
Ad&,) : 9 + 9 is defined to be the differential at e of the map g + keg k’;’ : ‘6”s G, the 
result follows ir2mediately. 

2.2. For future reference let r be a discrete subgroup of G anii jK a compact 
subgroup of G acting on the right. Form the left transitive G-space G/K and the 
right K-space: I’\G. If x = E G/K? 

G, == gKg-’ and rx = gKg_‘l nr. 

Let I’g = y E T\G, then Ky = g-‘rg n K. OSviously, g?‘..g = KY. The restriction to 
r of the G action on G/K is properly discontinuous and thus the orbb xnap 

G/K + r\( G/K ) = r\G/ K is a branched covering map. Thus if 6 = J”,,K represents 
a point in r\Gf K, then the K-orbit over b, (rg) is isomorphic to the coset space 
K,\K, and the r-orbit over b, r(gK), is isomorphic to QTX. Hence, branching occurs 
exactly when K, = rx is not trivial. We may also represent a tubular neighborhood to 
the p-orbit of x in G/K as (I: +!“x,~ s/i). Here f is the Lie algebra of the subgroup 
gKg_‘, conjugate to K. The tangent space to gK is naturally represented by s/t, 
( q/t), the action of iTX = gKg_’ nr on a/f is induced by the restriction of the 
adjoint action of gKg_’ on g/f. This we see by considerin the r- quivariant 
mapping q : G + Gf K, defined by q(g) = $j gK, and taking the difSrentia1 at tr, Note if 
ydngKg_‘-I”, then 

q(‘ygx-‘) = y&K = yq(gh 

s, the actions of S, 4~ are equivalent o the normai disks g/ and g/t after we 
e into account shiftin om left to right at& 



e obtain a right action of S 1 on r\ G 

ied and classified in [S] and our purpose is to d,escribe which 
arise in this way. These S’ manifolds all admit the structure 
1, with the orbit mapping corresponding to the fiberitrg and 

the exceptitinal orbits correspondin ul&- (or multiple) fibers. 
Choose an isomorph&m t%S’~f two such and the effect on the 

king the other choice is easily understood, set [S, p. 63]), gnd obtain 
a right action of S’ on the 3-manifold r\G. 81, L._p actions are studied but S1 is 
abelian and 90 we may view (;ur right actio c left action; that is if 2 E S’, and 
m E r\G then z l m will mebn the oint previously denoted by ~PII!~(x). (NeedlTess to 
say other conventions: could be made with at least as much rationale,) As rotated 
above, I’\G is orient&e but of course, root oriented; here again ure have a choice and 
the e&et of the choice on the resulting invariants is easily uI&rstood @, p. 631). 
Considem- 

S’B K-= Aut(g/ t). 

From the above analysis this composition is non-trivial. It foils $9 cf!crefcre that we 
may choose a real linear isomorphism 9 : 6 3 g/t so that 

(3.1) (AdQ@)(z)(@(A )) = #(z’A) 

for some positive integer a; (indeed t equals cardinality ~4 the kernel of the 
composition (@Ad)). Any two such isomorphisms -differ by (3 rotation of C; in 
particular by an orientation preserving isomorphism of C. Thus by using such a @ to 
transfer the usual orientation of 63 to g/f we have thus oriented 1)/t.> This, of course, 
orients 8 t is oriented by d8: R 5 and the usual orientation of 08, (here we are 
thinking as being the Lie algebra S’, t + ezwr E S*, for t E R). This orients G and 
thus r\G. In summary, the special nature of the pair (G, K) is such that once we 
choose an @omorphism 8 5’ + K we may orient G; if we choose the other 

sm $’ + K we would have arrived at the sam.e orientation on ,G. 
Let US return to the problem of determining the orient&Se invarian& (cy, 6) of 

an exceph’qal orbit in these cases, see [S, p. 61). Suppose x E == r\G is a point on 
the exceptional orbit. Then we know (Y is the car&a&y of the isotropy subgroup. 
Furthermore, @ satisfies 0 <p < a and flu 1 mod a where v describes the dice 

oup, (2 E Si 19 = I}. We will rer$;r=r 
ite the obviou:; objections to this 



I’,. j > . 

3.3. We shall be especially interested in the iollowi?g,~~ua~i~~~~~~ :if the&&p of 
orientation preserving isometrics of a compZete simp/y cunptec@ $urfqcc q of gqa&&t 
(Gauss) curnature K. Ths, G acts on S (on, the left). Via the differ+& 0. 3acts on 
W(S), the bundle of unit tangent vectors of S. G acts ransitively on $,: and i GX is the 
isotropy group of point x E S, then K = Gz acts effectively and transitively on .U$$)~ 
the unit tangent vectors to S at x. Thus each G* is a @r$e, ,ana all the ‘9,‘s are 
conjugate. These subgroups are the only such subgroups of G. Now _r+ is 
equivalent to the assertion that # acts freely on the unit vectors at the paint in 
question. Hence, 

Pro-position. /3 = (Y - 1. 

Although this material is undoubtedly familiar we will be ever. more explick 

3.4. Case I. Curvature K is negative. We mlay choose as the r&&i of thebface, S, 
the interior of the unit disc, provided with the PoincarC metric. W 3 will 6-e 0 in S 
to be a special point. G is equally well described as the set of: -rnp#ex analytic 
automorphisms of S and is naturally identified with PSL(2,lR). K iy then the set {fi of 
the form f(t) = yz for some y E S’. This, of course, gives a prefebd ‘isomorphism 
S’ = K. The orbit space of K-orbits, G/K, is naturally isomglrpkic to s. PUS, g/f ,is 

identified with the tangent space of S at 0. Via the n?ap #: C *s/r, use@ ah&b in OUT 
orientation conventions, wk have managed to identify C with the tangent,\space tb the 
interior of the unit disk at the origin. Our conventions were chosen so that this is the 
usual isomorphism. (More precisely, since $ is not completeJy specified, we $@lsay 
that the usual isomorphism is a yermissable @.) 

In this case a discrete group r automaticrl’ t &j; ~“ts properly di&ontinuously qn $ 
and nS is co:mpaet if I’ is uniform. As is well known S + r S is a bran&i+ $kk&ih~$ 
space; r\S inherits a complex structure from S and is hence a (cc&&, if p is 
uniform) Riemann surface. It does not, in general, inherit the Riemhnnikir manifold 
structure despite the f&et that r operates isomet&lly; +\t the branch pdints the 
differential of the map S + r/S is not & linear isomoiplhism. (Ind&d,* it is 0.) 
However, in the special case in which there is nc:, is 
naturally a Riemannian manifold of constant 1: id 
above, r\G is the unit tangent bundle of r\S :.- r\(GJK) = r\GjK w&h l’Vg* t.i& 

free. In any case when r is an arbitrary discrete s up of G, f\S is id&i&&with 
r\fG/K) = B‘\G/‘K = the set of K orbits of the &ion on M’= ?\G. ’ 

‘%‘iw classical analysis of this situation yield: I a presentati& Ff r @the form: 

(3.5) 
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Eke [%, y]?= xyx-‘y-l , and r, for convenience! is &omedZlfiiritely presented, g is the 
&&irr, of-the Riemann durface having s-holes fs 2 U)+and % is the numbet of branch 
points (n ~0). The ei’s d&s&be the branctiing tind iire eonse@antly integers ~2. 
Indeed, e: is the oi associated with the exceptional &orbit which hes ovzy the branch 
point, (by 2,2), r is uniform if asld only if s = 0, le. there are no ‘9 “-generators. The 
algebraic stmmre, when r is nclt uniform, just reduces to 

where we have 2g + s - 1 free factors. Y’here is the rectriction 

i=n 
2-2g- C (l-e7l)<O 

i-1 

in the uniform case and 

n+2g+s-l>l 

in the non-compact case. As is well known this classical presentation does not 
determine the embedding of the abstract group r in G (not even up to conjugation). 
In r there are n-conjugacy classes of (maximal) finite subgroups; these are represen- 
ted by the cyclic subgroups of order ef generated by qi. Thus, the abstract group r 
determines the integer n, the integers ei = ai, g, and s = 0, Since we &now Pi = cyi - 1, 
these invariants of the abstract grwp come very close to describing the action (S’, 
r\G) in the unifhm case. According to [8] only one furl her integer the (normalized) 
“b”-invariant, is needed to complete the description iM the uniforpn case. We will 
later exploit the relation to the unit tangent bundle oif r\S to show that this last 
integer invariant is determined by the abstract group as well. 

In the non-compact case the ‘*b”-invariant is not needed but the abstract finitely 
presented group only determines the integer g + s. However, r c G, and so the genus 
of the compactification of r\G/K is g, say. Two different embeddings determine the 
same g if the orbit spaces r\G/K are homeomorphic. (This infornation is contained 
in our presentation of I’). hervfore, tiN the Seifert invariants are known for the 
K-action (f \G, K) and is given by: 

(3.6) {g; s; (al, at - I), . . . 9 bfl, an - 1)) 

7%is determines the topological type of r\PSL(2, R) lwhen P isfinitelg prmnted and not 

ttnifom. 

3.7, C’QSC! II, Curvature = 0. S = I@ with the usual Euclideitn metric. K is the isotropy 
subgroup of the origin again. K is 

[ 

cos 8 sin 8 
-sin 8 cos 8 3 

G = E’(2) relative tc an orien 

or essentially the Same reason; thus again /3 = &Y - 1. 



172 

The a’s are very restricted in the uniform case. ‘IBe list ha4 “tin &IWB in the 

introduction under the dismssisn of 3(a). (For geometric reasons r ~8n he presented 
8s in 3.5 for r in PSL(2, R), E+(2) or W(2). The expression 

being 4, 0, or ~0 determines, in the uniform case, whether r is contained in 
PSL(2, RI;, E’(Z) or W(2), respectively.) The “b”- invarianl still needs to be 
determined. 

In the ItNon-uniform case we are: also severely restricted, namely: 

(i) g ‘8: 0, n = 0, s = 2, r = e and (G, K) is equivalent to 

CF? x S’, S’), 

(ii) g := 0, n = I, s = 1, r = Z,-,, and (f \G, K) is equivalent to a linear 

CR2 x *$, S’) 
on a solitdi torus, and 

(iii) g == 0, II = 0, s = 2, r = Z and (r\G, K) is equivalent to 
. 

(R’ x ,R’) x S’) S’). 

3.8. Case III. Curvature is positive. Here we may take S to be the unit sphere in II? 
with the metric inherited from the usual one in R! 

G = SO(3) = {A E GL(3, R)IA’ = A-‘}, 

where A’ is the transpose of A. 

K = W(2) = {A E S0(3)1A e3 = ea}, 

where e3 is the unit vector along z-axis. Again in an obvious way 

@:S’+K, 

Again I = 1 and so fi = a - 1. Since G is compsict t ke f’s invotved are finite. In our 
presentaiion for r above we need only take g = C V s = 0, n = 3 and l/u1 + l/as+ 
l/cr+l,org = 0, s = 0, n G 2. The orbit invari: xts are listed under our discussion of 
Ma) in the Introduction. The “6”~invariant all:db needs to be determined. 

ducrtlon of the problema to the adjoiat fo+rns of G . 
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examined n&Cmgly connected G, but the zdjoint foxms iaf c;P namely fps~(2, R), 
E?(2) and s’o(3). Wwthe purpose of thissection to I&BOW that tbiq, together with a 
technic81 fact about central cyclic coverings of Seifert fiber spaces is sufficient to 
prove the-Theorem. 

For the following facts about iattices and centers of lattices in semi-simple Lie 
groups we refer the reader to [IO; particularly V, 5.18]. For the special case ;at hand, 

, which is all that we are concerned with, the reader may also consult 
[l* Q 41. 

Let G, k the universal covering of PSL(2, R) = Gl. The center of G,, a((&,), is 
isomorphic to Z. If ro0 is a lattice in G,, thlx t (CO) -= rao r7 8( G,) and must be an 
infinite subgroup, rP, C+ 3( G,). Moreover, if y, : Gao + G,,, = Gcx, JmE is the central 
covering projection, then the lattice r= is projected into 8 latke 

p,(L) = rwz = Ll(nkZ n IL) in G,. 

Induced is the finite cyclic (C2/lcm(no, r)B) covering projection: 1‘,\G, + r,JG,,,, 
This may be controlled as follows: Project &, to Gn where 3(&J = r Z, then &,\G, is 
naturally diffeomorphic to r,\G,. Now, observe for any lattice l-‘c G,, 3 (r) = 
3(G,) R f. We may t&e f’ = p;;l’ (F), a lattice in Goo = pG1 (G,), iind r’\G will be 
diffeomorphic to r\G,. Therefore, we may as well assume, wiihout any loss of 
genetility, that: 

(1) rP cis a Ianrice h Gr 
(2) r, is centerkq 
We note that as &space, FP\lG, the action of K, is effectioe since the center of c is 

trivial (and g(G) - Z/rZis in each conjugate of K,). So to determirre LA& it suffices 
to determine rr\Gr as Q Kr-space. 

On the other hand, we may make yet another simplification. If we now project 
G, + G1 = PSL(2, W) then A!~ is projected isomorphically onto the lattice rl in G, 
since I = 1; and C\C ’ 3, + fl\Gl is bn r-fold cyclic covering projection. This is 
given by dividing out the center B/r2 c: KP g G, We obtain the following: 

4.2. R&ctioa Iq~o&ioti. To determine a11 L\Goo we need only examine lattices 
rl in G1 and determine lJ\Gl as a K1-spm~. We then obtain Al possibilities by 
considering the finite number of’ cyclic Z Jr coverings G, of G for which 1”1 lifts tg 
r, x Z/r and detwmining rl\G, as a Kr-space. 

It is exactly this proposition that enables us to carry out the classification for 
fa\Goa: We’ kriow all the -possible r, ‘s from Section 3 and we have already 

determinid all of their <orbit invariants (except the ‘“b”-invariant when & is 
uniform). We now show how one determines the invariants for r,\G, once those of 
rl\Gt are lcnownii 

\ P 

(19, 15 141, cf. 26, 1.3)). Let (S’, ) he uny S’ - 3 manifold (acting 
invariants {g; b; (q, #?I)~ . . . p (a, /Ii&). Let 61 be the set 

T%esz P 
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We have given the form of the theorem for a chased manifold M For an open 
manifold the “b”-invariant will not appear and so the proposition in this case 
remains unchanged from above except that 2(c) dues not appear. 

Propositions 3.3,&3 anJ 4.3 compkte the puf t>f 7Yheomm 2 

The argument of 4.2 for the caverings of R&(2, fR) can be adapted to the coverings 
of P(2). The co-compact lattices in the universal covering of E+(2) project to the 
crystallographic groups in E+(2). Outside of there are just 4 isomorphisms 
classes of such groups isomorphic to (;k@ )wherek=2,3,4or6,asis 

r-fo overings all yield exuctly th 
orbit invariants as rc E’“(2). This involves a small calculation but 
switches to unorieznted orbit invariants and replaces the “b*‘-invariant with the 
equivalent Eu!ler number which in this case turns out to be 0, then all the all 
coverings must also have 0 Euler number (cf. [6]) and unchanged “#3”-invariants. 

For SQ(3), the finite subgroups are well known. In the non-cyclic WE, the group 
rl c SO(3) always lifts to a non-trivial central extension r 
rl\SO(3) as a Kt spalce is exactly the same asr\ 
4(a), the result for the adjoint form is all that is 

/2 by 61. Therefore 
, in both 3(q), and 

t us assume s: )R -p E is a !;l !&an over the n* 
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,..., qn over qr,...,qZ. ( 

the homotopy class of i o a well-defined integer. Since 

*-‘(eo) = No = D2 x sl, 

the cross-sectional curve s(qg) = qo, where s: qg + n-‘(8e~), is a homology class in 
H&D2 xS’). With the obvious notation for homology classes in B&D2 x S’), we 
put [mo] = (13 0) and [h] = (0, l), where *‘[ 1” denotes the homology class of an 
oriented closed curve. That is, we think of PRO as t.h!: oriented image ol~,,:Ck~~ 
aD2xlandhasdxS1inD2xS1= ?r-‘(eo). Now [qo] = [mo] - b[k] for some integer 
b, That is, -b = [j&j. This “characteristic class” Is represented by a cocycle which has 
value 0 on all the 2 cells but one, (eo), and on that 24~11 it has value -b. Thus, via the 
obvious isomorphism, 

H2(M’*,qf u l -a uq:; 

the characteristic class is -0. (Observe that if ‘* is not compact, then this 
vanishes which means that s extends over eo. This is why the 
ot need& for open manifolds). 0f course, “b” is an irivariant of the 

S’-action as explained in [9] and [8]. Moreover, (5; g; ((Ye, @I), . . e ) (a,,, &A) forms a 
complete set of invariants for the oriented S’-action. Actually, (with the exceptions 
of n62 when g=O), t y are, up to change of orientation, a complete set of 

riants for the topol 1 type as well as the fundamental group of see [7]. 



mf. Let ~8 &m x0 e S and u. among the un& ,tangent .wectW@ Lto (9;r’ at x&Via 
the differential, di acts simpiy transitively on the entire unit tangent bundle V(s). 
We may, therefor#e, identify G with U(S) via: g + PO E U(S),,. TINS ri 
C;V G becomes a right action cm U(S). This is, of course a free action,3 
jtist the circles {U(S),}, X E S. 

-. 

Denote the surface r\S by %; we asume it given a C?Wuctke in the USWBI waya 

LC.~ ch: T(S)-> T(g) denote the differential, If 1~” E S and W(X) is JW$ a branch point 
a< 3-x : WL + (mh is an issmorphism; if W(S) is a branch p&fit dne, -0. 

Itif 3 c $ be the complement of the branch points and V = rates 011 
TI. a/t) and we clearly have r\T(V) = T( ii). Since r operates we.may 
introduce a Ricmannian metric in T( V) sa that 0 = r\ V %herits” th& -metry of 
ro;Istant curvature of S. Thus, U(V) makes sense and AU6 V) = U( Q. 

On the: other hand U(V) c U(S) = G; indeed ZVY( V) is precisely the oomple- 
ment in r\G of the exceptional fibers. 

Thus we have an explicit identification of the complement of the exceptiond orbits 
and the unit mngent bundle of c (ii = the complement of the branch points in 
5’ *= ]*\S,) 

If there are no exceptional fibers, the proof is easy. The “b”‘4nvatiant is the 
negative (section 5) of the obstruction to a section of (r\G 4”\S). By the 
identification just described and Hopf’s Theorem this obstruction is the Euler 
characteristic of P,S and equals 2 - 2g, (g = the genus af F\S). 

However, in general, there are finitely many branch points, yl, ~2,. . . , y, on r\S. 
Ail; in Section 5, choose arbitrarily small disk shaped neighborhoods. Nr of the y,‘s 
and specific sections, qi defined over NF = q? of the yr’s of the bundle l? (P= r\G 
(exceptiona! orbits); P “=” U( v) c: (T( 8))’ c (T(lYS))‘, where “prime” denotes 
the non-zero tangmt vectors.) We caTt assume that NT are 29cells in a regular cell 
decomposition of r\S. Let x be a partial section of (T(r\S))’ defined over the I 
skeledcbn and agreeing with the qi on dNF. Let F be the 2-cocycle which is the 
obstruction to extending x over all of f \S. By Hopf’s theorem: 

Euler characteristic of (r\S) = 2 - 2s = z7F(e2), 

wh~e the sum extends over all the 24~11s in r\S. In view of P “=” U( 0) the 
“b’‘-invau iant equals 4F(e2), where the sum now extends only to the ~11s atker 
than ,the (NT ):= 1. Therefore, 

2-2g.= -b + f F(N”). 

To crlr@ete the proof we establish 

Lemma. For i = 1, 2, . . . , n, F (NT ) = Cl. 



WC describe F(e2) horn&o 

(T(2)) = e* x 

( T@e2)) = at2 

x of ae2 deteabmines an element of 

Hl (( T(ik,))‘) - Hl ((aed x 

of the form (I, k). Since x is a section I = 1, and F(ea) will be I :. For e* = NT, 
&es) = qh [qi je Ht((T(aNf ))‘). So, via the isomorphism [qi] = (I, k). We wish to 
show that k must be zero. (We drop the “i” for convenience.) 

Let x E S be a point :;ing over y E r\S with a the branching index at y. Relative to 
suitable coordina e patches the map 7t : S-, r\S is described by t =+ z*. We cari 
assume N* is a small enough neighborhood so that y corresponds to 0 under the 
mapping. Put X = U(N*), the part of F\G lying ov *. Let N be the component of 
the part of S &ingaover N* and containing x. Wow ), the part of G lying over M 
has image X under the map G -p r\G. 

Since X is a solid torus and represents an invariant tubular neighborhood of the 
exceptionaS orbit yz we have oriented curves q, m, h on X and satisfying the following 
homoiogical relationship [8]: 

h is a principal orbit on 8X, q is our cross-sectional curve and PIZ is the boundary of a 
normal disk to the exceptional orbit and its homology class is characterized by: 

(i) [nt] is an element of the kernel W,(aX) + H*(X). (In fa& it is the generator of 
this infinite cyclic group.) 

(ii) Via H&X)+ X&N*), the class [m] goes to a[W*]. 
Suppose o): N + U(N) is any section. Let ml be the oriented closed curve v@N). 

Then [ml& Ha(U@N)). We claim that [ml] goes to [m] in HI( Ue,dND-* H&W. 

(i) [aN) e kernel H&+N) + H?(N) and so [u&N)] = [mile kernel Hd WN) + 

Hl( W(N)). So T&PI& ri,(aX) is in the kernel H&X) + HI(X), whftre T: U(N) +X 
is the a-fold branched covering. 

(ii) As o(aN) -p aN + a(N*) commutes with v(aN) + 5-t f(aN)) + ia and since 
aN 3 a(N*) is an ar-covering, we have that T*[rnl] = fm]. 

Let us make use of our special coordinate systems: 

u(aN) c (T(D -x))’ = (D -- x) x (C - U), 

- UN' = ( e-~)X(C-O). 



(z, f(z)), where f: N 9 (C-O). The curve ml getsmapped to themrti 

z -+ (zff, trzm- ‘f(z)) E (T(D’ - y))‘, z E @iv). 

Now aN is of degree I in D --x so the curve t -) za has degree a in B* - y. 
Similarly, z + az-*f (z) has degree p -1. (Recallf:aN-,d=-ahasane~~~ontoN 
and so has degree 0). Hence, 

* : 

C~IEH~(~X)=H*((T(D”-Y))‘)~Z~Z “is” (~,a-1), 

ITI terms of 8D* and the fiber C -0. 
Since h is a principal orbit over a point in aN*, WF see that 

[h]~ HI((T(D*-y))‘)SUiU “is” (0,l). 

So [m]=a[W*]+a -1[h]. Now, HI@X)-~HI((T(D*-~)Y) is genetatex~by [q] 

and [k] while m also satisfies [m] = tu[q]+@[h]. We know q jr,; related to aD* and h 
by [Q] = a[aP*] + c[h]. But the orientations must be compatibk, so 4 * 1 and we 
easily deduce c = 0 flrom O<@Ca, and (ar,@)*l. Consequently; @=(x-l, and 
[q] = [do*] +=‘* (1,Ob. This completes the proof. 

6.3. Remark, Observe that /3 = cu - 1 was deduced in the course of the mf of 
Lemma 6.2. In liact, the deduction of /!3 = ty - 1 does not require either the compact- 
ness of r\G nor the finiteness of the number of branch points. This means, in effect, 
that we could have dispensed withi some of Sections 2 and 3 only retaining what is 
rleeded to establish notations, orientations and the reduction proposition of Section 
4. However, the point of Section 2 is that Proposition 2.1 is a gqmeraIJact which has 
implications for all Lie groups. Moreover, in the next section we shall give a more 
sophisticated proof of our theorem which utilizes Sections 2,3 and 4 but dispenses 
with parts of Seetiors 5 and 6. 

7. Neumann’s method of finding the W’ f 

As mentioned earlier, the problem that has been considered is so rich that one 
expects to find many alternative method!! for obtaining proofs of Theorems 1 and 2. 
Our alternative proofs are based upon either the Gauss-Bonnet Thwrem, the 
Murwitz formula for branched coverings of riurfl~cesP or inject.ive actions of Conner- 
Raymond and the cohomology of Fuchsian, nncti crystalbgraphic groups. The proof 
we have given seems ta us to be the most a~active of our arguments. 

W.D. Neumann has shown us an elegant I nethod for obtai the “b I’.. invariant 
also utilizing the Hurwitz formula, his unnor~xz~ked Seifert in ants, and the Euler 
mrmbet cYssociated to a Seifert fibering, (see [6) for> definitions); We sketch 



‘E Ra ymand, R. T. Vasqluz / 34Wanifolds whose u&ma1 ctmdtgs are Lie groups 179 

unbranched covering, while r,\S-+r\S is a branched covering of index k. The 
“P-invariant for f ,\S is easily 2g* - 2, by the remark made in 6.11. Therefore the 
Euler number, 4~ j, of I’1\0 is 2 -2g1, where gl is the genus of IJ\S. The, k-fold 
covering projection rI\ r\G is cle~ly an S1-equivalent map; and so using the 
formula for the resultin er number [6, Theorem 1.23 we have: 

2-“Lg, = k(c(M)) 

==k - ( ( b+B’+...+!z!! 
a1 an )) 
al-1 b+- + . . . 

al 

=-k 
n 1 

b+n- x - , 
i-l ai > 

Now using the Hurwitz formula for &\S + r\S we have 

where Ri is the multiplicity of branching. Now substituting for 2gi - 2 we have 
b = 2g - 2, where g is the genus of r\S. 

This argument also can be adjusted for F c SO(3). We just take Ml t3 be SO(3) 
itself and & and the identity element of K TLtn k = Irl, and SO(3) as the unit sphere 
bundle of the tangent bundle of the 2 sphere has Euler class 2 (as a principal SO(2) 
bundle). It follows that b = -2. 
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