ERRATUM

CORRECTION TO "NEWTON POLYHEDRA AND FACTORIAL RINGS"

Journal of Pure and Applied Algebra 18 (1980) 253-258

Igor DOLGACHEV

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Received 17 November 1980

The Grothendieck theorem cited in Section 2 of my paper [3] needs an additional assumption: $Y = V(\mathcal{J})$ is an ample divisor in X. Consequently, the main theorem of the paper and its corollary require an additional assumption on the Newton polyhedron Δ_F of a Laurent polynomial $F: \Delta_F$ is nonsingular in every one-dimensional face. The latter means the following. For every face Γ of Δ set

$$\sigma_{\Gamma} = \bigcup_{\lambda \ge 0} \lambda \left(\Delta - m \right),$$

where *m* lies strictly inside of the face Γ (see [1, 5.8]). Then Δ is said to be nonsingular in Γ , if the dual cone $\check{\sigma}_{\Gamma}$ is spanned by a part of a basis of $\mathbb{Z}^n \subset \mathbb{R}^n$. For example, let $\{v_1, \ldots, v_m\}$ be the set of vertices of Δ and $\Gamma = \langle v_i, v_j \rangle$ is a onedimensional face of Δ . Then Δ is nonsingular in Γ if det $(v_{j_1} - v_{i_2}, \ldots, v_{j_k} - v_i) = \pm 1$, where $\langle v_i, v_{j_1} \rangle, \ldots, \langle v_i, v_{j_k} \rangle$ is the set of all 1-faces passing through the vertex v_i and k = n.

The proof goes in a similar way. However, instead of taking a fan Σ for which the torus variety X_{Σ} is nonsingular and the supporting function f of Δ_F is linear on every $\sigma \in \Sigma$, we have to take the uniquely defined fan Σ formed by the maximal cones σ on which the function f is linear. In this case the function f is strictly convex with respect to Σ and the corresponding invertible sheaf \mathscr{L}_{Σ} is ample on $X = X_{\Sigma}$ (see [1, 6.9]). The condition of nonsingularity of Δ_F implies that the variety X is nonsingular outside of a finite set of points, which are fixed under the torus action. This implies that every nondegenerate Laurent polynomial supported in Δ_F defines a nonsingular hypersurface Y in X with $\mathscr{O}_X(Y) \simeq \mathscr{L}_{\Sigma}$. Applying the Grothendieck theorem we get an open set U containing Y such that its complement X - U consists of a finite set of torus invariant points and the canonical map $\operatorname{Pic}(U) \to \operatorname{Pic}(Y)$ is bijective. The rest of the proof remains unchanged.

I. Dolgachev

For general Δ_F satisfying other conditions of the theorem, one can compute the ideal class group $C(A_F)$ via Δ_F . For example, if Δ_F is simplicial in every vertex [2, Section 2], then $C(A_F)$ is a finite abelian group for any nondegenerate Laurent polynomial supported in Δ_F .

References

- V.I. Danilov, The geometry of toric varieties, Uspehi Mat. Nauk 33 (2) (1978) 85-134 (in Russian; English Translation: Russian Math. Surveys 33 (2) (1978) 97-154).
- [2] V.I. Danilov, Newton polytopes and vanishing cohomology, Funkt. Anal. i Priložen 13 (2) (1979) 32-47 (in Russian; English translation: Functional. Anal. Appl. 13 (2) (1979) 103-114).
- [3] I. Dolgachev, Newton polyhedra and factorial rings, J. Pure Appl. Algebra 18 (1980) 253-258.