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Folded Additive Structures: 
A Nonpolynomial Model of Some Factorial Interactions1 

PAUL E. LEHNER 

University of Michigan 

A nonpolynomial measurement model for representing nonadditive compositions of 
stimulus dimensions is presented. This representation, which is referred to as a folded additive 
structure, permits the decomposition of a behavioral ordering into independent factors in some 
of the cases where the behavior itself does not directly reflect this independence. 
Psychologically, this representation corresponds to a model of behavior which assumes that 
(1) the effect stimulus attributes have on behavior is mediated by a single relevent 
psychological dimension, (2) the behavioral ordering is single-peaked over this mediating 
dimension and (3) the mediating dimension has a conjoint additive ordering over a set of 
relevent stimulus dimensions. Necessary and sufftcient tests for folded additive structures are 
given. In addition, five psychological theories which make these assumptions are discussed. 

1. INTRODUCTION 

It is characteristic of all sciences that whenever multiple explanations of an event 
exist, the simplest or most parsimonious one is preferred. In the behavioral sciences 
this tendency is exhibited in part by the ubiquitous use of behavioral models which 
assume that various attributes of a stimulus environment have an additive effect on 
behavior. Consider, for instance, the frequent use of additive conjoint measurement 
and multiple regression techniques, both of which attempt to fit simple additive 
models to data. 

Despite the fact that such simple additive models are widely used, they are by 
nature very limited. More often than not, it has been the behavioral scientist’s 
experience that environmental factors interact in a nonadditive manner. 

In this paper, a theory of nonadditive interactions is examined. This theory, which 
is called folded additivity,2 provides a mathematical model that decomposes a 
behavioral ordering into independent factors in some of the cases where the behavior 
itself does not directly reflect this independence. That is, we provide a simple model 
that can account for some complex empirical structures which violate additivity. A 
second more general model, called folded independence, is also presented. 

’ This research was supported by NSF Grant BNS78-09101. Please send reprint requests to: Paul E. 
Lehner, Department of Psychology, University of Michigan, Ann Arbor, Mich. 48109. 

*The concept of folded additivity was first presented to me in a class I took from Dr. Clyde H. 
Coombs in 1977 at the University of Michigan. 
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Assume that we have an ordering, >,,, on a set of elements, D, which varies on 
several dimensions, A,, A, ,..., A,, i.e., D = A,XA,X 1-e XA,. 

The system (D, >,) is said to have to have a folded additive representation if there 
exist real-valued functions G and F on D, and a function yi on each Ai, such that the 
following three properties are satisfied: 

(Pl) The numerical ordering that G induces on the elements of D is the same 
as that of &. 

(P2) The ordering that G induces on D is single-peaked, (i.e., contains only 
one local maximum) over the ordering that F induces on D. 

(P3) F is an aditive composition of the dimensions of D, that is, 

F(aI,az,..., a,> = rl(a,) + r&z> + I’. + r,(a,), 

for all a, in Ai. 

The system (D, a.,) is said to have a folded independent representation if Pl and 
P2 hold and P3 is replaced by the following more general property. 

(P3’) F is a monotonic decomposition of the dimensions of D, that is, 

F(a, , q,..., a,) =f(r,(a,), r&A.., r&J, 

where f increase monotonically with each of its arguments. 
One way to represent a folded additive structure with two factors is by a set of 

indifference curves on the two-dimensional space defined by the stimulus factors. A 
folded additive structure implies that the stimulus dimensions can be scaled in such a 
way that there exist a set of negatively sloped parallel lines for which (1) the points 
on each line form an equivalence class and (2) there is a single-peaked function over 
these equivalence classes. The line corresponding to the equivalence class of points 
highest in the behavioral ordering is called the ideal trace (Coombs & Meyer, 1969). 

In Fig. 1, for instance, we can see that A is closer to the ideal trace than is B or C, 
which are on the same line, while D is even farther away. By the single-peakedness 
property, a behavioral ordering, a,,, that corresponds to this figure would have 

A >,,B=,C>,D. 

If, on the other hand, the B-C line was the ideal trace, rather than the line 
indicated, then single-peakedness would imply 

B and C >,A and D. 

Note that in this last inequality, the orderings on the two dimensions are not mutually 
independent. Consequently, this behavioral ordering could not have an additive 
representation. 

Generally speaking, both folded additivity and folded independence correspond to 
a model of behavior which makes the following three psychological assumptions. 
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__--.--_.- Indifference Curve 

~ Ideal Trace 

FIG. 1. Indifference curves in a two-dimensional folded additive space. 

(Al) The effect of the stimulus attributes on behavior is mediated by a single 
relevent emergent dimension. 

(A2) The behavioral ordering is single-peaked over this mediating dimension. 

(A3) The ordering on the mediating dimension can be decomposed into 
independent factors. 

In the case of folded additivity this decomposition is an additive one. 
These assumptions can be found in a wide variety of behavioral contexts. A first 

example can be seen in some decision theory research. Specifically, Coombs’ 
(1969, 1975) Portfolio theory predicts that, whenever expected value is held constant, 
the preference order on a set of gambles is mediated solely by the perceived riskiness 
of each of the gambles, where the preference order is single-peaked over the risk 
order. Furthermore, under certain conditions, perceived riskiness is thought to be an 
additive function of variance and skewness (Coombs & Lehner, 1980; note l), and 
variance and number of plays (Coombs & Huang, 1970; Coombs & Meyer, 1969). 
Consequently, Portfolio theory would predict that the preference order on a set of 
gambles which varied on either of these pairs of dimensions would satisfy folded 
additivity. In fact, in Coombs and Meyer (1969) and Lehner (1980) many of the 
necessary conditions for folded additivity were explicitly tested. 

Further examples are to be found in the class of theories which suggest that task 
performance is single-peaked over arousal, the inverted-U hypothesis 
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(Bargh & Cohen, 1978; Innes & Young, 1975; Katahn, Blanton, dc Gipson, 1967; 
Martens 8z Landers, 1972; Sorce dz Fouts, 1973; Stennet, 1957). According to this 
hypothesis, there exists a general dimension of task-oriented arousal for which a 
certain level of arousal facilitates optimal performance and for which greater or lesser 
levels result in poorer performance. When this hypothesis is tested (usually in the 
context of social facilitation research) it is frequently the case that several, 
hypothetically independent, sources of arousal are manipulated in a factorial design 
(see, for example, Innes & Young, 1975; Leibling & Shaver, 1973). If these sources of 
arousal are combined into a single arousal dimension, which mediates performance 
without respect to its component sources, then we are dealing with folded indepen- 
dence. On the other hand, if the independent variables each have a separable effect on 
performance, then we would expect some of the necessary conditions for folded 
independence to be violated. 

Another context in which folded independence may be seen is in some research on 
interpersonal attraction. In particular, Aronson, Willerman, and Floyd (1966) have 
found that the attractiveness of a highly competent or superior person is increased 
when he makes a blunder, while a similar blunder decreases the attractiveness of a 
person of less ability. Aronson et al. explained this behavior as follows, 

A near perfect or superior individual who shows that he is capable of an occasional blunder 
or pratfall may come to be regarded as more human and more approachable; consequently he 
will be liked better because of his pratfall. On the other hand, if a mediocre or average person 
commits an identical blunder, he will not undergo an increase in attractiveness. Indeed, since 
it would suggest that he is very mediocre, it should lower his attractiveness (p. 227). 

In other words, liking for other people is diminished by deviation from a norm or 
reference point on a general ability dimension. A pratfall has the effect of reducing a 
person’s level of perceived ability. Consequently, committing a pratfall may bring a 
superior person nearer to that reference point, but move a mediocre person away 
from it. If this interpretation is correct, then we would expect other sources of 
perceived ability to have a similar effect. For example, graduating from college may 
make a person more likable to some and less likable to others. 

A fourth context is political voting behavior. Political scientists often make the 
simplifying assumption that a voter’s preference for a political candidate is deter- 
mined by the candidates location, relative to that of the voter, on a general 
liberal-conservative dimension. That is, each voter has a single-peaked preference 
function over the liberal-conservative dimension, (e.g., Arrow, 1963, Chap. 7). In 
addition, it is reasonable to assume that a candidate’s overall level of conservatism 
increases monotonically with his level of conservatism on each political issue. Conse- 
quently, a candidate’s position on the liberal-conservative dimension is a 
monotonically decomposible function of his position on each political issue. This in 
turn implies that a voter’s preference for political candidates is folded independent 
over the multidimensional space determined by the political issues. 

A fifth example is found in equity theory. Equity theory is concerned with the 
study of the “fairness” of a distribution of outcomes or goods. As a model of inequity 
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judgments, Anderson and Farkas (1975, see also Anderson, 1976) proposed that 
perceived inequity is a function of the algebraic expression, 

[o*l(oA + %)I - [Z&A +Zdlr 

where 0,) 0,) I,, I, are the outcomes and inputs for persons A and B, respectively. 
According to Anderon and Farkas, perceived inequity increases as the value of this 
expression deviates from zero, although the increase may not be symmetric over 
positive and negative values. Consequently, perceived equity is single-peaked over the 
dimension defined by the values of this algebraic expression. This in turn implies that 
equity judgments are folded additive over the space defined by the dimensions 
[O,/(O, + 0,)] and -[ZA/(ZA + ZB)]. This algebraic expression, incidentally, 
corresponds to a psychological assumption that equity judgements are determined by 
the perceived value on a mediating dimension that corresponds to person A’S, 
“... relative deserts minus his relative deservingness” (Anderson & Farkas, 1975, 
p. 588). 

In a similar manner, Anderson and Farkas’ other two candidates for the algebraic 
basis of inequity judgements, 

[OAlZ.41 - [WLII 
[O&All - VA/~Bl 

also predict the existence of a folded additive structure, but over different dimensions. 
In general, it may be anticipated that whenever we are dealing with behavior which 

exhibits single-peakedness, it should be possible to construct situations in which 
folded additivity, or at least folded independence, should hold. In addition, as 
Coombs and Avrunin (1977) have pointed out, single-peakedness is a frequently 
occuring and very general property of behavior. This would suggest that the number 
of domains in which folded additivity might be found is considerable. 

Because of the number of potential applications of folded additive structures, an 
analysis of the basis of folded additivity should be useful. In the next section, a set of 
necessary and sufficient tests for there to exist a folded additive or folded independent 
representation of a finite data set, which varies on two dimensions, is given. 

2. BASIC THEORY 

In this section, (AXP, &) will represent a weak ordering, ai, on a two-factor data 
matrix, with dimensions A and P. In general, a,, will represent an empirically derived 
ordering. Theorem 1 can also be applied to any partial order on AXP. 

The following definition is made. 

DEFINITION 1 [Single-peakedness]. Let D = {d,, d2,..., d,} be a set of elements for 
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which (D,>,) has d,>,d,-, >, 0-s > I d,, then (D, a,,) is single-peaked over 
(D, a,> if 

di-k and dt+m >o di 

never occurs, where k, m > 0 and 

d, =,, dj only if di =, dj.3 

The most important property of single-peaked functions is that, when compared to 
>, , the ordering, &, increases monotonically to a certain point and then decreases 
monotonically. 

LEMMA 1. (D, a,,) is single-peaked over. (D, >,) if and only if there exist real 
valued functions G and F on D, which preserve the >,, and a1 orderings, respectively, 
such that the values of the function G are single-peaked over the values of the 
function F. 

ProoJ Sincef the G and F functions preserve the orderings &, and >, , the proof 
is immediate. 1 

DEFINITION 2 [Monotone decomposability]. (AXP, 2,) is monotonically decom- 
posable if there exist real-valued functions F on AXP, r, on A, and r2 on P such that, 
for all a, a’ in A and p, p’ in P, 

(i) F(a, P) > F(a’, P’) i f f  (a, P> > 1 (a’, P’>, 

(ii) F(a, p) = F(a’, p’) i f f  (a, p) =I (a’, p’h 

(iii) F(a, P> = f(r,@), rdp)), 

where f increases monotonically with each of its arguments. 

DEFINITION 3 [Independence]. (AXP, 2,) satisfies independence if we can assign 
subscripts to the elements of A and P in such a way that, 

(ai-k9 Pj-m> >I (ai Pj) (2.1) 

never occurs, where k + m > 0. 

LEMMA 2. (AXP, 2,) is monotonically decomposible if and only if it satisfies 
independence. 

Proof. See Krantz, Lute, Suppes, and Tversky (1971, p. 3 18). 1 

Given these definitions and lemmas, we can now define folded independence. 

’ In all subscripts assume that i, j, k, m, q, r > 0. 
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DEFINITION 4 [Folded independence]. The data matrix (AX’, 2,) is a folded 
independent structure if there exists an ordering, a,, on AXP such that, 

(i) (AXP, 2,) is single-peaked over (AXP, a,), 

(ii) (AXP, a,> satisfies independence. 

If (i) and (ii) above hold, then we say that (AXP, 2,) is folded independent over 
(AXP, >,>. 

An example of a folded independent matrix can be seen in Fig. 2a. Note that this 
ordering is single-peaked over the ordering of the cells in Fig. 2c and that this second 
ordering satisfies independence. 

The only condition required for folded independence is the subset condition. 

DEFINITION 5 [The subset condition]. (AXP, 2,) satisfies the subset condition if 
we can assign subscripts to the elements of A and P such that 

P.2) C”i-*’ Pj-r) and C”i+k> Pj+m) >O tQiT Pj) 

never occurs, where q + r > 0 and k + m > 0. 

Note that the matrix in Fig. 2a satisfies the subset condition. 

THEOREM 1 [Folded independence theorem]. (AXP, 2,) is a folded independent 
structure, if and only if it satisfies the subset condition. 

Proofofnecessity. By folded independence, (AXP, 2,) is single-peaked over some 
independent system, say, (AXP, a,). By the definition of independence, we can assign 
subscripts to the elements of A and P so that, 

C”i+k, Pj+m> >I tai9Pj> 21 C”i-q, Pj-r), (2.3) 

is never violated. Since the single-peakedness property applies to the entire set AXP, 
it must be also apply to any three-element subset (Arrow, 1963, p. 77). An 
examination of all possible orderings that are single-peaked over (2.3) will reveal that 
(2.2) never occurs. 

Proof of Sufficiency 

This proof is divided into two parts. Part 1 describes the additive unfolding 
algorithm which can be used to construct an independent system, (AXP, a,), from 
(AXP, >,,). Part 2 shows that this “unfolded” order always satisfies the single- 
peakedness and independence requirements. 

Part 1. The additive unfolding algorithm. (An example of this algorithm is 
provided below.) 

Step 1: Assign subscripts to elements of A and P such that the subset 
condition is satisfied. 
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Step 2: Determine which elements of AXP are above and below the ideal 
trace. This is done as follows. 

(a) If for some k + m > 0 

t"i+k, Pj+m) >O Caiy Pj> 

then let (ai, pj) be below the ideal trace. 

(b) If for some q + I > 0 

(Ui-q, Pj-r) >O t"i7 Pj) 

then let (ai, pi) be above the ideal trace. 

(c) For all elements not assigned by 2a or 2b, arbitrarily decide if each of 
them is above or below the ideal trace. 

Step 3: Assign an ordering >, to the elements of AXP such that, 

(a) >, preserves the >. ordering for all elements below the ideal trace. 

(b) 2, reverses the a0 ordering for all elements above the ideal trace. 

. (c) All elements above the ideal trace are ordered above all elements below 
the ideal trace. 

Part 2. We first show that the algorithm can always be carried out on a data 
structure which satisfies the subset condition. 

Since (AXP, 2,) satisfies the subset condition, it is immediate that step 1 can 
always be carried out. To show that step 2 can always be carried out, we need only 
show that the necessary conditions of 2a and 2b cannot apply to the same element 
and therefore lead to a contradiction. To show this we assume that the necessary 
conditions of 2a and 2b are both true. This gives us that for some k, m, q, r 

t”i-q, Pi-r> and C”i+k7 Pj+m) 20 t”iy Pj) 

which violates the subset condition. 
Step 3 simply assigns the >, ordering so that all elements below the ideal trace are 
increasing on the a0 ordering and all elements above the ideal trace are decreasing on 
the >. ordering. This guarantees that a0 is single-peaked over 2,. 

In order to complete this proof, therefore, we need only show that the constructed 
system (AXP, a,) is independent. 

To show this, we need to show that 

C"i9 Pj) >l C”i+k, Pj+m> 

cannot occur. This is done as follows. An inspection of the additive unfolding 
algorithm will reveal that (2.4) can only occur as a result of steps 3a or 3b. 
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If (2.4) resulted from step 3a, then we must have had (ui, pi) and (ai+k, pi+,) 
below the ideal trace and 

However, this contradicts 2b. 
Similarly, if (2.4) resulted from 3b, we must have had (ai, pj) and (uifk, pj+,) 

above the ideal trace and 

which contradicts 2a. fl 

Theorem 1 tells us that the subset condition is a necessary and sufficient test for 
folded independence. Furthermore, the additive unfolding algorithm (part 1 of the 
sufficiency proof of Theorem 1) is used to construct an independent system that 
(AXP, a,) is single-peaked over. This algorithm plays a central role in the folded 
additivity analysis that follows. Therefore, an example of how this algorithm can be 
used to construct an independent system is given. 

Consider the matrix in Fig. 2a. Step 1 of the additive unfolding algorithm requires 
that the rows and columns of this matrix be permuted so that (2.2) of the subset 
condition is satisfied. In the case of Fig. 2a, it can be verified that this was already 
done. If step 1 cannot be carried out then Fig. 2a could not be a folded independent 
structure. 

In step 2 of the algorithm, we examine each row and column to determine which 
cells must be above or below the ideal trace. For a fully ordered data matrix this can 
be done as follows. For each row/column, find the cell which is highest on the 
behavioral ordering in that row/column. Cells which are positionally to the left 
of/below this cell will be below the ideal trace. On the other hand, those cells which 
are positionally to the right of/above the highest ordered cell in each row/column will 
be above the ideal trace. Since (a,, ps) and (a,, p,) are the highest ordered in their 
row and column, step 2c is applied to arbitrarily determine whether each is above or 
below. For now assume that (a,, p3) is above and (a,, pJ is below the ideal trace. 

In Fig. 2b, those cells which step 2 marked as below the ideal trace on the unfolded 
order are indicated by a 1 and those cells which are above the ideal trace are 
indicated by a 1. 

Step 3 of the algorithm requires that the unfolded order be strictly monotone with 
the behavioral order for all cells below the ideal trace on the unfolded order, and 
inversely monotone for all cells above the ideal trace on the unfolded order. This 
gives us the unfolded order in Fig. 2c. 

The reader can verify that if we had made different decisions about (a,, p3) and 
(a,, p,) we would still have constructed an independent system. 

In the following analysis, we are going to limit the discussion to empirical 
orderings with the following properties, 
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step 1: Order dimensions to 
satisfy subset condition 

step 2: For each cell dctermlnc if it 
is above or below the Ideal 
trace (+ = below, + = above). i’ 

Step 3: Construct unfolded order such 
that it preserves the behavioral 
ordering below the ideal trace 
and reverses the behavioral 
ordering above the ideal trace. 

FIG. 2. An example of the Additive Unfolding Algorithm. The cell values in matrix 2c were derived 
from the empirical ordering in matrix 2a. 

(i) for all a, a’ in A, there exists a p in P, such that 

(u’, PI fo (a3 PI, 

(ii) for all p, p’ in P, there exists an a in A, such that 

(6 P’) f0 (u9 PI. 

This restriction states, in effect, that we are limiting our discussion to data 
structures in which the behavioral ordering, >o, is not completely indifferent to 
different levels of the independent variables. 

LEMMA 3. Zf (AXP, 2,) is restricted us above and is folded-independent over 
(AXP, a,), then for all a, in A and Pj in P 

t”i+k, Pj) +I C”i, Pj) 
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Proof. By single-peakedness 

C”i+k3 Pj+m) =1 Cai9 Pj> implies Cai+k9 Pj+m> =O Cai3 P,j)* 

Lemma 3 applies the contrapositive of this to the restriction. 1 

Generally speaking, a folded independent system, (AXP, a,), is single-peaked over 
a number of different indepedent systems. Therefore we can define W(AXP, a,) as 
the set of all independent systems that (AXP, 2,) is single-peaked over. 

COROLLARY 1. If (AXP, >,) was constructed from (AXP, 2,) using the additive 
unfolding algorithm, then 

Since step 2 of the algorithm permits us to make some arbitrary decisions about the 
unfolded order, there will usually exist several independent systems that can be 
constructed using the algorithm, Let U(AXP, 2,) be the set of all independent 
systems that can be constructed from (AXP, 2,) by making different decisions in 
step 2c. We then have the following corollary. 

COROLLARY 2. If (AXP, a,) and (AXP, 2,) are elements of U(AXP, a,), then 
(AXP, >,) and (AXP, a,) have the same order on A and P. That is 

(4 P> 21 (a’, PI iff (GP> a* b',P) 
and 

6% PI 21 (a, P’) iff 6% P> a2 (a, P’)* 

Proof. From Part 2 of the sufficiency proof of Theorem 1, we know that the 
additive unfolding algorithm will always construct an order such that (2.4) never 
occurs. Corollary 2 is an immediate consequence of this. I 

It is a characteristic of single-peaked functions that if (AXP, >,) is single-peaked 
over (AXP, >,), then (AXP, 2,) is also single-peaked over the system with the 
reverse ordering (AXP, <,). Furthermore, if (AXP, >,) is independent, so is 
WP, G,). 

Let V(AXP, a,,) be the set of all systems (AXP, <,) for which (AXP, a,) is in 
U(AXP, a,,). We have the following corollary. 

COROLLARY 3. U(AXP, >,) U V(AXP, >,) c W(AXP, 2,). 

Corollary 3 tells us that all the weakly ordered systems that can be constructed by 
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the additive unfolding algorithms, and those with the reverse ordering, make up a 
subset of W(AXP, >,). Lemmas 4 and 5 and Theorem 2 extends this analysis by 
showing that these two sets are in fact equivalent. 

LEMMA 4. If (AXP, 2,) is folded independent over (AXP, 2,) and (AXP, 2,) 
and we assign subscripts to the elements of A and P to be monotone increasing with 
>,, then4 for k,m > 0 

(aifk, Pj+tJ >I (a if/c, Pjh (ai9 Pj+,> >I (ai, Pi) WI 

implies one of the following: 

(ai+kv Pj+m) >2 @i+k9 Pjh (ai Pj+d >2 @i, Pj) 

Or 

@i7 Pj> >2 (ai+k,Pjh (ai, Pj+td >2 (aitk9 Pj+d 

ProoJ Assume that the above is not true, then we have 

(ai+k9Pj+ttJ >I (a,7Pj+m)7 @i+k9Pj) >I h,Pj) 

and, from the independence of (AXP, >,), one of the following, 

(aitk, Pji) >2 (ai+k, Pj+mL (Qi, Pj) >2 (ai, Pj+m) 

or 

(ai, Pj+,) >2 (ai+,+, Pj+m)v (ai, Pi> >2 (ai+kv Pj)* 

Since (AXP, 2,) is single-peaked over (AXP, a,), (2.6) implies 

(24 

(2.7) 

(Qitkr Pjh (ai, Pj+tJ >o (aitky Pi+,) 

(ai+ky Pjh (ai, Pj+d >o (ai, Pi>* 

(2.9) 

Since (AXP, a.,) is single-peaked over (AXP, a,), (2.7) and (2.8) each imply that 

(ai+k, Pjti7J (ai Pj> >o (aitk9 Pi) 

(ai+k, Pj+mh (4, Pj> >o (4, Pj+m>- 

(2.10) contradicts (2.9). I 

(2.10) 

This last result, combined with Corollary 3, tells us that if (AXP, a,) is single- 
peaked over an independent system (AXP, >,), then the ordering that >r induces on 
the elements in A and P must be the same as for the members of either U(AXP, >,) 
or V(AXP, a,). 

4 Any inequality of the form a > b, c > d should be read as a > b and e, and b and c > d. 
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LEMMA 5. Assume that the order of the elements in A and P for the system 
(AXP, 2,) is the same as that for U(AXP, a,,). Then (AXP, 2,) E U(AXP, 2,). 

Proof. To show this, it is sufftcient to show that each step in the additive 
unfolding algorithm is implied by the fact that A and P are already ordered. 

Step 1 assigns subscripts to the elements of A and P so that the order on A and P 
is consistent with that of (AXP, 2,). This is equivalent to assuming that the ordering 
on A and P is given. 

Step 2a is shown to be implied as follows. From our ordering assumption we have 

@i+k, Pi+,) >I (ai, Pjb (2.11) 

Since. from 2a 

@i+k9 Pj+m) >o (ai3 PjX 

we know that >. is monotonically increasing from (ai, pi) to (ai+k, pj+,) on a1. 
Consequently, (ai, pi) must be below the peak, i.e., below the ideal trace. The proof 
of 2b is similar to that of 2a and need not be repeated here. 

Finally, step 3 is based on a basic property of single-peaked functions, namely, that 
relative to the unfolded order, the behavioral ordering should increase monotonically 
below the peak and decrease monotonically above the peak. fl 

THEOREM 2 [Uniqueness of the unfolded independent order]. 

W(AXP, ao) = U(AXP, 2,) U V(AXP, a,). 

Proof. Lemma 4 tells us that in order for (AXP, 2,) to be single-peaked over 
(AXP, >,,), the order that 2, induces on the elements of A and P must be compatible 
with the order on A and P for the members of either U(AXP, 2,) or V(AXP, a,). 
Lemma 5 states that if (AXP, 2,) orders the elements of A and P in such a way that 
their order is compatible with the structures in U(AXP, a,), then (AXP, 2,) is an 
element of U(AXP, >,). Finally, by the definition of V(AXP, &o), (AXP, 2,) is an 
element of U(AXP, >o) if and only if (AXP, 9,) is an element of V(AXP, a,). 
Combining these three results, we find that a folded independent system, (AXP, a,), 
is single-peaked over an independent system, (AXP, a,), if and only if 

(AXP, >,) E U(AXP, 2,) or (A-, 2,) E v(AXP, ho). 

Together with Corollary 3, this gives us 

W(AXP, >,) = U(AXP, 2,) U V(AXP, a,). m 

We now turn to the case of folded additivity. 

DEFINITION 6 [Additivity]. (AXP, 2,) has an additive representation if there 
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exists a function F on AXP, r, on A, and r2 on P such that for all u, u’ in A and P, p’ 

in P, 

(i) (a, p) > , (a’, p’) implies F(a, P) > F(a’, P’), 

(ii) (a, p) =1 (a’, p’) implies F(a, P) = F(c’, P’), 

(iii) F(u, p) = r,(u) t r2(p). 

LEMMA 6. If (AXP, 2,) is additive, then it is also satisfies independence. 

Proof. This lemma follows directly from the fact that an additive structure is a 
type of monotonically decomposible structure. I 

DEFINITION 7 [Folded additivity]. The data matrix (AXP, 2,) is a folded 
additive structure if there exists a weak ordering, >,, on AXP such that 

(i) (AXP, 2,) is single-peaked over (AXP, >,,), 

(ii) (AXP, 2,) is an additive structure. 

THEOREM 3 [Folded additivity theorem]. (AXP, 2,) is single-peaked over an 
additive system (AXP, 2,) ifund only if (AXP, a.,) E W(AXP, 2,). 

Proox Recall that if (AXP, 2,) is additive, it is also independent. So if 
(AXP, 2,) is additive, and (AXP, 2,) is single-peaked over (AXP, >,), then 
(AXP, >,) E W(AXP, 2,). On the other hand, if the additive system (AXP, >,) is in 
W(AXP, a,,), then (AXP, &,) is by definition single-peaked over (AXP, a,). i 

There already exist several techniques for determing whether or not a structure is 
additive (Lehner & Noma, 1980; Scott, 1964). Therefore, to test for folded additivity, 
we need only apply one of these techniques to all the elements of W(AXP, 2,). In 
addition, any of these methods can be used to assign numeric scale values to the A 
and P elements. Consequently, a folded additive representation can be constructed. In 
addition it can be shown that if A and P have m and n elements, respectively, and 
(AXP, 2,) is fully ordered, then the maximum number of different independent orders 
in W(AXP, a,) is 2mincm*n’. Therefore, an exhaustive search of W(AXP, a,,) is usually 
feasible. 

There is an interesting property associated with the uniqueness of the unfolded 
additive solution. For an additive ordering on (AXP, >,) it has been shown [see 
McClelland & Coombs, 19751 that the solution space of scale values for the A and P 
elements form a convex set. In the case of a folded additive system, however, there 
will usually exist several additive orders in W(AXP, >,). Consequently, the solution 
space of scale values for the A and P elements will form a set of convex sets. 
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3. DISCUSSION 

Briefly summarized, the results of the last section indicate that a behavioral 
ordering satisfies folded independence if and only if the subset condition (definition 5) 
is satisfied. Furthermore, the additive unfolding algorithm can be used to find all 
independent systems that unfold the behavioral ordering. Consequently, folded 
additivity is satisfied if and only if one of the independent systems constructed by the 
additive unfolding algorithm has an additive representation. 

This approach differs radically from the statistical use of interaction terms to 
explain variance in a factorial design. More often than not, these statistical 
interactions are purely mathematical constructs that are not easily interpreted. Folded 
additivity, on the other hand, provides a mathematical model which leads directly to 
a certain class of psychological interpertations, viz., single-peakedness over an 
additive composition. 

Finally, it should be noted that the present theory does not assume that the data 
are in numerical form, only a set of qualitative tests are presented. In addition, given 
that these tests are satisfied, it is shown how a numerical representation can be 
constructed. Consequently, the present theory is an example of a fundamental 
measurement model. 
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