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ABSTRACT 

A discrete deterministic model is described for the growth of an age-structured 
population of yeast, Sacchuromyces cereuisiae, incorporating recent information on the 
asymmetry of cell division and control of the cell cycle in this species. Solutions are 
obtained for the age structure of the population at equilibrium, and for the equilibrium 
distribution of relative frequency of cells through the cell cycle. The model is applied to 
experimental data on the changing age structure of nonequilibrium populations of yeast. 
The model predicts well both the transient behavior and the equilibrium structure of such 
populations. It is shown that the asymmetry of cell division explains (1) the excess of 
newly formed daughter cells in the population as compared to the frequency of older cells 
and (2) the damped oscillations in the frequencies of cells of different ages as demographic 
equilibrium is approached. 

1. INTRODUCTION 

Saccharomyces cerevisiae reproduces by budding. Abscission of the bud 
to form a daughter cell leaves a bud scar on the surface of the parent cell 
which can be observed with a fluorescent stain (Streiblova and Reran [23]) 
or under the scanning electron microscope. Daughter cells formed by 
abscission of a bud will be free of bud scars, whereas cells which have 
produced one bud and have therefore undergone one generation will have 
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one bud scar. Buds are never formed at the site of an old scar, and so yeast 
cells may be aged by counting the number of bud scars on the cell surface. 
Cells have been observed that have undergone over 40 generations of 
division [ 191. 

The ability to determine the age structure of populations of yeast cells by 
this technique, coupled with the detailed knowledge available on the physi- 
ology of the cell cycle of Saccharomyces cerevisiae, makes this organism 
ideal for experimental studies on demography. 

Beran et al. [3,4] have presented data on the change of the age structure 
in experimental populations of yeast and have shown that the numbers of 
cells of different ages undergo oscillations of decreasing magnitude until a 
demographic equilibrium is reached. A demographic model of such popula- 
tions generated by Gani and Saunders [7] did not show such oscillations 
and predicted that approach to demographic equilibrium should be mono- 
tonically decreasing. 

In this paper we develop a model of the proliferation of yeast popula- 
tions which considers the distribution of cells within the cell cycle. We 
obtain results which describe the equilibrium demographic structure of 
yeast populations in terms of characteristics of the cell cycle. The model 
predicts that the frequencies of cells with different ages will exhibit damped 
oscillations as a demographic equilibrium is approached. We show that 
these oscillations are a consequence of the transit time through the cell cycle 
as suggested by [7] and the asymmetric nature of cell division in Sac- 
charomyces cerevisiae. This model fits well data obtained from populations 
of S. cerevisiae which are approaching demographic equilibrium. 

2. THE MODEL 

It is now well known that cells of S. cerevisiae divide asymmetrically [1, 
131. When the mature bud abscisses from the parent cell to form the 
daughter cell, it is smaller in size than the parent cell, and consequently 
these cells have a longer cell cycle time than their parent cells. For 
convenience we will refer to daughter cells as being in age class 0 and to 
parent cells as being in age class 1. Cells which have undergone more than 
one cycle of budding are labeled accordingly. There is also some evidence 
that cells which have undergone two cycles of budding (age class 2) have a 
shorter cell cycle time than cells which have undergone one [ 131. However, 
such a difference, if it exists, is minor compared to the difference between 
cell cycle times of age class zero and age class one cells. Although the cell 
cycle times of cells of different ages may vary, it is generally believed that 
the time taken from bud initiation to abscission is constant [25]. In the 
following treatment we describe the model for the most general case where 
each age class has a unique cell cycle interval. However, for the most part 
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results are presented for the case where all cells in age class one or above 
have the same cell cycle time. Figure 1 diagrams this model of the cell cycle 
of yeast. 

A previous attempt (71 to model the dynamics of a yeast population 
considered the longer cycle time of age class 0 cells, but did not take into 
account the distribution of cells within the cell cycle. The model postulated 
instead simple probabilities governing the transition from one age class to 
the next. This is an oversimplification of the dynamics of such populations, 
as it assumes that cells which have just divided have the same probability of 
dividing again as cells which divided at earlier points in time. 

It is now clear that the cell cycle of yeast not only has well-defined 
stages, but also has a series of unique and specific controls which regulate 
passage through the cycle [ 11, 121. Therefore any model of the dynamics of 
a yeast population should ideally take account of the distribution of cells 
within the cell cycle. In other cell types, previous approaches to modeling 
cell proliferation have divided the cell cycle into phases corresponding to 
well-defined biological stages, such as DNA synthesis (S), premitotic phase 

l-1 - 
FIG. 1. Model of the cell cycle of Succhmomyces cerevisiue, showing relationship 

between generation number and number of bud scars. q,, expected duration of unbudded 

phase of the cell cycle for age class 0 cells. T,, expected duration of the unbudded phase of 

the life cycle for age class 1 cells. TV, expected duration of budded phase. 
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( G2), mitosis (M), and the like. Passage through the cell cycle is specified 
by transition probabilities and also by maturity parameters [5, 17, 22, 241. 
However, these approaches do not take into account the fact that biologi- 
cally defined stages such as S, M, or G, almost surely represent a series of 
control events. In the model of the yeast population described below we 
have assumed that the cell cycle is divided into a number of subintervals, 
and thus the distribution of cells between the subintervals represents the 
distribution of position within the cell cycle. In this respect our model is 
analogous to the state vector model of Hahn [9] and the compartment 
models of Hopper and Klein and their coworkers [8, 14- 161. 

Each sector of the cell cycle, budded and unbudded, is considered to be 
divided into a number of subintervals of equal length. Although the number 
of subintervals is arbitrary in our model, they can be chosen to coincide 
with cell cycle control points such as have been described by Hartwell et al. 
[ 11, 121. Thus the model can be used to obtain information on the number 
of cells sensitive to a given control point [21]. 

Since the total number of cells in a yeast population is typically large 
(>>106), a deterministic treatment for the proportions in each age class is 
sufficient. In the following model we designate 

v,O(I’, j)= the expected number of yeast cells with i (0 Q i< oc) bud scars 
in the jth (1 <j Q K~) interval of the unbudded portion of the 
cell cycle, at time t, 

and 

v,‘( i, j) = the expected number of yeast cells with i (1 < i < 00) bud scars 
in the j th (1 <j < K~) interval of the budded portion of the cell 
cycle, at time t. 

Similarly T$’ (i, j) and 7: (i, j) represent the relative frequencies of these 
classes of yeast cells. The probability for age class i of moving from one 
unbudded cell cycle subinterval to the next cell cycle subinterval during the 
time period At is defined as pi. Then qi = 1 -pi is the probability of 
remaining in that subinterval. Thus the distribution of residence times in 
any subinterval is geometric. It follows from this that the cell cycle times 
should approximate a Pearson type III distribution. Bacterial cell cycle 
times fit such a distribution [20], and the data of Hartwell and Unger [13] 
suggest that it is a reasonable description of cell cycle times in yeast. Cell 
death is assumed to be small enough to be ignored. This assumption is 
justified by the results of Mortimer and Johnson [ 191, which showed no cell 
death for cells in age classes less than eight. For a constant time increment 
At, pi and qi will vary according to the age of the cell, since the time spent 
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in the unbudded portion varies with cell age. If 7i is the expected length of 
the unbudded portion of the life cycle for cells of age i, and this section of 
the life cycle is divided into ~~ intervals, then 

K.At 
Pi =I_, 

ri 
with qAt<q. 

Similarly, r is defined as the probability of moving from one budded cell 
cycle interval to the next cell cycle interval during the time period At, and 
s= 1 -r is the probability of remaining in that interval. In the budded sector 
of the life cycle, r and s are constants whatever the age of the cell, as it is 
assumed that budding time is constant [25] and not dependent on age. If 7s 
is the expected length of the budded portion of the life cycle and this 
section is divided into K~ intervals, then 

KS& 
r=_ 

78 
with tcBAt<rB. 

The difference equations describing the change in the expected number of 
cells of different ages over time will be 

$+Al(O, l)=qo$(O, l)+r 5 4Ci, Ks), 
i-0 

yP,&,(i, j+ l)=p,~,“(i, j)+qiJJP(i9j+l)~ 1 <j<Ki, (4) 

~~+~,(i,l)=qiv~(i,l)+r$(i-l~K~)~ i> 1, (5) 

p:+,,(i, I)=p,vp(i, Ki)+Svj(i, 1)~ i> 1, (6) 

v)+*,(i, j+ l)=rv:(i, j)+d(i,j+ 1)~ 1GjGKS-1. (7) 

Though the expected number of cells in any age class eventually in- 
creases exponentially, the proportion of cells in any one age class will 
approach an equilibrium. Total population size will increase according to 
the following equation: 

N r+Ar I+rgq:(i,KB) , 1 (8) i-o 
where N, is the total population size at time t. To obtain equilibrium 
solutions we first divide both sides of (3) by N,+& to obtain 

(9) 
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where qz(O, 1) is the relative frequency at equilibrium of unbudded cells in 
age class 0 in the first interval of the cell cycle, and rh is the limiting form 
of the growth rate with X defined by 

(10) 

It then follows from Eq. (3), (8), and (9) that the equilibrium frequencies of 
cells of age class 0 in the other subintervals of the unbudded phase of the 
cell cycle will be 

(11) 

The remaining equilibrium frequencies of unbudded and budded cells in 
other age classes are given by the following recursion equations obtained 
from the appropriate difference equation (3)-(7) and Eq. (8): 

q:(i,l)= pi ------‘$(i, Ki)t 
r(X+ 1) 

i=O, I,2 ,..., 

i= 1,2 ,..*, 

(12) 

(13) 

j-l 

d(i, I), i=1,2 )...) j=l,&...,Ks, (14) 

i=o,1,2 ,..., j=lr2,-..tKie (15) 

It can be seen that the expected frequency of cells in each age class at 
equilibrium has a slowly decreasing geometric distribution as position in the 
cell cycle increases. 

It may be of more interest from a practical standpoint to know, for each 
age class at equilibrium, the total proportions of cells in either the budded 
or unbudded phase of the life cycle. These results which may be obtained 
by summation over the appropriate subintervals, are presented in Table 1 
for the special case where the expected cell cycle times of cells in age classes 
greater or equal to one, are the same (that is, where pi and K~ are constant 
for i >, 1). The results in Table 1 consider that the cell cycle is divided into a 
discrete and arbitrary number of subintervals. In many cases the number of 
subintervals or indeed the subintervals themselves may be difficult to 
specify. In such situations a continuous time model of the cell cycle may be 
more appropriate. We can obtain results for the continuous time model by 
taking limits for the discrete model as At-+O, in such a way that K~ A t, K~ At, 
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and K~A t approach finite limits which are less than r,,, rl, and rB respec- 
tively. In particular, the equation for h in table 1 is replaced by 

ePrB re -PTo +e -Prl 
(‘6) 

where p is the population specific growth rate [i.e. p=(ln2)/T, where T is 
the population doubling time]. The continuous time results analogous to 
those in Table 1 are given in Table 2. 

These results for the continuous time model can be shown to be equiva- 
lent to those of Hartwell and Unger [ 131, who used an alternative approach 
to obtain the expected frequencies of cell types at equilibrium. 

Aae class 

TABLE 1 

Discrete Time Equilibrium Solutions 

Relative frequencya 

Unbudded Budded 

i=o 

i>l 

x PO =O -- 
[ 1 (A+ 1)’ PO +rX 

j= I,2 r...,Kc j=1,2 ,...,Ks x PI - - [ 1 (A+ 1)’ PI +rh 

j=1,2 ,....KI j=1,2 ,...rKs 

“Relative frequency of cells in budded and unbudded phase of the cell cycle, where 19 

is defined by 

and X is the solution of the equation 

TABLE 2 

Continuous Time Eauilibrium Solutions 

Relative frequencya 

Age class Unbudded Budded Buddedandunbudded 

i=O 

i> 1 

1 -,-Pm e-Py, -,-PQ) 
+ 

(1 -CP”)(l -$)I$‘-’ e _P”(, -_e -PTs)(1-+)& 1 (1 -+)2+‘-1 

‘Relative frequency of cells in the budded and unbudded phases of the life cycle, where 
@se -PC? +I#) 
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3. APPLICATION OF THE MODEL TO DATA OBTAINED ON THE 
GROWTH OF YEAST POPULATIONS 

EXPERIMENTAL PROCEDURES 

The strain of Saccharomyces cerevisiae, media, and general growth condi- 
tions have been described previously [3]. Cells were grown aerobically in 
batch culture with glucose (Fig. 2, 3% w/v; Fig. 3, 2.5% w/v) as the carbon 
source. The culture volume was approximately 100 ml. Medium was added 
periodically to the cultures to ensure that the cells were in the exponential 
(unlimited) phase of growth throughout the duration of the experiments. 
Initial inocula consisted of more than 95% of unbudded cells in age class 
zero. These cells were prepared by centrifuging a population of cells on a 
dextran gradient as described previously [ 181 and isolating the densest 
fraction of cells in the gradient. Unbudded cells of age 0 are the smallest 
cells in the population [ 11. There was no evidence of any physiological effect 
of the centrifugation process [ 181. Data were collected on the growth rate of 
the population and the changing frequency of the various age classes. Cells 
were aged by counting the number of bud scars using the fluorescent stain 
procedure of Streiblova and Beran [23]. A detailed description of the 
method may be found in Beran [2]. This method is now standard for the 
estimation of the age of yeast cells (e.g. [2, 3, 4, 6, lo]). Since the sequence 
of budding follows a specific geographic pattern, occurring chiefly at the 
poles of the cell, and since the cells tend to roll on the microscope slide 
while the number of scars is being counted, all scars occurring on the 
surface of the cell can be counted. However, in practice it is difficult to 
count large numbers of bud scars accurately [6]. For this reason we grouped 
cells with more than 5 scars into one category. The frequency distributions 
of cells with different numbers of bud scars were determined from counts 
on 5OC- 1000 cells in three independently prepared samples. Total cell 
number was determined by counting in a hemocytometer. 

ESTIMATION OF PARAMETERS OF THE MODEL 

To apply the model to experimental data on the growth of yeast 
populations, estimates of the cell cycle times of the various age classes must 
be obtained. Data on the relative frequency of the age classes at demo- 
graphic equilibrium can be used to estimate T,, + rB and ri + r8 provided that 
an independent estimate of the population specific growth rate p be availa- 
ble. The estimate of p from the data on total cell number can be obtained 
using standard least-squares regression procedures. In general this require- 
ment does not present a serious limitation on the use of the estimation 
procedure. The distribution of the age classes in a sample from an infinitely 
large population is multinomial, and thus a convenient estimation proce- 
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dure is maximum likelihood. Although theoretically the number of age 
classes is infinite, in practice it is difficult to assign cells with a large number 
of bud scars to a specific age class [6]. In our data we have therefore pooled 
all age classes above 5. The likelihood function assuming a multinomial 
distribution of age classes at equilibrium is 

(‘7) 

where + is the expected frequency of cells in age class 0 (see Table 2), ni is 
the number of cells observed in age class i, A4 is the total number of cells 
for all age classes greater than h, and C is a constant representing the 
combinatorial term. 

The maximum likelihood estimator for + can be obtained by straightfor- 
ward techniques and is 

h 

n,+ z (i-l)ni+hM 
i= i=l 

no + 2 (i+ l)n, +(h+ l)M 
WV 

i=l 

Although this estimator is biased, the magnitude of the bias is dependent on 
the magnitude of +h. Since + is usually between 0.5 and 0.6, with h equal to 
5 or 6 the bias is small. This is reasonable, as the expected numbers of cells 
in the age classes higher than 5 are vanishingly small. The parameters be +T~ 
and 7, +r8 are monotonic functions of +, and so the maximum likelihood 
estimates of these parameters are found in the obvious manner. If data are 
available on the frequency of unbudded and budded cells in each age class, 
then the parameters T,,, T,, and 7s may be estimated separately. 

FITTING OF THE MODEL TO THE DATA 

The model described here predicts two important features concerning the 
growth of yeast populations: 

(1) Whenever the generation time of cells in the zero age class is longer 
than those of higher age classes, zero age class cells will constitute more 
than 50% of the population at equilibrium (see Table 2). There is now 
abundant evidence in the literature to substantiate this prediction (e.g. [ 131). 
The simpler model of Gani and Saunders [7] also predicts that zero class 
cells will be present in frequencies larger than 50% if their generation time is 
larger. However, in fitting their model to data of Beran et al. [3], it is 
difficult to understand why they set the zero age class frequency to a value 
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less than 50%. Though this frequency may drop below 50% due to sampling 
variation, it can do so in the population only if zero age class cells have a 
shorter expected generation time than others. This possibility is not consid- 
ered in their paper or indeed by anyone. 

(2) The second and more interesting prediction of the model is that the 
frequency of the different age classes will undergo damped oscillations until 
demographic equilibrium is reached. We will show that these damped 
oscillations are a consequence of the longer expected generation time of 
zero age class cells. 

Oscillations in the frequency of different age classes have been reported 
before [2-41. To test the ability of our model to describe such oscillations 
the model was fitted to the data gathered by one of us (K.B.) on the 
changing age structure of yeast populations. Population cell cycle times 

(~a + r8 and pi + TV) were estimated using Eq. (18) from the age distributions 
at the last time points. Thus we assume that at these points demographic 
equilibrium had been reached. The predicted changes in the age structure of 
the populations were calculated from these estimates and Eqs. (3)-(7). The 
numbers of subintervals were determined from Eqs. (1) and (2) with a time 
increment At chosen to be 5 minutes. Choice of a time increment smaller 
than this value had no detectable effect on the predicted changes. The 
distribution of the cells of age 0 within the cell cycle in the initial inocula 
was assumed to be geometric or triangular and such that in the initial 

inoculum, cells at the beginning of the cell cycle were most frequent, and 

those at the end of the cycle least frequent. This distribution of cells in the 
initial inocula is expected for two reasons: (1) There is a correlation of 
position in the cell cycle with size [l], and therefore the fraction of cells 
isolated from the density-gradient centrifugation would be mostly buds 
recently abscissed from the parent cells, as these are the smallest cells in the 
population. The probability of finding a cell more advanced in the cell cycle 
would decrease with increasing size of the cell. (2) The density gradient 
centrifugation procedure is not completely efficient in isolating small cells. 
Nevertheless the relative frequency of larger cells in the densest fraction 
decreases the larger the cell. In our simulations there was no significant 
difference between the results obtained assuming an initial discrete triangu- 
lar and a geometric distribution. Figures 2 and 3 show the results of two 
experiments with different glucose concentrations and the change in relative 

frequency of the cells of different ages predicted from the model. Not only 
is the period of the oscillations predicted well, but also their magnitude. The 
estimate of specific growth rate for the population in Fig. 3 was faster than 
that for Fig. 2, and consequently the estimates of daughter cell cycle time 
(TV +T~) and parent cell cycle time (7, +T~) were not greatly different. The 
asymmetry of cell division in Saccharomyces increases as the generation 
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FIG. 2. Observed changes of cells of different ages over time (hours). Solid lines 
represent predicted changes. Observed changes are shown by the symbols 0, age class 0; 
m, age class 1; 0, age class 2; 0, age class 3. Estimates used in calculating the predicted 
changes were j = 0.320 hr - ‘; (T,, 1 rB) = 2.55 hr; (T, 4 ~8) = 1.83 hr. The maximum likeli- 
hood estimate of the frequency of cells in age class 0 is $I = 0.56. 

time of the population increases [Ill. It can be seen for data in Fig. 3, where 
cell division is almost symmetric, that the amplitudes of the oscillations are 
much smaller than those in Fig. 2. These results suggest that the damped 
oscillations in the frequencies of the various age classes are a consequence 
of the asymmetry of cell division. Direct proof of this requires the analysis 
of a set of integrodifferential equations which have been refractory to 
solution. We have therefore resorted to numerical evaluation of Eqs. (3)-(7). 
Figure 4 shows the results for one set of values of daughter and parent cell 
cycle times. The values for ra. r,, and rB were obtained from the empirical 
relationships described by Hartwell and Unger [ 131 between r,,, T,, rB, and 
the population-specific growth rate. Consequently these values are biologi- 
cally reasonable. It can be seen that when parent and daughter cell cycle 
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FIG. 3, Observed changes of cells of different ages over time (hours). Solid lines 

represent predicted changes. Observed changes are shown by the symbols l , age class 0; 

m, age class 1; 0, age class 2; 0, age class 3. Estimates used in calculating the predicted 

changes were i = 0.350 hr - ’ ; (Q $ TV) = 2.02 hr; (7, P TV_) = 1.95 hr. The maximum liieli- 

hood estimate of the frequency of cells in age class 0 is += 0.5 1. 

times are equal, equilibrium is approached monotonically. Whenever the 
daughter cell cycle time is greater than that of the parents, damped 
oscillations in the frequencies of the age classes appear, and the magnitude 
of the oscillations is directly proportional to the degree of asymmetry of cell 
division. Thus the damped oscillations seen in Fig. 2 are a consequence of 
the asymmetry of cell division in this population. 

4. CONCLUSIONS 

The discrete, deterministic model presented here describes well the 
frequencies of the different age classes in a population of Saccharomyces 

cerevisiae at equilibrium. For the simple case where budded and unbudded 
cells are considered together and where all cells in age class 1 and above 
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FIG. 4. Expected change in the frequency of age class 0 cells over time @ours), 
showing the oscillatory approach to demographic equilibrium with asymmetric cell divi- 
sion. A: T,, +7,=2.17 hr; 7, +~,=2.17 hr. B: 7,, +~~=2.20 hr; 7,+~~=2.17 hr. C: 
me +~a ==2.33 hr; T, +T~ 32.22 hr. D: T,, +Q ~2.52 hr.; .rl +Q =2.28 hr. E: .rO+rg 33.18 
hr; 7, +T~ -2.53 hr. F: TV +T~ 14.62 hf; 7, +TB as.08 hr. 

behave identically, the model makes the same predictions as those of Gani 
and Saunders [7] and Hartwell and Unger [13]. Under the assumption that 
all cells have the same cell cycle time, the relative frequencies of the 
different age classes can be described simply by (i)*+‘, where n is the 

number of bud scars. However, cells with no bud scars have significantly 
longer cell cycle times than other cells, and under these circumstances zero 
age class cells will occur in the population at equilibrium with a frequency 
of greater than 50%. This percentage increases as the differences between 
generation times of zero class cells and other cells increases (see Tables 1 
and 2). The equilibrium frequency of cells within the cell cycle is described 
by a slowly decreasing geometric distribution. 

Under nonequilibrium conditions our results show that the frequencies 
of cells of different ages in nonequilibrium populations undergo damped 
oscillations until demographic equilibrium is reached. These oscillations are 
a function of the longer cell cycle times of zero age class cells. The model 
presented here predicts well the oscillations observed in experimental batch 
cultures of Saccharomyces cerevisiae, even though this model is still a 
simplification of the actual biological phenomena involved. We have as- 
sumed for the sake of computational ease that all cells in age class 1 and 
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above have the same cell cycle times. There is some evidence that this is not 
true and that cell cycle times tend to decrease as the cell grows older. 
Nevertheless, the correspondence between the predicted and observed re- 
sults suggests that any difference in cell cycle times for cells in age class one 
or above is minor. 
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