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Ahstraet--A major problem with operations of lifting reentry vehicle having an aft center-of-gravity 
location due to large engine mass at the rear is the required hypersonic trim to fight the desired 
trajectory. This condition is most severe for lifting maneuvers. As a first step toward analyzing this 
problem, this paper considers the lift requirement for some basic maneuvers in the plane of a great 
circle. Considerations are given to optimal lift control for achieving the maximization of either the 
final altitude, speed or range. For the maximum-range problem, phugoid oscillation along an optimal 
trajectory is less severe as compared to a glide with maximum lift-to-drag ratio. An explicit formula 
for the number of oscillations for an entry from orbital speed is proposed. 

Introduction 
IN TrIIS last part  of the century,  space activities will be centered around the 
operat ions of the space shuttle, a versatile hyperveloci ty  vehicle capable of 
reentering the Ear th ' s  a tmosphere  and using its lifting characterist ics for  
aerodynamic  maneuvering.  The following generation of advanced earth orbital 
t ransportat ion sys tems are currently being studied by N A S A  to assess their 
potential cos t /per formance  payoff.  The baseline system chosen to investigate is 
a fully reusable single-stage-to-orbit  vehicle capable of  vertical take-off  and 
horizontal landing. For  this type of vehicle, an aft  center-or-gravi ty location 
resulting f rom large engine mass at the rear of the vehicle has been a continuing 
problem in terms of dynamic  stability and control (Freeman and Powell ,  1979). 

In longitudinal dynamics ,  the two main modes of oscillations are the phugoid 
mode and the angle-of-at tack mode.  Phugoid oscillation is basically a t ra jectory 
oscillation along which the center  of  mass of the vehicle oscillates about  a reference 
t ra jectory through an exchange between the kinetic energy and the potential 
energy of the system. The oscillation is particularly pronounced 
for a glide entry. Although, for  at least through the next decade,  reentry 
vehicles are designed for  near ballistic entry through the hypersonic  regime 
(Stone and Powell ,  1977; F reeman  and Wilhite, 1979), it is of interest to 
investigate some of their basic lifting maneuvers  since these will require the 
most  severe conditions on hypersonic  trim to flight the desired trajetory.  

For  this investigation, Chapman ' s  variables (Chapman,  1959) have been used 
to put the equations in dimensionless form applicable to any arbi trary configura- 
tion of the reent ry  vehicle. Part icular  considerat ions are given to optimal 
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maneuvers for achieving the maximization of a certain performance index to be 
specified. 

The variational equations 
Using standard notation with the nomenclature depicted in Fig. 1, the motion 

of a non-thrusting, lifting vehicle entering a stationary and spherical planetary 
atmosphere is governed by the equations: 

dr 
dt V sin y, 

d V _ pSCo V 2 

dt 2m - -  - g sin V, 

V ~ - -  2m g -  co sy ,  (1) 

dO V cos y - - = .  
dt r 

We shall use a parabolic drag polar 

Co = Coo + KC2L (2) 

and a normalized lift coefficient 

A = CL/X/(Coo/K) (3) 

for the lift control. In this way A = 1 corresponds to maximum lift-to-drag ratio 
E* with 

1 
E* = 2v'(KCoo)" (4) 

r.,V.,~ 
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Fig. I. Nomenclature. 
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With a locally exponential atmosphere, a Newtonian gravitational attraction, and 
the use of the modified Chapman's variables 

z - T - ~ m X /  , v = (5) 

for the altitude and speed variable, respectively, the following dimensionless 
equations are deduced (Vinh et al., 1975): 

dZ 
d--O = - kEZ tan y, 

d r _  k Z v ( l + A  2) ( 2 - v ) t a n y ,  
dO E* cos y 

d3"_  kZ)t + / l _ l ~  (6) 
dO cos y I~ v ]  

dO 
- - = 1 .  
dO 

In this formulation, the characteristic of the vehicle is represented by the 
maximum lift-to-drag ratio, E*, while the property of the atmosphere is specified 
by the constant k 2= fir. For the numerical computation, we shall take E* = 3 
and k 2= 900 as a representative value for the Earth's atmosphere. The last 
equation in system (6) is introduced to retain the range angle as state variable. 
The single control is the normalized lift coefficient A subject to the constraint: 

I~l ~ amax- (7) 

Using the maximum principle, we introduce the adjoint vector p to form the 
Hamiltonian: 

F kZv(1  + A 2 ) 
~- (2 - v) tan 3'] H = Po - k2ZPz tan 3" - Pv [ ~ c ~  3" 

+ P~ LC--~s ~ 

The two integrals of the variational problem are 

p o = C ,  H = 0 .  (9) 

Hence, only two of the three remaining adjoint variables are to be found. For the 
most general free-time problem, through normalizing of the adjoints we only 
need to estimate two arbitrary constants for obtaining the optimal solution to the 
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problem considered. In particular, for a free-range problem, C = O, the problem 
is reduced to a one-parameter problem. To show this, we first deduce that the 
optimal lift control is either on the boundary,  ]AI= Amax, or in the interior, with a 
modulated lift coefficient such that 

A E*pr 
= 2vp~" (10) 

For this control, the adjoint equations are: 

dpz kv (1 + A 2) kA 
dO = k2pz tan y + p~ E ' c o s y  P v c o s y '  

.dpo [kZ(1 + X 2) ] _P_P_z 
d0 = p~ 1 - E - - * - c ~  tan 3' v 2, 

dP~'=co-~{k2Zpz+pv[kZv(l+A2)siny+(2-V)]dO [ E* (11) 

- kprZA sin V~. 
J 

By taking the derivative of eqn (10), using the state and adjoint equations, we 
have the equation for the modulated lift control: 

dh kZ(1-A2)siny +2A(A +E*tany)  E* ( 2) 
d--0 = 2 c o s 2 y  E*v +2c-~-y~ F - l +  , (12) 

where F is the ratio 

F = t-Tn2 z (13) 
vpv 

By taking the derivative of this equation, we have the equation for F:  

dF k3Z(1-A 2) 2 F  E* 
d0 E - ~ c ~ y  +~-vv (A+ tan-/). (14) 

The Hamiltonian integral becomes 

kZ(1-A2) t 2(1-v)A ( 2) C 
E* cos y E*v q- F - 1 + tan y = --'vpv 05)  

The variational system consists of the three state equations, eqns (6) for Z, v 
and % eqn (12) for the optimal lift control A, and eqn (14) for the additional 
adjoint F. Since the initial values of the state variables are prescribed, the 
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integration of the system requires selecting two arbitrary initial values A0 and F0 
for it and F. These values are to be found such that the final and transversality 
conditions are identically satisfied. In particular, if the final flight path angle is 
free, pv(Of)= 0, and hence 

A t = 0. (16) 

In the case where the range is free, C = 0. The Hamiltonian integral, eqn (15), 
evaluated at the initial time, provides it0 in terms of F0 or vice versa. The 
problem is a one-parameter problem. 

As applications, we shall consider the following problems. 

Optimal pull-up maneuver 
The range is free, and hence the only arbitrary parameter involved is the 

initial lift coefficient Ao. The initial condition is 

0 = 0 ,  Z = Z o ,  V=Vo, Y=Yo. (17) 

It is proposed to find the optimal lift control to bring the vehicle from this initial 
condition to the final instant, 0 t = free, such that either 

Z = Z~, vf = max., (18) 

o r  

v=vf ,  Z I=min .  (19) 

The first condition is the condition of maximum final speed when the vehicle 
reaches a prescribed final altitude. The second condition is the condition of 
maximum final altitude for a prescribed final speed. The two problems are 
equivalent and they are solved by a single routine. For the numerical com- 
putation, we take Z = 0.5, v0 = 0.15, y0 = - 1/2 E*, with E* = 3 and k 2 = 900 for 
the Earth's atmosphere. Since Yt is free, for a totality of the family of optimal 
trajectories, it suffices to use A0 as parameter for integration until At--0. The 
solution is given in Fig. 2 as the plot of the altitude gain, or loss, versus the 
speed ratio V/V0. Through the use of the dimensionless variables, we deduce the 
variation in the altitude: 

[3Ah = fl(h - ho) = log ( ~ ) ,  (20) 

which is independent of the physical characteristics of the vehicle. In the figure, 
the solid lines are the different optimal trajectories leading to the terminal 
boundary in dashed line. Along this boundary we can read the maximum altitude 
gain for any prescribed loss in the speed, or the resulting maximized final speed 
for any prescribed final altitude. Low initial values of the lift coefficient 
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16( h- h o) 4 

L,,,~ • i . o  

3 2 ~ i ~ A L  BOUNDARY 

t \\ \" t~5~, 

~ ~ , z . q  V/Vo 

0.8 ~ 1 . 0  

- I  

Fig. 2. Solution for the optimal pull-up maneuver. 

correspond to high final altitudes. The variation of the optimal lift coefficient is 
shown in Fig. 3. For low final altitudes, A decreases from the initial value to zero 
at the final time while for high final altitude, the lift coefficient first increases 
slowly to a maximum value and then decreases to zero. The lift coefficients for 
different trajectories pass through nearly the same value just after passage 
through the lowest point, y = 0. For all these pull-up trajectories, the flight path 
angle increases from the initial negative value, passes through a maximum during 
the ascending phase and then decreases. At that point, the trajectory has an 
inflection point. 

Skip trajectory for maximum rang~ 
In a skip trajectory, the vehicle enters the atmosphere at very high altitude at 

a speed at orbital magnitude and uses its lifting capability to negotiate a turn in 
the vertical plane. It is then ejected from the atmosphere and the following arc 

~'o" 2 2 

1 .3  ~ 

1.0 I 

I 
. I0 ° - 5 ° 0 

k 

B ° I 0 ° 

Fig. 3. Variation of the optimal lift coefficient for pull-up maneuver. 
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becomes Keplerian. This maneuver  is depicted in Fig. 4. The skip maneuver  is 
an important maneuver.  It can be used to achieve maximum range. This is 
because if the initial speed is sufficiently high, the Keplerian arc following each 
skip can contribute significantly to the total range, while a t rajectory totally 
immersed inside the atmosphere is destined to have limited range. 

For  a vehicle entering the atmosphere,  we must start the integration with 
some non-zero initial value Z0 of Z. We shall adopt the convention that 
atmospheric entry is initiated when the acceleration due to atmospheric lift is 
equal to a certain small fraction of the gravity acceleration. From the definition (5) 
of Z and v, the dimensionless acceleration due to lift force at maximum lift-to-drag 
ratio is: 

a = k Z v .  (21) 
g 

Taking a /g  = 0.015, with an initial speed equal to orbital speed, v0 = 1.0, we have 
the value Z0 = 0.0005. After the skip, beyond the exit point Z l = Z0, the flight is 
considered purely Keplerian providing the coasting range 2~ until the next 
atmospheric phase. The problem of maximum range is first solved by consider- 
ing the value O r at the exit point as free,  and hence C = 0. This is suggested by 
the fact  that at orbital speed with small value of y0, the coasting range 2(  is 
significantly larger and more sensitive to change than the atmospheric skip 
range (0 i -  00). The next case to be addressed is the maximization of the total 
range (0 I - 00) + 2~. 

From Keplerian motion, it can be shown that the performance index to be 
maximized is 

1 ~v/(1 - vl(2 - vl) c°s2 YI) (22) 
J = cos s r =  1 -  v r cos 2 Yr ' 

where subscript f denotes the condition at exit point. Since 0 f is free,  the sole 

Fig. 4. Geometry of a skip trajectory. 
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parameter  is A0. It is to be selected for  the integrat ion such that  at the final time, 
the t ransversa l i ty  condi t ion  

OJ a J  

pv t = c~vt, pv~ = 03"1 (23) 

is satisfied. F r o m  eqn (10), this leads to the condi t ion:  

hi = E*(1 - v t - tan 2 3"t) (24) 
2 tan 3'I 

which  must  be satisfied by A at the final time. As numerical  example ,  we have 
the fol lowing opt imal  t ra jec tory :  

Z0 = 0.0005, v0 = 1.0, 3"0 = - 4 ° 
Z I = 0.0005, v t = 0.87475, 3"t = 6.02° 
A0 = 0.2925, 0 i -  00 = 0.17646, 2¢max = 1.18958 

To show the opt imal i ty  charac te r  of  this t ra jec tory ,  we integrate the state 
equat ions  (6), using a cons tan t  lift coefficient,  A = constant .  The  bes t  cons tan t  )t 
which  gives the max imum coast ing range is f ound  to be A = 1.024, and the 
co r re spond ing  results are: 

Z I = 0.0005, v I = 0.90876, 3't = 3-58° 
0 I - 00 = 0.20633, 2~max = 1.07743. 

It shows that,  using opt imal  lift modula t ion  we have an improvemen t  of  10.41% 
in the coas t ing range as c o m p a r e d  to the bes t  solut ion obta ined  with a cons tan t  lift 
coefficient. 

We now solve the second  case,  in which  we maximize  the total range f rom 
the initial point  to the end of  the coas t ing flight. The  p e r f o r m a n c e  index to be 
maximized is then 

1 - v I cos 2 3'1 ] 
J = (0i - 00) + 2 arc  cos X/(1 - vi(2 - v t) cos 2 3"I) " (25) 

This time, the final range is not  free,  and hence  C ~  0. There  are two parameters ,  
A0 and F0, to be found.  In  addit ion to condi t ion (23), we have C = p0 l = OJ/O0  i = 

1. By  compar ing  the eqns (22) and (25), it is clear that  the condi t ion  (24) remains  
en fo rced  in this problem.  We  need one more  t ransversa l i ty  condi t ion  because  
this case has two parameters .  It  comes  f rom the Hami l ton ian  integral (15) 
evalua ted  at the final time. With  C = 1 and po~ obta ined  f rom eqn (23) with J as 
given by  eqn (25), we have upon  using eqn (24) for  simplification 

E * c o s ~ i  E*  + 1 - ~ v  I + v  I F  1 t a n ~ l = 0 .  (26) 
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The transversality conditions (24) and (26), applied at the final time Z = Z I, are 
used to adjust the initial values A0 and Fo required for the integration. 

The problem is solved and, this time, it is found that 

Z I = 0.0005, 
A0 = 0.57921, 
O r - 00 = 0.18173, 

v t = 0.88 I01, 
Fo = 3.6873, 
2s ¢ = 1.18692. 

Yt = 5.630, 

The total range obtained is J = (0 t - 0 0 ) +  2~: = 1.36865, which is slightly higher 
than the total range J = 1.36604 of the first case where only the coasting range is 
maximized. 

Glide trajectory for maximum range 
We now use the same initial condition at entry to find the optimal t rajectory 

which maximizes the total range until a final low speed v I = 0.001 is reached. 
This speed is of the order of the speed of sound at low altitude. Since the 
equations derived lead to Keplerian motion when Z -~0 ,  we can integrate them 
through the near ballistic phase in the vacuum. The initial values A0 and F0 are to 
be selected such that at v = v/, for free Yt, Ar = 0 and in addition 

kZtv  t = 1. (27) 

This condition expresses that at the final time the acceleration due to the lift is 
equal to the gravity acceleration. The variation of the altitude as function of the 
range for the optimal t rajectory is plotted in Fig. 5 as a solid line. The dashed 
line is the plot of the t rajectory with maximum lift-to-drag ratio, )t = 1. The 
amplitude of oscillation is larger for  flight at maximum lift-to-drag ratio. At the 
beginning, the vehicle skips out repeatedly into the vacuum. For this case, there 
are two skips along the optimal t rajectory and three skips along the trajectory 
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Fig. 5. Variation of the altitude for max imum-range  glide. 
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with maximum lift-to-drag ratio. Hence, besides a range improvement of about 
2%, the optimal trajectory with less variation in the altitude is more suitable to 
an efficient guidance program. The reason that the improvement is relatively 
small is that the entry condition at orbital speed, v0 = 1.0, with small entry angle 
is ideal for an equilibrium glide at maximum lift-to-drag ratio. With either higher 
or lower initial speed the difference in the range angle is more pronounced. 
Figure 6 shows the variation of the flight path angle. While along the optimal 
trajectory, the flight path angle oscillates near the value zero, the amplitude of 
oscillation in a maximum lift-to-drag ratio program is larger. Finally, Fig. 7 plots 
the variation of the optimal normalized lift coefficient and the variation of the 
speed ratio. It is seen that A oscillates near the value unity for maximum 
lift-to-drag ratio and tends to this value at low altitude. This means that, at low 
speed, the optimal trajectory is practically at maximum lift-to-drag ratio. 

With the variational equations available, while it is easy to obtain the solution 
to any one-parameter problem, for a two-parameter problem and specially for 
the problem of glide with maximum range requiring a long integration the 
numerical solution is difficult to obtain using the indirect method through the 
maximum principle. This is because the trajectory generated is very sensitive to 
the initial values of the adjoints which are here represented by A and F. The 
values of A0 and F0 have to be evaluated with great accuracy to avoid a 
premature termination of the integration when either A becomes very large or 
tending to zero. Fortunately, the equations in A and F are fairly stable with a 
backward integration. This is because at down range A tends to unity and dMd0 
stays near zero. This leads to the following procedure. A trajectory using A = 1 
is generated providing a set of values ZI, v~ at a certain arbitrary low speed of 
the order of the speed of sound. The point considered will insure that A = 1 and 
can be taken exactly equal to unity. An average value yl can also be evaluated• 
Starting with Z~, y~ and A~ = l, and using v~ and F] as arbitrary parameters, the 
equations can be integrated backward until v0. A good initial value F~ can be 
obtained by using (dA/d0)~ -- 0. At v -- v0, the prescribed condition on Z0 and Y0 
are used for the iteration. Since at the start of the integration a slight variation in 
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I 

- -  X . -  o p t i m o l  , 
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Fig. 6. Variation of the flight path angle for maximum-range glide. 
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Fig. 7. Variations of the optimal lift coefficient and the speed for maximum-range glide. 

v does not significantly change the range and the slope dMd0 is small, the 
parameters selected for iteration are not sensitive. After a few adjustments, the 
trajectory leading to the initial point is obtained. A small portion of the range 
from the speed v~ to the final prescribed speed vt can be added by forward 
integration. The technique proposed is very efficient and trajectories generated 
with various values of E* from the prescribed initial conditions Z0 = 0.0005, 
Vo = 1.0, 3'0 = - 4  ° are presented in Figs. 8 and 9. 

Phugoid oscillation 
As seen in Fig. 8, a typical characteristic of maximum-range glide is the 

oscillation in the altitude. This exchange between the potential energy and the 
kinetic energy is called the phugoid oscillation. From Fig. 5, we notice that the 
period of oscillation is about the same for both the maximum lift-to-drag ratio 
glide and the optimal glide. It is larger at high altitude and decreases as the 
altitude decreases. This is to be expected since when Z ~ 0 ,  the motion is 

I 0  

0 

- 5  

- I 0  

- 15  

~ ( h - h d  

51 

Fig. 8. Variation of the altitude for maximum-range glide for different values of E*. 
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Fig. 9. Variations of the optimal lift coefficient and the speed for maximum-range glide 
for different values of E*. 

Keplerian and the period of oscillation is the orbital period while at low altitude, 
an approximate expression for the phugoid period is T = ~rx/2(2)V/g (Vinh and 
Dobrzelecki, 1969). Hence, in terms of 0, the phugoid period decreases from 2~r 
and tends to ~r~v/(2v) at low speed. To find the period of phugoid oscillation, we 
consider the trajectory with maximum lift-to-drag ratio, A = l, and small flight 
path angle, y ~-0. Then the state equations become: 

dZ -- k2Zy ,  
dO 

d v 2 k Z v  
d--0 = E* ' (28) 

d_z 1 
= k Z +  l - ± .  

dO v 

If the flight path angle varies slowly, dy/d0-~0, and we have the so-called 
equilibrium glide condition 

1--/2 
k Z  = (29) 

i) 

This leads to the change of variable 

k Z v  
Y = 1 -  v -  1, (30) 

where Y is treated as a small quantity except at the beginning where Y can be 
large. Using v as the independent variable, eqns (28), with the change of variable 
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(30), become 

d Y =  E*k2y ÷ Y + I 
dv 2 ( 1 - v )  v(1 v)' 

dy  _ E * Y  
dv 2 v ( Y +  1)" (31) 

By eliminating 3' between these two equations, we have a second-order non- 
linear differential equation for Y 

.d2Y d Y  E*2k2y ( Y + I )  
v ( 1 - v ~ ' - z - - c - ( l + v ) - z - - ÷  uv ) ~ v =0 .  (32) 

The equilibrium solution, eqn (29), does not provide the oscillation in the altitude 
but gives an average value with good accuracy.  Hence,  the function Y gives the 
oscillation and tends to zero near the end of the trajectory.  By linearizing this 
equation, we obtain: 

. d E y  . d Y +  [ E * E k 2 1 ~  y = _ l .  
v ( 1 -  v ' -d-~v 2 - ( l + V ) -d-vv ~---4-- + v } v (33) 

Since the parameter  E*2k2/4 is large, in the homogeneous equation, when v is 
not too small, we can neglect the term l /v and obtain a hypergeometric  equation. 
In general, with the change of variables 

U _<~r 
Y - (tan ~-)~' v = cos 2 ~', 0 ~< z ~ ~-, (34) 

the linear equation (33) is t ransformed into 

d 2U [ 1 - 4 cos2~ " ] .  4 sin z(tan r) 1/2 
-d~z + E*2k2 ÷ 4s~f-~-~-~-~ ~ . j u =  cos3r  (35) 

In the homogeneous equation, the non-constant  term in the coefficient of U is: 

1 - 4 cos 2 ~" 1 - 4v 
4 sin 2 z cos: ~" - 4v(1 - v) . (36) 

In the range of speed of interest, when v decreases from 0.95 to 0.01, this 
coefficient increases f rom a negative value -14 .737 to a positive value 24.242. 
On the other hand, the term E*Ek 2 is very large. Hence,  the solution of the 
homogeneous equation in Y is practically: 

1 
Y = (tan ~')~ [Ai cos (E*k~) + A 2 sin (E*k~')]. (37) 
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To this equat ion,  we add a part icular  solution of  eqn (35). Consider ing  the 
solut ion (37), when  v --> 0, tan z ~ oo and Y ~ 0 as expec ted .  Fur the rmore ,  Y, and 
hence  the "a l t i tude"  Z by  eqn (30), has an osci l la tory  mot ion  in r with f r e q u e n c y  
E*k.  Actual ly ,  this should be v iewed as an oscil lat ion about  the mean  value 
given by the equil ibrium equat ion  (29) which  has been used as the re fe rence  
solution in the l inearization. W h e n  ~- varies f rom 0 to zr/2, the a rgument  of  the 
t r igonometr ic  func t ions  in eqn (37) varies f rom 0 to E*k~d2.  Hence ,  the number  of  
oscil lations is approximate ly :  

E * k  
n = 4 (38) 

Finally,  it should be not iced that  the cons tan t  f r e q u e n c y  E * k  is with respect  
to z. With respec t  to 0, we use the solut ion for  equil ibrium glide, eqn (29) to 
write the equa t ion  for  v: 

dv 2(1 - v) 
d0 - E*  (39) 

Integrat ing and changing  to r, we obtain:  

sin ~" = e0/E." (40) 
sin r0 

Because  of  the exponent ia l  funct ion ,  when  ~" is plot ted versus  0, it varies s lowly 
at the beginning and more  rapidly for  larger 0. Hence ,  with respec t  to 0, the 
period of  osci l lat ion decreases  during the glide. 
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