TUESDAY, MARCH 17, 1981 PM PEDIATRIC CARDIOLOGY—CLINICAL STUDIES 4:00-5:30

COLLABORATIVE STUDY OF BLADE ATRIAL SEPTOSTOMY Sang C. Park MD, FACC; William H. Neches MD, FACC; Charles E. Mullins MD, FACC; Robert A. Mathews MD; Frederick J. Fricker MD; Lee B. Beerman MD, Cora C. Lenox MD, FACC, J. R. Zuberbuhler MD, FACC University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pa.

During the past 3 years, 5 institutions have collaborated in an evaluation of the efficacy of blade atrial septostomy (BS). Forty-three patients underwent BS, including 25 with transposition of the great arteries (TGA), 10 with mitral atresia complex (MAC), 3 with tricuspid atresia (TAT) and 5 with miscellaneous anomalies. Ages ranged from 1 day to 12 years. Twenty-nine (67%) were under 6 months of age, 6 between 7 and 12 months and 8 were older than 1 year at the time of BS. Clinical improvement occurred in 20 of 25 (80%) patients with TGA. In 2 patients a large atrial septal defect (ASD) was created by the procedure but adequate mixing did not occur and early Mustard operation was performed. Three other patients had borderline size ASD prior to BS and the blade did not engage the interatrial septum (IAS). Seven of 10 patients with MAC had a good result with BS. In 2 patients in this group the LA was too small to permit extension of the blade. Three patients with TAT and the 5 patients in the miscellaneous group had an excellent result. Immediate improvement occurred in 81% of the 43 cases. Four patients had intact IAS and BS was successfully performed by transseptal technique. Among 17 patients who have undergone follow-up evaluation of interatrial opening (IAO) re-stenosis of the IAS was observed in 3 patients 10 to 22 months after the BS. There was a single mortality, a result of laceration of the left atrial wall. Minor complications were observed in 3 patients. BS is an effective palliative procedure, even with thickened IAS or with an intact IAS.

HEMODYNAMIC EFFECTS OF HYDRALAZINE IN INFANTS WITH LARGE VENTRICULAR SEPTAL DEFECT.

Robert H. Beekman, M.D., Albert P. Rocchini, M.D., Amnon Rosenthal, M.D., F.A.C.C., University of Michigan Medical School, C.S. Mott Children's Hospital, Ann Arbor.

To evaluate the effects of acute afterload reduction, Hydralazine (HZ, .2 mg/kg) was administered at cardiac catheterization to 6 infants with large ventricular septal defect (VSD). Age ranged from 2.5 to 11 (mean 5.3) months. Prior to HZ and 5, 15, 25, and 35 minutes after HZ the following were measured: Ao, pulmonary capillary wedge (PcW), PA, RA, SVC pressures and saturations, heart rate (HR), and oxygen consumption (VO2). Hemodynamic effects were noted 5 minutes post-HZ but were most pronounced 35 minutes post-HZ. Pre-HZ baseline data were therefore compared to 35 minute post-HZ values. . Pulmonary flow (Qp) did not change while systemic flow (Qs) increased significantly (4.6 \pm 0.3 to 6.6 \pm 0.5 L/min/m², p<.01, mean \pm SEM). The Qp/Qs ratio decreased (3.5 \pm 0.4 to 2.3 \pm 0.3, p<.01) as did the absolute left to right shunt (11.1 \pm 1.5 to 8.2 \pm 1.4 L/min/m², p<.05). As expected HZ caused a significant decrease in systemic resistance (Rs, 13.5 ± 0.7 to 9.6 ± 0.8 units, p<.001). Pulmonary resistance, PcW pressures, HR, and VO2 did not change following HZ. A small but significant decrease in RA pressure $(4.2 \pm 0.7 \text{ to } 2.3 \pm 0.7 \text{ mmHg})$ p<.05) was observed. In conclusion, HZ caused a significant increase in Qs, and a significant decrease in both Qp/Qs ratio and absolute left to right shunt in 6 infants with large VSD. These effects appear to be related to the decrease in Rs which occurred with HZ. This is in contrast to our previous work documenting hemodynamic deterioration with nitroprusside in a similar group of infants with VSD. Thus, HZ may be beneficial in the management of infants with large VSD.

SAFETY AND EFFICACY OF SHORT AND LONG TERM VERAPAMIL THERAPY IN CHILDREN WITH TACHYCARDIA David Sapire, MD; Margo Schleman, MD; Anna O'Riordan, MD; Iain Black, MD, Temple University and St. Christopher's Hospital for Children, Philadelphia, PA and The University of Texas Medical Branch, Galveston, Texas

Seven children aged 3 months to 11 years have been treated with Verapamil (V) because of resistant, symptomatic su-praventricular tachycardia (SVT), or because of complications of conventional therapy. Two of 3 patients with congenital heart disease were post-operative. The others had no gross cardiac anomalies. Three patients had SVT with WPW syndrome, 3 had ectopic SVT and 1 had atrial flutter (AF). Intravenous V was given in a dose of 0.15 to 0.25 mg/kg in 6 patients, 4 of whom converted successfully. One patient was placed on oral V only. Treatment failed in the patient with AF and one patient with WPW and a wide QRS tachycardia. Five patients were placed on continuing oral therapy. One patient died of post-operative complications while on V. Four patients have remained on oral V for 1 to 4 years at this time. The dose is 80 mg., 6 or 8 hourly depending upon response. Two of these have ectopic SVT which recurs when therapy is stopped. In the 2 with WPW and SVT, one patient has had no recurrences and in the other attacks have decreased from 1-2/week to 1-2/month. The duration of these attacks has also diminished. There have been no side effects of chronic drug administration. None of the 6 patients who received intravenous V showed any untoward effects during administration. Our experience indicates that V which so far has not been used extensively in children is an effective and safe anti-arrhythmic drug capable of controlling both ectopic and re-entrant SVT when conventional methods fail. The presence of underlying congenital heart disease should not be contraindication to its use.

CLINICAL AND ELECTROPHYSIOLOGIC PREDICTION OF NEED FOR PACEMAKER INSERTION IN CHILDREN WITH CONGENITAL COMPLETE ATRIOVENTRICULAR BLOCK Peter P. Karpawich, MD; Paul C. Gillette, MD, FACC The Lillie Frank Abercrombie Section of Pediatric Cardiology, Baylor College of Medicine, Houston

The criteria for pacemaker insertion (PM) in patients with congenital complete AV block (CCAVB) have not been defined. In an attempt to define such criteria we evaluated 22 children with CCAVB, ages 1 day-14y (median 7y) with surface ECG, treadmill exercise testing (TM) noting change in resting heart rate (HR) and prevalence of ventricular ectopy (PVC) and intracardiac electrophysiologic studies (EPS) including identification of site of block, corrected pacemaker recovery time (CPRT), and His to ventricle interval (HV). Patients were followed 1-19y (median 6y), noting age of onset of any syncopal episodes (SX). Associated congenital heart defects (CHD) were found in 5/22 children. Site of block was localized to the AV node (AVN) in 17/22, His Bundle (HB) in 3/22, below HB (BHB) in 1/22, and was unknown in 1/22 patients. Data are as follows: was unknown in 1/22 patients.
No. BLOCK SITE HR CHD | SX Data are as follows: EPS

CPRT-msec

							CFK1-	msec	NO.	<i>%</i> ← Ω Γ.Κ	PVC
[>2000		(mean)	
	8	1	1	45	2/10	6/10	-	5/9	5/10	100	2/5
11	9	2	1	60	3/11	1/11	2/9	2/9	6/11	130	1/6
The HV was normal in 20/20 patients. Evaluation of the 7											
no patient with HR>52BPM experienced syncope (p<0.01).											
cantly different between sites of block. We conclude:											
1. Localization of CCAVB to the AVN does not mitigate											
against syncope; 2. The best single predictor of SX either											
clinically or during EPS was a low HR; 3. EPS may be of											
little benefit as neither site of block nor CPRT are valid											
predictors of SX; 4. TM is of little benefit in predicting											
te o	f bl	oc k	or	SX.							
	e HV pat of pat RT e 000m RT>2 ntly Loc ains inic ttle edic	11 9 e HV was patient of age. patient RT estim 000msec. RT>2000m tly dif Localiz ainst sy inically ttle ben edictors	10 8 1 11 9 2 e HV was no patients r of age. T patient wi RT estimati 000msec. H RT>2000msec trly differ Localizati ainst synco inically or ttle benefi edictors of	e HV was normal patients revea of age. The H patient with H RT estimation w 000msec. Howev RT)2000msec. Totalization o ainst syncope; inically or durttle benefit as edictors of SX;	10 8 1 1 45 11 9 2 - 60 e HV was normal in patients revealed of age. The HR i patient with HR>5 RT estimation was 000msec. However, RT>2000msec. The ntly different bet Localization of C ainst syncope; 2. inically or during ttle benefit as ne	e HV was normal in 20/2 patients revealed AVN of age. The HR in all patient with HR>52BPM RT estimation was perfo 000msec. However, 3 as RT>2000msec. The %Ain ntly different between Localization of CCAVB ainst syncope; 2. The binically or during EPS ttle benefit as neither edictors of SX; 4. TM is	10 8 1 1 45 2/10 6/10 11 9 2 - 60 3/11 1/11 e HV was normal in 20/20 pat patients revealed AVN block of age. The HR in all SX p patient with HR>52BPM exper RT estimation was performed 000msec. However, 3 asympto RT>2000msec. The % in HR d ntly different between sites Localization of CCAVB to th ainst syncope; 2. The best s inically or during EPS was a ttle benefit as neither site edictors of SX; 4. TM is of	AVN HB BHB (Md <2000 10 8 1 1 45 2/10 6/10 - 11 9 2 - 60 3/11 1/11 2/9 e HV was normal in 20/20 patients. patients revealed AVN block in 6/0 fage. The HR in all SX patient patient with HR>52BPM experienced RT estimation was performed in 4/7 000msec. However, 3 asymptomatic RT>2000msec. The % in HR during ntly different between sites of bl Localization of CCAVB to the AVN ainst syncope; 2. The best single inically or during EPS was a low H ttle benefit as neither site of bl edictors of SX; 4. TM is of little	AVN HB BHE (Md <2000>2000 10 8 1 1 45 2/10 6/10 - 5/9 11 9 2 - 60 3/11 1/11 2/9 2/9 e HV was normal in 20/20 patients. Eva patients revealed AVN block in 6/7, 3 of age. The HR in all SX patients was patient with HR>52BPM experienced sync RT estimation was performed in 4/7 SX p00msec. However, 3 asymptomatic patie RT>2000msec. The % in HR during TM wantly different between sites of block. Localization of CCAVB to the AVN does ainst syncope; 2. The best single prediinically or during EPS was a low HR; 3. ttle benefit as neither site of block edictors of SX; 4. TM is of little bene	AVN HB BHE (Md <2000>2000 10 8 1 1 45 2/10 6/10 - 5/9 5/10 11 9 2 - 60 3/11 1/11 2/9 2/9 6/11 PHV was normal in 20/20 patients. Evaluati patients revealed AVN block in 6/7, 3 of whof age. The HR in all SX patients was <52B patient with HR>52BPM experienced syncope (RT estimation was performed in 4/7 SX patient 000msec. However, 3 asymptomatic patients a RT>2000msec. The % in HR during TM was not ntly different between sites of block. We c Localization of CCAVB to the AVN does not mainst syncope; 2. The best single predictor inically or during EPS was a low HR; 3. EPS ttle benefit as neither site of block nor CP edictors of SX; 4. TM is of little benefit	10 8 1 1 45 2/10 6/10 - 5/9 5/10 100 11 9 2 - 60 3/11 1/11 2/9 2/9 6/11 130 e HV was normal in 20/20 patients. Evaluation of topatients revealed AVN block in 6/7, 3 of whom had of age. The HR in all SX patients was <52BFM where patient with HR>52BPM experienced syncope (p<0.01) RT estimation was performed in 4/7 SX patients; all 000msec. However, 3 asymptomatic patients also had RT>2000msec. The XA in HR during TM was not signifully different between sites of block. We conclude Localization of CCAVB to the AVN does not mitigate ainst syncope; 2. The best single predictor of SX e inically or during EPS was a low HR; 3. EPS may be ttle benefit as neither site of block nor CPRT are edictors of SX; 4. TM is of little benefit in predi

%△HR | PVC