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Abstract--Noise analysis of a critical, infinite-length, zero-power line reactor is given using the Langevin 
technique. A one-speed model is used and delayed neutrons are ignored. Stochastic analysis is carried 
out starting from the Boltzman equation with the assumption that neutrons move only in both 
directions in the line reactor. The power spectrum of neutron fluctuations is obtained and compared 
with that computed from diffusion approximation. Exact expressions for auto and cross-power spectrums 
of non-fission neutron detectors' outputs are also obtained. 

l. INTRODUCTION where ~ is the Boltzman operator. N(x, f l ,  t) satisfies 
the stochastic equation (Akcasu and Osborn, 1966); 

In the present study, neutron and detectron fluctuation 
in an infinite, one-dimensional, one-speed prompt [tg/Ot + ~t]N(x, gl, t )=  s ( x ,~ ,  t) (2.2) 

critical line reactor is analysed using Langevin's s(x,t'~, t) is called 'noise equivalent source' (NES). 
technique. This model was chosen because stochastic Defining 
analysis can be carried out rigorously starting from 
the transport equation, n(x, f~, t) = N (x, f l ,  t) - ( N )  

It is assumed that the neutrons move only in two and subtracting (2.1) from (2.2) 
different directions on the line. As a result of this 
assumption, fission neutrons are born in one of these [O/Ot + ~] n(x, 1"~, t) = s(x, ~ ,  t) (2.3) 

two directions with a probability of 1/2. Scattering Operator ~ for one speed reactor model is given by 
events are limited to that of backscatter. Delayed 
neutrons are ignored in this study. ~ = v(l'l. V) + r, - (v)r~.F(l'~) 

This work is an application of the space-dependent r 
reactor noise analysis using Langevin's technique - r ,  | F ( f ~ " - - - ~ ) d f l "  (2.4) 
(Akcasu and Osborn, 1966) to the above mentioned J 

model (Genqay, 1977). One may find Langevin's tech- where v is neutron speed and (v)  represents the 
nique in general in (Lax, 1966) and fluctuation analysis average number of neutrons liberated for each neutron 
in (Lax, 1960). The noise equivalent source concept absorbed in a fission reaction, r~ = vY-i, Xi is macro- 
which is used in this work is an elaboration of the scopic cross section for reaction i and i refers to r, f, 
method used by Cohn (1960). Extensive literature on s, a, t which represents fission, scattering, absorption 
the other applications of the same technique are cited and absorption plus scattering events respectively. 
in (Satio, 1974). The fundamental aspects of the F(~"---* ~ )  is scattering frequency and F(fl)  d f l  is the 
technique are also given in (Williams, 1974) besides probability that a neutron born of fission will emerge 
the related references, in dft about f~. 

Neutron population for the model under considera- 
2. POWER SPECTRAL DENSITY tion may be given with the aid of Dirac delta function 

a s  
N(x, f l ,  t) represents the instantaneous neutron 

density at phase point (x, 1"1) at instant t. The average N(x, ~ ,  t) = Nl(X, t)b(fl  - 1"~o) 
of rapidly fluctuating neutron density N(x, t) which is + m2(x , t)~(~'~ + if}o) (2.5) 
given by SN(x, ~ ,  t)df~ is constant for the critical 

reactor under consideration and will be represented by where the indices 1 and 2 represents the neutrons'  
(N) .  ( N )  satisfies the following equation: move in the direction of rio, - l ' l o  respectively, t'lo is 

~ ( N )  = 0 (2.1) a unit vector which lies on the line indicating positive 
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direction. Thus, for the fluctuations in neutron popula- and 

tion and NES, the following expressions may be (ni(x, t)nj(x', t')> = ~ . . j (x ,  t;x', t') 
written: 

for i,j = 1,2, i #  j, the following relations can be 
nx(x,t) = n(x ,~o , t )  = N1(x,t) - (NI> "~ obtained: (2.6) f 

n2(x,t) n ( x , - D r ,  t) = N2(x,t) - ( N 2 ) J  
L#LP'q~.,,,(x, t; x', t') 

SI (X, t) S(X, DO, t) 5 
(2.7) = ([~si(x ,  t) + Asj(x, t)][~'jsi(x', t') s2(x, t) s(x,  - DO, t ) )  

+ Asj(x', t')]> 
Since the reactor is assumed to be in a steady state 

condition, the average density of neutrons moving in = ~ ( s i ( x ,  t)si(x', t')> + A~(s i (x ,  t)sj(x', t')) 
directions 1 and 2 is equal to ( (NI>  = (N2>) and + A~<sj(x, t)si(x', t')> 
(N t  > + (N2> = <N). As mentioned above, neutrons 
born of fission have equal chances of having the + A2(sj(x, t)sj(x', t')> (2.14) 
direction D.o or -D.o  in the reactor, therefore L,e~'q~,~(x, t; x', t') 

V(l'~) = ½16(1~ - Do) + 6(f l  + ~o)] (2.8) = <[~s,(x,t) + Asj(x,t)][(~sj(x',t ') 
Since scattering events are limited to that of back- + Asi(x', t')]> 
scatter, 

F(f~"---~ ~ )  = 6(1"~" + fl) (2.9) = ~..~i(si(x, t)s~(x', t')) + a ~ ( s i ( x  , t)si(x' , t')) 

+ A~<s~(x', r)sj(x, t)> 
In a critical reactor ra = (v>r:, then defining 

+ A2(si(x, t)si(x', t')> (2.15) 
2A = 2r t - (v>rf = (v>r z + 2rs (2.10) 

where i,j = 1,2, i #  j in both equations. The cor- 
and integrating both sides of (2.3) over dl 'k using relation functions of NES on the right hand side of 
equations (2.4)-(2.10), the following sets of equations (2.14) and (2.15) will be evaluated in Section 3. Let 
are obtained: operator ~¢ be defined 

conl(x'c~--t) + v t3nl(x,t~_~__t) ] ~¢ = .~¢£#' (2,16) 

] 

Since the reactor is assumed to be in a stationary 
+ A [ha(X, t) - n2(x, t)] = Sa(X, t) (2.11) state and have infinite length, 

con2(x,t) con2(x,t) ~[~.~,flx, t;x',t ')  = , t[~,m(y,z  ) (i,j = 1,2) 

co t v cox where y = x - x ' ,  ~ = t - t ' .  As a result of this 

- A [nl (x, t) - n~ (x, t)] = s2 (x, t) transformation 

co Operators ~ ,  ~2, and L: are defined as ~ = ~ + v ~yy + A 

~, =~+vux+A ] 0 0 
~', = - t3-~ - V ~y + a 

co co (2.12) (2.17) 
~ = ~ - V U x +  A o o 

L:= ~2  -/12 
co 

A prime will be used to indicate the same operators ~¢2 = - ~ + v ~yy + A 
of independent variables of t' and x'. Then (2.11) gives 

Equation (2.15) gives 
t.~nl(x, t) = ..~2sl(x , t) + AS2(X , t)'} 

.~q'n2(x, t) ~ s : ( x ,  t) + As~(x, t )J  ~" (2.13) (co2 co co2) 
- -  1 ) 2  - -  .lleb.~,,(y, z) = ~ + 2A -~ By ~ 

For  auto- and cross-correlation functions of nt(x, t) 
and n2(x, t), which are given by ( 0 2  O 0 2 ) 

(ni(x,t)ni(x',t')> = q~.~.,(x,t;x',t') x O~- - 2A - v20- ~ q~.~,~(y,z) (2.18) 
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and Fourier transform with respect to ~ continuous at every y, except y = 0. Thus, discontinu- 
/ d2 ,~ ire at y = 0  in (2.22)can be investigated easily, 

{Jt'q,.~j(y, z)} = ~v 2 - -  + r/2) integrating both sides on the interval (+~, -E). Then, 
@2 c2 = 1/(8ifl~v([3 - i~) is obtained and the solution for 

* 2  x v 2 -  + ~ ~{4~.~,~(y,~)} (2.19) d~(y, og) is written as, 

@2 d~(y ' o9) exp { - fl lY I/v} 
where 4vfl(fl2 + ~2) 

r/2 = o9(o9 - 2Ai) (2.20) x F ~ s i n ( ~ . l ~ y l ~ + c o s ( ~ l y l ~ ]  (2.27) 

On the other hand, equations (2.14) and (2.15) can be k~ \V l \V lA 

written as follows: Fourier transform of (2.21) with respect to z is 
Mtdp.~,j(y, ~) = Hij(y, z) (i,j = 1,2) (2.21) .~7~.m(y, o2) = /~ij(Y, o9). Then ~(y, to) can be evalu- 

ated by the following integral (see Appendix A(A-2) 
The Fourier transform of the functions on the right fo r /70 :  

hand side of (2.21), which are given in Appendix # + o o  

A(A-2), are obtained using the relations found in ~.~(y,  og) = | (~(y y', og)~i~(y', og) dy' (2.28) 
Section 3. The Dirac delta functions in the expressions J -oo 

of H~ suggest the application of Green's function. We It is obvious from (2.5) and (2.6) that 
then seek to obtain Green's function which satisfies 

n(x, t) = nl(x, t) + n2(x, t), the equation 
then 

J IG(y ,  z) = 6(y)6(z)  q~..(y, ~) = (n(x, t)n(x',  t ')) 

Taking Fourier transform with respect to ~ can be written as 

~ { J g G ( y ,  z)} = ¢5(y) (2.22) (n(x, On(K, t ')) 

First, we should find that the Green's function = ( [ n l ( x , t ) +  n 2 ( x , t ) ] [ n d x ' , t ' ) +  n2(x ' , t ' )])  
satisfies ~{JCG(y,z)} = 0 which can be written as 
~'-G(y, co) = 0 where (see 2.19) = (nl(x, t)nl(x',  t ')) + (nl(x, t)nz(x', t ')) 

+ (n2(x, t)nt(x',  t ')) + (n2(x, t)n2(x', t ')) 
( d2 q2"~(v2d2 ) ( 2 . 2 3 ) o r  ~7  = v 2 - -  + + r/.2 

dY 2 ] \  dY 2 ~.(y ,  o9) 

Since (~(y, o)) tends to zero, as y tends to __ 0o and = ~.~.~(y, o9) ÷ ~ . . . .  (y, o9) + q~.~,,(y, to) 
symmetric about y = 0 axis, + ~ . . . .  (y, o2) (2.29) 

(~(y, o9) = c 2 exp {-- ([3 -- i~)lY I/v} 
Substituting (2.27) and the expressions for Hu(Y, co) 

+ c4 exp ( -  ([3 + lot)lY I/v} (2.24) [Appendix A(A-2)] in (2.28), and integrating the right 
where hand side with the aid of formulas given in Appendix B, 

then using (2.29), the power spectral density function 
?l 2 = (0~ - -  ifl) ~ (2.25) of neutron fluctuations for the model under consider- 

ation is obtained as 
(3) = [-1 + x/1 + 4(A/O9)2] 1/2 

~,.(y, to) = ( N )  exp { - f l l y l / u }  

Ao9 4vfl 
f l = - -  

x [(~ - 2A)~/1 + 4(A/O9) 2 

~x2 + f12 = o92x/1 + 4(A/O9)2 

~ 2  f12= o92 - ( p +  2A)]sin(~ lYl) 

Continuity of the first derivative at y = 0 gives + [ ~  - 2A)x/1 + 4(A/o9) z 
C,, = --c2~3 -- iot)/([3 + i~). / _  

In Green's function, the first and second derivatives + ~ +  2A)]cos/~ lyl}[ (2.30) 
are continuous at every y; the third derivative is also \v / J  
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3. NOISE EQUIVALENT SOURCE EVALUATION The fission event causes both gain and loss of 
neutrons; it is therefore found more convenient to 

Fluctuations in sl(x ,  t) and s2(x, t), which are the consider that fission comprises these two events. The 
NES for the neutrons move in directions D.o a n d - l I o  gain and loss events in fission are two correlated 
respectively (see 2.7), are due to the random fluctu- different random processes and their NES will be de- 
ations in the capture, scattering events and fluctuations noted by sg(x, l I ,  t), s~(x, 1~, t) respectively. Thus, using 
in the number of neutrons produced per fission. We (2.7) 

can thus write ¢'~,sj = ( [~(x ,  t) - s~(x, t)] [~(x' ,  t') - s~.(x', t ' ) ] )  

s~(x, t) = - s t ( x ,  tl + s{(x, tl - s~(~, t) 
s2(x, t) - s ~ ( x ,  t) + s{2(x, t) - s~2(x, t)J (3.1) ¢~,sj = (~(x,  t )~(x ' ,  t ' ) )  - (4(x ,  t)s}(x', t ' ) )  

where c, f,  s represent capture, fission and scattering - (s~(x, t )~(x ' ,  t ' ) )  + (sl(x,  t)s~(x', t ' ) )  (3.5) 
events, respectively. Scattering and capture cause loss where i, j = 1, 2. As given in Akcasu and Osborn 
of neutrons for their NES. This is represented by minus (1966): 
signs. Since there is no correlation between capture 
fission and scattering events, the correlation function, (sl(x, 1 l  t)sg(x ', l'~', t ' ) )  

which is given generally by = fi (x - x')fi (t - t')r / (  N (x, 1~) ) 

~ss(x, t; x',  t') = (s (x ,  t)s(x ' ,  t') ), x ~. otB~(UZ, l l ' )  (3.6) 
can be written as ~.~ 

° t .... f{ 
¢~ .... = '/~m + ¢~'~2~2 + 4~m (3.2) = tS(x - x ' )6 ( t  - t ' )r/  ( N ( x ,  ~ " ) )  

x ~ ctflagp(ll"lf], 1~') d l I"  (3.7) J For  the sake of simplicity, dp~x,  t; x',  t') is denoted ~,~ 
by ~ ,  in (3.2). The reactor is assumed in a stationary 
state and having infinite length; therefore, where B ~ ( I I " [ l l ,  l I ' ) d ~  dr) '  is the probabili ty that 

~ ( x ,  t; x', t') = 4~s~(y, ~) when a neutron in the direction l I "  induces a fission 
event, v prompt  neutrons are emitted of which ct 

where y = x - x', z = t - t'. In the following calcula- neutrons have the direction f~ ~ d.q and fl neutrons 
tions, ~s(Y, ~) will be denoted by q~. have the direction ~ '  e d~' .  Then, Bg(I'4", 1]) d.Q will be 

The terms on the right hand side of equations (2.14) defined as the probabili ty that, when a neutron in 
and (2.15) will be evaluated according to the expressions direction 11" induces a fission event, v prompt  neutrons 
developed by Akcasu and Osborn (1966). The expres- are emitted of which ct neutrons have the direction 
sion of the correlation function of NES for capture is l I e  d.Q, and B ' ( ~  ") will be defined as the probabili ty 
given as that, when a neutron in direction l l "  induces a fission 

~ s ( x ,  l i ,  t ; x , , l l , , t ,  ) event, v neutrons are emitted. And the following 
relations are self-evident if B~B(II"/II, UI:) is defined 

= 6( t  - t ' )6(x  - x ' )6(D~ - f ~ ) r c ( N ( x , l ~ ) )  (3.3) onlyfor  t h e l I 4 :  1~'. 

where ( N ( x ,  l I ) )  is the average neutron density at B~([I"][~, l I ' ) =  B~(II"[ll, l~') ] 
phase point (x, ll). Hence, for the model under ] consideration + t~([I - II')6,~B~(II", lI)  

~ m  = (s~(x, t)s~(x', t') ) = 6(y )6(z ) r¢(N~ ) fB~( l¥ ' [ l ] ,  11') dD  = 6~,_~)B~([I ", l I)  (3.8) 

¢ ~  = (s~2(x,t)s[(x',  t ' ) )  = t~(y)6(z )r~(N2)  (3.4) 
d 

t "  
~ , ~  = ~ , ,  = (s~(x, t )~(x' ,  t')) J B : ( ~ " ,  ~)d .Q = ~ B ~ ( r z  ") 

= (s~(x,  t)s~(x', t ' ) )  = 0 
where B1( I¥ ' , l l o )=  B ~ ( ~ " , - D o )  because of the 

The last equation shows that there is no correlation assumption made about the direction of the neutrons 
between the capture of the neutrons'  movement in the born in fission. Then, for the model under consider- 
Do and - D o  directions, ation (3.8) yields 
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B~p( l l " l l lo , -Do)  = 6~_,)B~(li", f~ )  (3.9) = 6(y)6(z)r I ((v 2) - £v) + 1) 
B~(fg', Do) + B~([I", - Do) = 6,~BV(fl ") (3A4) 

<S> 
B~(n", Do) = B~(a", - D o )  = ½6~BV(f~ ") ~ , ~  = ~2s, = -6(y)e3(z)r: - ~ -  (v> 

Multiplying both sides of (3.7) by f i ( ~ -  f~') and 
integrating over the f2'(s°(x, D.t)sa(x ', II, t')> is ob- Scattering events will be considered as fission events 
tained. Substituting D.o for D., then - D o  for ~ and with (v> = 1. But the assumption which was made 
using (2.7), (3.9) one may write about scattering events in the introduction leads us to 

the following model. The neutron born as a result of 
( ~  (x, t )~ (x', t ')) ] fission will be in the opposite direction of the neutron 

= ½6(x - x')6(t  - t ' ) r f ( N ) ( v 2 )  [ (3.10) which induces a fission event. Therefore, 

(sa2(x, t)sa2(x ', t')> B~(DO, DO) = B ~ ( - D O , - D o )  = 0 

= ½6(x - x ' ) f ( t  - t')ri(N><v2> for ~ = I and equal to one for ~t = 0. Replacing r s by 
r, and following similar steps as for fission events, (3.6), 

Following the same steps, but using fi(f~ + l'~') (3.7) and (3,5) yield 

instead o f 6 ( l ' ~ -  ft') ~,~, = ~ 2  = 6(y)~5(z)r~(N> ] 
(3.15) 

(~(x,  t)sg2(x ', t')> = <~(x, t)~(x' ,  t')> - 0 (3.11) t~s.s 2 1~$2s 1 -6 (y )6(z ) r~(N>J 
£ 

is obtained. Substituting (3.4), (3.14), (3.15) in (3.2), the following 

Since the fission event considered consists of two results are obtained: 
different events, called gain and loss events, the loss 
of neutrons in fission is no different than in capture. • .... = 4) .... = fi(y)fi(r) (N> 
Thus, substituting r j, for r~ in (3.4) 2 

(s~(x,t)s~(x',t')> = 60 , )6(z )r f (Nl> x Jr, + rf(<v 2> -- (v>) "4- rs] 
(3.16) 

(st2(x, t)s~(x', t')> = 6(y)fi('c)rf<N2> (3.12) • .... = 4~ .... 

(st~(x, t)s~(x', t')> = <s~tx, t)s~tx', t')> = 0 = -6 (y )a ( r )  ~ ( 2 r ,  + rf<v>) Z. 
are obtained. Starting from (3.6) and following the 
similar steps used in obtaining (3.10) and (3.11) The correlation function of NES may be written as 

4 M = q~ .... + q~ .... + q~ .... + q ~ .  Thus (3.16) yields 

<~(x, t)s~(x', t')> = (s](x, t)~(x' ,  t')> ] qb~ = (p - 2 A ) ( N ) 6 ( y ) f ( z )  (3.17) 

I 

where 
= 6(y) f (z )r f  ( v )  # = r, + rf ( (v  2) - (v))  q- r~ (3.18) 

<~z(x, t)s~z(x ', t')> = <stz(x, t )~(x ' ,  t')> 2A is given in (2.10). 
In the case of having a detector in the reactor 

/ ~ t T  N 

= 3(y)3(Ors ~ (v> sT(x, t) (i = 1, 2) in (3.1) should be written as 
(3.13) 

s~(x, t) = s~(x, t) + s~'(x, t) 

< s~ (x, t) 4 (x', t') > = ( ~ (x, t) s{ (x', t') > where ~(x,  t) s~' (x, t) are NES for detection and capture 

events respectively. There is no correlation between 
= 6(y)6(z)r s (v> these two events and those of fission and scattering. 

(s~(x, t)s~(x', t')> = <~(x, t)s~(x', t')> Therefore, 

(si(x, t)s~(x', t')> = <s~(x, t)s~.(x', t')> = q~nz~ (3.19) 

= 6(y)f(z)rs  ~ ( v )  where i ,j  = 1,2. Since a detection event is the same 
as that of capture, (3.4) yields 

Substituting (3.10), (3.11), (3.12), (3.13) in (3.5) for 
i ,j  = 1,2, the following expressions are obtained for ~i)dldj = rd<Ni>J(y)6(z ), i = J l  

(3.20) 
the correlation function of the NES for fission: 4~,~ = 0. i # 



70 ~ARMAN GEN~AY and ZIYA AKCASU 

The correlation function of NES for detector counts r ~  
may be written ~P~d = $a,d, + ~b~2 then J(x,  t) = - D r  -~x n(x, t) 

~b~ = r d ( N ) f ( y ) 6 ( O  (3.21) one can write, 

In Section 5, we will need (gi(x, to)~(x', to')) which 8 O 2 
is average of the products of the Fourier  transform V~x [nl(x, t) - n2(x, t)] = -Dv-ff~x2 n(x, t) 
with respect to t of the NES for the fluctuation of 
the neutrons'  move in direction i and NES for the where D is the diffusion coefficient. Substituting the 
detection of the neutrons'  move in direction j. Then, last equation in (4.1) 

one can write 8n(x, t) 82n(x, t) 
Dv - -  = s(x, t) (4.2) 

(s',(x, to)~(x' ,  to')> at ax 2 

f f "  ~ (si(x, t)~(x', t '))  exp { - i ( to t  + to't')} dt dt '  the diffusion equation is obtained. Let .Z'o be defined 
3 3 -  00 a s  

where i,j  = 1, 2. Using (3.19) and (3.20) for i = j -£a0 = 8 82 

(gi(x, to)~(x', to')) fit - Dv ~x 2 (4.3) 

+ ~ Then, with the aid of (4.2) ¢ .  

= rd(N~)rS(x -- x') | exp{--i( to + to')t} dt 
. ~o~o(n (x ,  t) n(x', t ')) (s(x, t) s(x', t') ) d _  00 

= 2nrd(Ni)6(x  -- x ' ) f ( to  + to') (3.22) is obtained. Using (4.3), (3.17) and representing the 
correlation function of the neutron fluctuation in the 

and for i ~ j case of diffusion approximation by ff~..(x, t; x', t'), 
(s'~(x, to)~(x', to')) = 0 (3.23) 

are obtained. ~ - Dv ~x2 ]~ f f  ~ - Dv ~ rl~..(x, t; x', t') 

= ( N ) ~  - 2 a ) ~ ( x  - x ' ) ~ ( t  - t ')  

is obtained. Since the reactor is assumed to be in a 
4. DIFFUSION APPROXIMATION 

stationary state and have infinite length, one may 
In the case of diffusion approximation, direction of write, 

the neutrons will not  be considered. Then, 

nl(x , t )  + n2(x, t  ) = n(x , t )  - Dv y / \ ~  Do y ~n(y, ~) 

and = ( N ) ~  - 2A)~ (0 t i ( y )  (4.4) 

sl(x, t) + s2(x, t) = s(x, t) where y = x - x'  and z = t - t' as defined before. 

is written. Adding both sides of equation (2.11) Fourier  transform of the last equation with respect 
to z gives 

8n (x, t) 8 
8-------~--+v ~ x [ n t ( x , t ) - n 2 ( x , t ) ] = s ( x , t )  (4.1) 8[ff__y 4 to(_D~v)2] 

+ q~O,(y, to) = (N)( /z  - 2A)6(y)  

Defining J(x,  t) as the net current on direction D.o for (Do)2 

neutron fluctuations Following similar steps as those followed in obtaining 

J(x ,  t)D,o = v[nt(x,  t) - n2(x, t)] D.o (2.27), one can obtain the Green's  function, 

and using the expression of Fick's Law,t  which is Go(Y, to) = exp{--(ltol/2Dv)l/21Y]} 
given as 8 (1o9 I/2Ov) 3/2 

x {cos [(Io9 [~2Dr) 1/2 lY l] + sin [(Ira [~2Dr) 1/2 [y I] } 
1"Stochastic equation J(x, t) = -DWp(x ,  t) + s~(x, t) 

might be written. But, Fick's approximation was used. which satisfies the equation 
According to this approximation t3J/dt and sj(x, t) were 
neglected, sj(x, t)is NES for current and gives rise to the [ 8 ~  to(~_~v) z l  
term Vsj(x,t) which may be considered as a random + ~o(Y, to) = 3(y) 
process uncorrelated in space and time. 
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Then Then, 

f "~ A = 1.65010Ss - t ,  # + 2 A  = 5.3973105s -1, 
~ , ( y ,  co) = (N> Go(Y - Y', co) # - 2A = 1.0053 105 s-  x 

oo 

( # -  2A) are obtained. It  is assumed that (N> = 1000 and 
x (Dv)------T-6(y')dy' (v 2 > - (v )  is evaluated using Diven parameter as 

4.6558. The right-hand side of (4.7) is found to be 
gives the power spectral density in the case of diffusion 0.052. Results are given in Figs 1~5. 
approximation of the reactor model under consider- In Figs la, 2a and 3 both solutions for power 
ation, as follows: spectral density versus y are given in three different 

(N)( / I  - 2A) v-~ frequencies, which shows that the difference between 
71~..(y, oj) = 2[oJl(2[o~[Dv)l/2e,~v~-(lo~l/2Dv)~/2[y[} two solutions increases as frequency increases. ~b is 

defined as (4~.. - ~ ) / ~ . .  to give a better idea of the 
× {cos[(IoJ [/2Dv) 1/2 [y I] difference between two solutions. It is seen in Figs lb  

and 2b that I~0[ is greater near y = 0 and decreases 
+ sin [(Jo [/2Dv) 1/2]y I] } (4.5) 

as y increases. After a certain value of y depending 
on f, [~,[ starts to increase. 

Power spectral densities at four different y (y = 0, Comparison of the exact and diffusion approximation 
solutions at the low frequency range 3, 5 and 10 em) are given in Figs 4 and 5, and Fig. 6 

gives the variation on 1~'1 versus frequency at six 
The frequency range where Iwl/A << 1 will be con- different y. On this last figure, it is seen that I~1 in- 

sidered. Here, A = ½(v)r:  + r.. Under this restriction creases as the frequency itself increases, and this 
(2.26) gives that ~ ~ fl ",~ (Aco) 1/z for ~ > 0 and increase is sharp after certain frequencies depending on 

= -(Aloe[)  1/2, fl ~ (Alcol) 1/2 for o~ < 0. Using 
Fick's law, one can easily show that D = v/2A. Thus 

~lv ~- (Iogl12Dv) 112 ~nn 

,f(l~°l/2Dv) x/2 if co > 0 ~0nn' --~-n~ O (x//) 
[-(Icol/2Dv) x/z if to < 0 5 ~ - - ~ g  

S Substituting the last relations in (2.30) and assuming 

Io~1 t~ + 2A 4 
- - -  << 1 (4 .6 )  ~ / A - O 0 0 ~ 9  

f=lOOHz 2A # - 2A 

(2.30) is reduced to (4.5). From (2.10) and (3.18) 4 

# + 2A = r, + 3r. + rf(v2> 

# - 2A = r:(v(v - 1)) 3 ~ ~D 
f i n  

Since ro = <v>r: for critical reactor and r, -- ro + r,, 
(4.6) can be written as 

I 

_ _  ( v ( v  - 1)>  Icol << (4.7) 
A (2r J r : )  + ½(v(v + 1)) 

0 
It is understood that at a low frequency range, the zo 4o 60 y (crn) 

difference between exact solution and diffusion ' t ' ~  to) 
approximation for power spectral density function of 
neutron fluctuations is negligible if Icol/2A << 1 and 
(4.6) (or 4.7) are satisfied. 

For  comparison of both solutions, the following t ~ " O ~ ( b  ~Oy~cm) 
model is chosen: -o.o2 

v = 2.2 10 s era~s, (v )  = 2.42, 
rt = 1.1582 10s s -~, r.e = 2.1593 10*s -1, 
r s = 9.0374 10 s s-1. Fig. 1. 

,,,..~ .E. 8 / 2 - - c  
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~nn'  and C(t) is the instantaneous value, (C)  is the average 
value of the detector output, Z(x ,  t) is the instantan- 

~D ~nn . eous detection rate per unit length about x at time t, 
o~ ~ ( Z ( x ) )  is the average detection rate per unit length, 

~nn z(x,  t) is the fluctuation about (Z ( x ) ) .  It is assumed 
~,,'~D that the mid-point of the detector is placed at the 

V 
nn origin. The auto-correlation function of the detector, 

0.4 and cross-correlation of two detectors are given as 
~a/A- 0 .027 follows: 

0.3 (c( t )c( t ' ) )  = (z(x ,  t)z(x', t ')) dx  dx'  (5.1) 
, I t ]  - L / 2  

fxo+L/2 [ + m  
O.e ~ n  ( c l  (t)  c2( t ' )  ) = 

x o -  L/2 ,I - L/2 

oJ ~ ~nn x ( z (x ,  t)z(x' ,  t ')) dx  dx'  (5.2) 

In the second case, the distance between mid-points 
of the detectors is Xo, and Xo > L is assumed. 

o . . . . .  , The Fourier transform of (5.1) and (5.2) with respect 
Jo 20 ~ (yc~  to z gives the power and cross-power spectral density 

to) functions of one and two detectors respectively. 
~ ~  NES in the detection process will be denoted by 
o. I ~  sa(x, t). Then 

, z(x,  t) = ran(x, t) + sa(x, t) 

-o.f stochastic relation may be given. Here r a = Zav and 
Z a is the cross section for neutron detection. For the 
model under consideration 

(b) 
z(x,  t) = r[n1(x, t) + n2(x, t)] + sal(x, t) + sa2(x, t) 

Fig. 2. 

is written. Thus, the correlation function 

%(x, t;x', t') = (z(x, t)z(x', t')> 
y. At a fixed frequency, starting from y = 0 there is a 
decrease, and then an increase on I~Ol as y increases, is given as 
as shown in Figs 1, 2 and 3. We can also see from q)z(x, t ;x ' , t ' )  = r2q) . . ( x , t ; x ' , t  ') + ~an(x, t ;x ' , t ' )  
those figures that the correlation function, which is 
obtained by diffusion approximation, reached the zero / 

n,(x, t)~(x', t') later than the exact correlation function thus showing + ra k\,,~2-,= 1 
artificial correlation. 

+ ~ s~(x , t )n i (x ' , t ' ) )  (5.3) 
i , j  = 1 

5. POWER SPECTRAL DENSITY FUNCTION 
OF DETECTOR OUTPUT The first and second terms in this relation are given in 

(2.30), (3.21). The last term can be obtained as follows: 
Fluctuations of the output of a neutron detector of the Fourier transform of (2.13) with respect to t, using 

length L placed on the line reactor may be given as (2.12) and (2.20) gives 

c(t) (+L/2 ( 0  2 ) 
= z ( x ,  t )  ~ v 2 - ,~-L:2 ~x 2 + r12 nl(x, co) = - E l ( x ,  co) 

Here ( ~2 ) (5.4) 
V 2 ~2(X, CO) - -F2 (x  , co) 

c(t) = c(t)  - ( C )  ~x 2 + n~ = 

z(x,  t) = Z(x ,  t) - ( Z )  where 
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~n.' 
No 

nn 

x I0 -i 

0.I,~ 

O.iE 

0.10 

0 081" ~ (~/A- 0.5393 

0,16 I L  1 f • IOOOO Hz 

oo" I- \ \  

o,o  

o, ~ 15 y (cm) 

Fig. 3. 

~° '~n° 
0.~ = 

0.4 (~n n (y = OI 

/ ~ o  (y.o) 
. rill 

0.3 

I04 2.104 3.104 4.1104 5.104 i i i oJ 
Fig, 4. 

J 
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~D 2.'JO 3 4lib 3 6., iOa 8. i0 ] 1(~4 b 
~nn f 

0.4 

0 . .  • 

0.2 . ~  

0.1: ~nn ( y-lO cm) 

(~nC)n (y 5 cm) 

d /  
0 I _ ~ i I / 4-~'~ '~d~ 4 3.10 4 4.tO 4 5.10" 6.10 4 to 

Fig. 5. 

~-x is obtained by following similar steps as those 
Fl(x ,  09) = icogl(x, o~) - v gl(x, o~) mentioned in Section 2. Thus 

1 
+ A[~l(x, co) + ~2(x, co)] (7,(x - x",(o) = 

(5.5) 2v(p + i~) 

F2(x, m) = icog2(x, ~o) + v ~x s2(x, co) x exp v - + i ~ ) l x  - x" l  (5 .6)  

+ A[gl(X, co) + h ( x ,  e))] is found where e, fl are given by (2.25). Then, ~l(x, e)) 

One obtains the solution of equation (5.4) by the and ti2(x, m)is obtained as 

method of the Green's function. Green's function, ~l(x ,m)  = - G ( x -  x" ,o ) )F l (x" ,m)dx"  
which satisfies the equation ® 

(5.7) 
d 2 f _ ~ - ~  U 2 ~ X  2 G ( X  - -  X",  O)) -[- ~ 2 a ( x  - x " ,  (D) -~ ~ ( x  - x " )  /~2(x, co) = - G(x - x " ,  ( o ) F 2 ( x " ,  o~) dx" 

c~ 

rft 

I I~ . . . . . . . .  I0" ' . . . . . . .  I0  2 '  ' ' ' ""'!10 3 . . . . . . . .  IU';"4 L ( 

IO-~ : i  

i ~  3 ~ 

10 - 4  , • , ,  • • . ,a t t ,Hm 
JO 10 2 10 3 10 4 J()5 ~ CO 

Fig. 6. 
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An inverse Fourier transform gives form with respect to z of (5.3), 

~z(Y, 09) = ( N ) r  ] exp{-fllYl/v} [K°(09)sin(~lYl/V) 
ndx, t)~(x', t') = ~ ~l(x, 09)exp {i09t} do) 

+ K~(09)cos(e ]y I/v)] + r~(N)6(y) (5.15) 

x ~(x',&)exp{i09't}d09' (5.8) where ( N ) / 2 - -  ( N I ) =  (N2)and  

1 2A)~/1 + 4(A/09) 2 
Substituting the first relation of (5.7) into (5.8), and K°(09) = ~ [ ~  - 
using (5.5), (5.6) and (3.22), and the formulae in 
Appendix B, the correlation function - ~ + 2A)] 

• .,n,(x, t; x', t') = (nx(x, t)~(x', t')) KO(09) = 2A/] + ooa 1 
- -  + ( 5 . 1 6 )  v(~2 +/]2) 4vfl 

is obtained (Gen~ay, 1977). Thus 
x [(/a - 2A)~/1 + 4(A/09) 2 

dPn'd'(Y'X) = 4nv ~ + ~ + 2A)] 

{ ! } (5.1) and (5.2) may be written in the following form: 
x exp - (,8 + i~)lyl ~¢(x) = (c(t)c(t')) 

x exp{iorr} do) _ ] (5.9) f+L/2 
= ~ , ( x , x ' , z ) d x d x '  

ra<NI)FA + ico ] u-L/2 
$.,n,(Y, o9)= 2v [_/] + ic~ + 1 cb,,,,(z) = (cl(t)c2(t')> 

exp{ ~ + i,).y]} f+r/2 f.o+~./2 x - = ~ A x ,  x ' , ~ ) d x ' d x  
,d - L/2  * ' x o -  L /2  

where y = x - x', z = t - t', Following similar steps Taking the Fourier transform with respect to z and 
[ ~  1 substituting (5.15) into the last equations with 

ra(N2) + io9 1 ]Yl = Ix - x'l, one obtains the following results after 
~ , ( y ,  to) = 2v + i~ the integration (Genqay, 1977): 

{ - -  } 2(N)r~v2 
1 (,8 + i~)lyl (5.10) q~(09) = co4[ 1 + 4(a/09)2 ] exp{- /]L/v}  x exp v 

rn<Ni> FA - i<.o ] 
~d,,~(Y, O9) = 2V L f f - ~  + 1_1 × [Kl(09)COS(aL/v) - K2(09)sin(~L/v)] 

- K,(09) + r2 (N)L  (5.17) 
{ 1(~_ i~),yl} (sAm) <g>r~v 2 x e x p  - v 

q~:~(09) = o9'*[1 + 4(A/09) 2] exp{-/]xo/v} 
rd(N2> i09 

"1 

1J x ~Kx(09){exp{/]L/v}cos[(xo L)~/v] ~d~,2(Y, 09) = 2v L/] i~ 

+ exp{-flL/v}cosE(xo + L)c~/v] 
{ 1CB-ia)ly,} (5.12) 

× exp - v - 2 cos(xo~/V)} 

~'~.,(y, 09) = q~,,d~(y, 09) - K 2 (09) {exp {/]L/v } sin [(Xo - L)a/v] 

rd(N2)A ( 1 ,,, t + exp{-f lL/v}sin[(xo + L)o~/v] 
- 2 ~ / - ~ j e x p ~ -  vLU + i~)[y{, (5.13) - 2sin(xo~/V)}~ (5.18) 

~*,.~(Y, 09) = ~.:a,(Y, 09) Here 

{ 1 ( [ 3  } Kt(09)=2A09K°(09)-c°2K°(09) 
- rd(N~>A exp - + i~)IYl (5.14) 

2rift + i~) v K2(09) = 2A09K°(09) + 092K°(09) 

are obtained. Substituting (2.30) and (3.21), also (5.17) and (5.18) give the auto- and cross-power 
relations (5.9)through (5.14)into the Fourier trans- spectral density functions of one and two non- 
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overlapping neutron detectors respectively, on the is obtained. Here, /~ and A are given by (2.10) and (3.18) 
reactor model under consideration, respectively. On the other hand, with the aid of (2.17) we 

may write 
6. CONCLUSIONS ( d 2 ) 

Starting from the Boltzman equation and using ~{-@t~fE6(y)6(z)]} = 0) 2 -  2 i v t o ; - v 2 - - +  A 2 tS(y) dy 2 
Langevin's technique, exact expressions for the power ( d2 ) 
spectral density of neutron fluctuations and fluctu- ~{~2-@~[6(y)6(T)]} = to2 + 2 i v c o ; -  v 2 - -  + A 2 6(y) 
ations of detector counts are given for one and two dy2 
detector cases. In the latter case, detectors are assumed a~{~l~[6(y)6(r)]} = co 2 + 2vA ; + v 2 - -  + A 2 6(y) 
non-overlapping. An expression for the neutron fluctu- dY 2 
ation, in the case of diffusion approximation, is also ( d 2 ) 
obtained and compared with the exact solution. It is #'{-@2~;[~(y)6(0]} = co 2 - 2vA ~ + v ~ - -  + A 2 6(y) dy 2 
understood that at the low frequency region, difference and 
between both solutions is negligible. The term which ( d ) 
resulted from detector noise on the auto-power ~{~116(y)6(0]} = ito + - - +  A 6(y) 
spectral density function disappeared on the cross- V dy 
power spectral density function of the two detectors, ~:{~;[~(y)6(~)]} = ( - i t o - v ; + A ) 6 ( y )  
as expected. 

Acknowledgement--One of the authors ($.G.) would like to .~{.@216(y)6('c)]} = i m -  v - -  + A 6(y) 
express his thanks to A. Dalfes for his continuous support dy 
and encouragement. $~{~[6(y )3 (T)]}=( - - i to+V~y+A)6(y )  
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APPENDIX A /t12(Y, to) = ~ {[-2Ato 2 + 2A~ -- 2A)]~(y) [ 

One may obtain the Fourier transform of Ho(y , z) (see - 2Av(# -- 2A)6'(y) -- 2Av26"(y)} 
2.21) with respect to z as follows: substituting (3.16) in 
(2.14) and (2.15) then using (2.21), /t21(Y, to) = ~ {E-2Ato 2 + 2A ~  - 2A)] ~(y) 

/'tl l(Y, to) = # - { [ / ~ 2 ~  -- 2A2-@2 - 2A2~  
+ 2Av(/.t -- 2A)6'(y) - 2.4v2~"(y)} 

+ /.~A 2] -~t~(y)~('c)} APPENDIX B 

{ f { ) /'~2z(Y, to) = '~  [P-@I-@I' -- 2.42.@1 -- 2A2-@1 ' ~ dy' exp - -~v [y - y'[ sin lY - Y'I 6(y') 

+ ~a 2] (~-~-) t~ (y), (-~)} = e x p { -  ! /y l}s in(~  ,y,) (B.1) 

(A.t) 

fl12,y, t o ) = ~ { [ - 2 A ~ 2 ~ [ + t ~ A ~ 2 + l t A ~ [  f _ ~ d y ' e x p { - ! l y - y ' l } c o s ( ~ [ y - y ' l ) t ~ ( y ' )  

ffl2t(Y, to)=~{[-2AN~N~+l~AN~ + l~A~  f ' ~ d y ' e x p { - ! l y - y ' l } s i n ( ~ t y - y ' l ) 6 ' ( y ' )  

- 2Aa] ~ 3 ( Y ) 3 ( z ) }  = exp{-- ! J Y l } I ( ! ) s i n ( ~ l Y l ) - ~ c o s ( ~ l y l ) ]  (B.3) 
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~0~.exp{_ !,y_ ~,,}cos~,~_ ~,,)~,,y,~ 290os(~,y,)_ (-:)2sin(~,y,)] ,,.5~ 

~ ~. ox~ f- !,~-+n(-:,~-~',/~",~', = 0x+ !,~,tI(!t~0os(~ 'Y't 


