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Using a simple ansatz for the inhomogeneous screened linear electron gas
susceptibility, we obtain the face dependent surface energies, a, of the
simple metals, through second order. In contrast to the results of the
first—order Lang—Kohn method and the one—dimensional variational values
of Monnier and Perdew, we obtain weakly face dependent a values
consistent with experiment. Our results hinge on two previously
neglected considerations: (i) ion induced inhoniogeneity of the bulk
electron density prior to cleavage and (ii) ion induced electron density
inhomogeneity in the surface region after cleavage.

The surfaces of the simple metals have come Pb the changes are even more striking and we find
to serve as a theoretical laboratory for testing that it is necessary to include fully the three
various models of the inhomogeneous electron gas. dimensional density variation to obtain agreement
Of particular interest in this development was with experiment even for the surface energy of
the introduction of density functional theory by the densest (1,1,1) face. tf we restrict
Smith who used the gradient expansion for the ourselves to a one dimensional density profile we
kinetic energy.

1 This was followed by the find that the surface energy is too large by a
striking success of the theory of Lang and Kohn.2 factor of two. Our calculation introduces
They solved the self—consistent Kohn—Sham3 substantial corrections to the surface energies
equations for a half space of jellium, and then for the densest faces (the faces reported by Lang
included the ion cores via first order and Kohn) of Al, Zn, Mg, Pb, Li, Rb and Cs.
perturbation theory and via the classical We should Stress that up to the present time
cleavage energy. Later improvements in the there has been no adequate microscopic theory of
calculations of the surface energy have followed the face dependence of a for the simple metals
two main paths. First, considerable effort has (see however, the next paragraph). Monnier and
been expanded in obtaining non—local corrections Perdew applied the technique of Lang and Kohn to
to the exchange—correlation4’5’6 energy. The the calculation of the surface energy of the
second development was introduced by Monnier and three lowest index faces of the simple metals
Perdew who partially included the change in the except for the hcp metals Mg and Zn, for which
conduction electron density induced by the we, as they, calculated only the energy of the
discrete ion cores. lowest (0,0,0,1) face. For Pb and Al they found

However, all of the theories mentioned above very large changes in the surface energy from
have made the approximation that the electron face to face. For example, they found that the
density varies only in the direction normal to surface energy of the (1,1,0) face of aluminum
the surface. This reduces the computations was a factor of four larger than the energy of
necessary to determine the wavefunction within the (1,1,1) face. Near the melting point the
the Kohn—Shamscheme and greatly eases the surface energy differences between various faces
numerical labor. In this paper we use linear of the bce transition elements are found
response theory about the non—uniform jelliuni experimentally to be no more than 10 to 20Z.8 At
solutions of Lang and Kohn to study the effects lower temperatures and for the simple metals the
of the change in the conduction electron density differences may very wall be larger. However, a
induced by the ion cores in a fully three factor of four is too large to be credible.
dimensional way. Thus we obtain an electron Further, in ref. 7 the inclusion of electron
density which has the symmetry of the lattice relaxation in the one dimensional density profile
parallel to the surface. We find that the made the differences between different faces even
inclusion of the resulting three dimensional larger. For Pb, Monnier and Perdew found that
density variation is crucial for understanding the energy of the (1,1,0) face was a factor of 10
the surface energy of the simple metals. Very larger than the energy of the (1,1,1) face.
large effects are found in the surface energy of Aside from the fact that the energy differences
the higher index face8 for Al and Pb. For from face to face are expected to be small, there
example, the surface energy of the (1,1,0) face is no qualitatively satisfactory experimental
of Al is decreased by a factor of two when determination of the face dependence of the
compared to the result obtained when the density surface energy, so a theory such as ours may
variation is assumed to be one dimensional. For provide useful guidelines. It should be pointed
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out that the face dependenceof the surface In the following paragraphswe will discusa
energy plays an important role in brittle briefly the formalism which we have used. After
fracture processesin metals. Even though that we will present our results and conclude
brittle fracture is not the basic failure with a discussion. A discussion of the linear
mechanism in simple metals we hope that a study response formalisu and its application to surface
of the surface energy anisotropy for these metals problems will be given in another publication.
will shed some light on the corresponding We use the Lang—Kohn solutions for a sea of
quantities in the 8CC transition metals where electrons moving in the potential of a half apace
brittle fracture is an important technological of uniform positive background as a zero order
problem. solution about which we do perturbation theory.

Recently Bohnen and Ytng
9 have introduced a The Lang—Kohn calculation introduced the effects

new technique which involves the variation of the of the Ions via the classical cleavage energy
total energy with respect to the one—particle (ion—ion term) and via first order perturbation
density matrix. This technique naturally theory for the electron—ion interaction, where
involves the three—dimensional density profile, the ions are modeled by the Ashcroft’’
and Bohnen and Ying have recently applied it to pseudopotential. We go beyond the results of
the study of the surface energy of the (1,1,0) Lang and Kohn by using linear response theory to
and (1,0,0) face of Na, K, Rb and Cs.’° We calculate the second—order energy contribution

received a copy of their results, ref. 10, in due to the electron—ion interaction, both in the
preprint form after our calculations were initial bulk system and in the final cleaved
substantially complete. Comparison with their system with two surfaces. For the latter system
calculations, Table 1, show that for these metals we need a linear response function calculated
our technique and theirs give rather simi].ar about a nonuniform zero—orderstate.
answersboth for the surface energy and for the The surface energy, a, is found by
energy differences between faces. We take this subtracting the energy, EB, of the bulk metal
comparison as confirming both techniques. from the energy 2Es, of the cleaved system, then

The linear response formalism which we use dividing by the total surface area, 2A. The
provides a straightforward analytic method for second order contribution, which we add to the
addressing problems involving small changes in Lang—Kohn result a~, is
the positions of the ions. This allows the
possibility of studying the static relaxation of 1 (2) 2)~
the ions due to the surface as well as their a(2) —— 2E

5 —E~ j . (1)
dynamical properties. One major advantage of the 2A
linear response formalism is that it avoids, by
analytic subtraction, the numerical evaluation of Here, the total energy contribution of 2nd
differences in large numbers which variational order in the electron—ion interaction, for a
techniques typically encounter. semi—infinite lattice of pseudopotential ions is

Table 1

Surface Energy of the Alkali Metals (ergs/cm

2)

1. The calculated surface energies of the alkali metals is compared

with those of Bohnen and Ying within the local density approxima-

tion. Note that our energies are lower than those of Bohnen and

Ying except for Na where they used a slightly different pseudo—

potential radius. This is consistent with their use of a

variational ansatz.

Present Work Bohnen—Ying

1,1,0 1,0,0 0100/0110 1,1,0 1,0,0 0100/0110

Li 341 413 1.21 — — —

Na 229 261 1.14 221 261 1.18

K 139 158 1.14 144 170 1.18

Rb 107 122 1.14 107 132 1.23

Cs 70 93 1.33 89 109 1.22
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(2) 1 3 3 , + + +, -+ 4- 4-
E = -~ ~ Jd rd r L~v (r-R

1)~v (r -R )x (Ir-r~I,z,z’) . (2)
i�Oj�0 p p j 5

Avp5 is the change in the potential due ta adding
a pseudopotential ion to the system and Hera x° is time Lindhard response function and r~
subtracting out a cubotd of jelliua background is a local approxination for the exchangeand
with equal charge. The ions are centered about correlation energy per particle. The
the crystal lattice sites denoted by 1~j, and for determination of the screened density—density
this expression are restricted to the left half response function for non—uniform systems within
space (i,j~O). We use the Ashcroft the framework of the Kohn—Sham equations is
pseudopotential and the Wigner form for time considerably more difficult (see for example the
exchange and correlation energy

12 to maintain work of Zaremnba and Stott’4). We avoid this
Contact with previous calculations. The function difficulty by tasking the following ansatz
X

5 represents tile screened density—density linear
responsefunction of the jeliium half space ( 4-

including the effects of the surface. x ~ = x ; n(r)~(r’)1 . (8)
The bulk term in the second—ordersurface a B~ 2

energy contribution (1) is given by _________________________

(2) 1 1 3 3 , + 9- +~ 4- 4- 4-,

EB = ~ d rd r tmv 5(r_Ri)~v (r _R.)XB(Ir_r I) . (3)
—o~<i<coJ

_a~<j <~ ____________________________

Here XB represents tile screened density—density Here x8 is evaluated at the average value of the
linear response function for the uniform electron densities n(r) and n(r’). This ansatz has been
gas. used quite successfully to study the ground

Using Eqs. (2) and (3) In (I) and regrouping state properties of molecular hydrogen.’
5 In

terms to avoid numerical subtraction of that case the perturbation theory contributed
comparable large quantities, we find that time about 10% to the total energy of the hydrogen
total second order contributton to the surface molecule. In the very low density limit of an
energy is isolated H

2 molecule it was found that the
interproton spacing, the molecular binding

~(2) = 0½ ½+ (4) energy and the vibrational energy of the molecule
agreed with experiment to within 1/2%. Beyond

The first term in (4) is _________________________

0½.½ ~ i~oj~o~ . (5)

It depends only on bulk properties of the metal
and is independent of the zero—order electronic this demonstration of a successful use for the
surface profile. Surprisingly, this term is ansatz, we base our use of the ansatz a
dominant in the corrections to the face posteriori on the results which we obtain. The
dependence of the surface energy in Al and Pb. detailed evaluation of Eqs. (5) and (6) will be
The second term, which is sensitive to changes in made in a latter publication for which the
electron density at the surface, is given by present work Is intended to serve as a brief

report.
a = -~ ~ d

3rd3r’Av (~—~)Av ~ ) Table 2 shows our results for the surface
d~ 2 i~0 J ps i PS j energy of the simple metals. They are to be

j�O compared with zero temperature extrapolation of
the ‘avera

3e’ surface energy performed by Tyson
+ -3- + + and Miller’

6 from measurements made at and near
[x

5(Ir—r ,z,z’)—x8(Jr11_rI~I,z—z’)]. (6) the melting point. A second comparison is
provided by the results of Wawra’

7 who
In performing the numerical evaluation of extrapolated the surface energies to low

Eqs. (5) and (6) we took advantage of the temperatures on the basis of an empirical
translational invariance parallel to the surface relation between the surface energy and the
and Fourier transformed the variable in measured elastic constants. We have added to our
terms of the two dimensional surface reciprocal results the waveveetor correction to the
lattice vectors ~. In order to evaluate the exchange—correlation energy proposed by Langreth
second order contributions it is necessary to and Perdew.4 This contribution to the surface
know both XB and X

8. For the bulk the answer is energy is relatively independent of the surface
straightforward within the Kohn—Shamformalism:’

3 density profile and we have simply used the
results quoted In ref. 7. We find agreement

x0(I~l) between our results and experiment to within th�
~ (I~I) (7) experimental uncertainty with the possibleB 147re2 d2(ne + exception of Zn for which our results seem

l~2 + 2 Jx0(Iql) somewhat too low. We should add, though, that
q dn the experimental value of the surface energy fon

Zn has been the subject of some controversy wItF
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Table 2

Surface Energy of Simple Metals (erg/cm
2)

2. The calculated values of the surface energy are compared with experimental

extrapolation of the surface energies to zero temperature. The

extrapolation of the experimental surface energy is quite difficult

and the experimental results quoted here are rather uncertain.

Present Work Wawra Tyson &
_______ _________________ _________________ __________________ _____________ Miller

FCC (1,1,1) (1,0,0) (1,1,0)

Al 1065 1160 1700 1170 1143

Pb 720 930 1575 690 593

HCP (0,0,0,1)

Mg 670 — — 785

Zn ~7O — — 1040 913

8CC (1,1,0) (1,0,0)

Li 380 450 — — 522

Na 250 280 — 275 261

K 150 170 — 135 145

Rb 115 130 — — 117

Cs 80 100 — — 95

ouch lower values quoted’ than those given by finds that the (1,0,0) face of Rb and Cs have a
Tyson and Miller and Wawra. It is of some lower surface energy than the denser (1,1,0)
interest to display time two second order face. This is somewhat surprising since we
contributions to the surface energy. For Al expect from bond—breaking arguments that the
(I,1,1~, 0½½= —373 erg/cm2 and a~-~ 555 denser face will have the lower energy.8’’8 Our
erg/em . T~iese terms Include the effects of the calculation reverses this anomaly and shows that
three dimensional density profile. The large the denser (1,1,0) face has the lower surface
size of 0½,½indicates the necessity of including energy. One final comment on the anisotropy
the change in electron density induced by the ion between the energy of the densest face and the
cores in the bulk solid in order to obtain next densest face is in order. We find that the
reliable surface energies. The effect of a one ratio of these energies is between 1.1 and 1.3
dimensional density profile can be obtained by for tile metals we have considered. Lacking any
taking only the contributions to the second other guide we feel that taking this ratio to be
order energy. In that casewe find 0½,½= 137 1.2 for the transition metals at T 0°Kwould be
erg/cm2 and 0~ = 31 erg/cm2. Thus the total reasonable.
second order contribution is Aa —105 erg/cm2 Our results have consequences for several
for the ~ii=~ term compared to ~ = +180 erg/cm2 other calculations beyond the surface energy.
when all ~mi‘a are included. This demonstrates For example, the determination of the static
the importance of including the three dimensional relaxation of the lattice at the surface of a
nature of time electron density profile in metal depends on the screening of the ions by the
evaluating the surface energy. electrons. Hence we would expect that the

The face dependence of the surface energy is determination of this quantity would depend quite
much smaller for Al and Pb in our calculations sensitively on the exact form of the three
than in the work of Monnier and Perdew as can be dimensional density profile. A similar
seen in table 3. For the two densest faces we consideration is involved in the determination of
find a(1,O,0)/a(1,1,1) = 1.09 for Al and 1.30 for the phonon contribution to the temperature
Pb. The values for 0(1,1,0)/0(1,1.1) were 1.6 dependence of the surface energy. We have
for Al and 2.1 for Pb. The face dependence for adaptedour formalism to these calculations also.
the alkali metals is given in table 1. An Details will be published shortly.
interesting point for the alkalis is that tile A final comment is in order concerning the
first order calculation of Monnier and Perdew calculation of Monnier and Perdew. As we
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Table 3

Surface Energy (erg/cm
2)

3. The face dependence of the surface energy is given for Al and Pb.

For comparison we give the results of Monnier and Perdew for their

“perturbational self—consistent calculation” (the method of

Lang—Kohn) to which we have added the wavevector corrections quoted

in the same paper.

Monnier &
This Work

___________ _____________ Perdew

Al

(1,1,1) 1065 885

(1,0,0) 1160 1640

(1,1,0) 1700 3385

Pb

(1,1,1) 720 1250

(1,0,0) 930 2390

(1,1,0) 1575 5050

remarked they include the relaxation of the faces ranges between 1.1 and 1.3. We have also
conduction electrons by the ion cores within the adduced some consequences of our work for other
constraint of a one dimensional variation of the possible calculations. We close with the thought
density and found that the face dependence of the that the time has come when it should be possible
surface energy became more pronounced rather than to obtain accurate reliable numbers for the
less. We attribute this result to two surface energies of the simple metals by a
approximations made in their calculation. First careful choice of the pseudopotential and the
was the approximation of a one dimensional exchange—correlation energy functional.
density variation. The second approximation
involved the assumption that the relaxation of Acknowledgements. We would like to thank
the electrons to the ions was unimportant in the L. H. Sander, J. P. Perdew and E. Zaremba for
bulk. Within our procedure these approximations useful discussions. We would also like to thank
are found to be inadmissable by detailed J. Ferrante, J. P. Perdew, A. Zunger, K. P.
calculation. Bohnen and S. C. Ying for providing us with some

In summary, we have calculated the surface of their work prior to publication. The work in
energy of the simple metals to second order in this paper was supported in part by tile National
the electron—Ion Interaction. The result is a Science Foundation under contract number
systematic improvement of the surface energies in DMR—78—25012. J.F.D. would like to thank time
comparison with experiment except possibly for members of the University of Michigan Physics
Li. The face dependence of the surface energy Department for their hospitality during his
has been calculated and we have found that the visit.
ratio of the surface energies for the two densest
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