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INTRODUCTION 

The classical problem of transient conduction into a 
step-heated semi-infinite solid having temperature 
dependent thermal properties is often chosen as a test 
problem to assess the efficacy of new techniques that are 
developed from time to time. For example it has been 
used to test the heat balance integral[ll, the optimal 
linearisation[2, 31 and the perturbation[4] methods. The 
basis of comparison used in all four papers is the solu- 
tion reported by Yang[S] which itself is based on the 
method of successive approximation. Moreover, results 
in these and other papers on the subject are often given 
for a specific value of the variable property parameter. It 
seems that direct numerical results covering a range of 
variable property parameter is not available. The present 
note is intended to provide this information., The 
results cover two cases of variable property: (i) linear 
thermal conductivity-temperature variation (ii) linear 
heat capacity-temperature variation. In each case the 
range of variable property parameter chosen is such that 
it covers all likely applications. 

The numerical solutions are achieved by a noniterative 
scheme using the method of transformation groups[6]. 
This technique transforms the boundary value problems 
into initial value problems which are subsequently in- 
tegrated numerically without any iteration. Compared to 
iterative schemes such as finite-difference and shooting, 
the present scheme is faster and more efficient. The 
scheme is particularly attractive when the boundary 
value problem contains a parameter. In chemical 
engineering its usage appears to be limited to the con- 
tribution of Lin & Fan[7] who applied it to the boundary 
values problems describing the flow of power-law fluids 
over a flat plate and the axial diffusion in tubular flow 
reactors. The present work should serve to provide fur- 
ther exposure to the technique. 

BOUNDARY VALUE PROBLEMS 

LA the surface at x = 0 of a semi-infinite solid initially 
(time t = 0) at uniform temperature Ti be suddenly raised 
to temperature ‘J’,. We consider two cases of tem- 
perature dependent property: (i) linear-thermal conduc- 
tivity-temperature variation and (ii) linear heat capacity- 
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temperature variation. For case (i) we write 

k=kt[l+fi(T-TJ] (1) 

and for case (ii) we write 

c=Co[l+V(T-To)l. (2) 

Introducing Eqs. (1) and (2) into the one-dimensional 
transient conduction equation and using the well known 
similarity transformation, the pertinent boundary prob- 
lems in dimensionless form become 

Case (i) 

$ [(l+HB)9+2+0 (3) 

q=o; fj=l; q=m; e=o (4) 

where 

e=(T-TJ(To-T,), q=x/2d(at), H=/il(To-Tt) 

and 

LI = /o/C is the thermal diffusivity. 

It is possible to introduce the well known Kirchoff 
transformation into the original heat equation and obtain 
Eq. (3) in a slightly different form. 

Case (ii) 

(5) 

where 

a=o; e=o; T=m, e=l (6) 

0 = (T - T,)/(Tj - To), q = x/2V(crt), G = v(T, - TJ 

and 

a= =klC, 

is the thermal diffusivity. It should be noted that H is 
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positive for thermal conductivity increasing with tem- 
perature and negative for thermal conductivity decreas- 
ing with temperature. The reverse is the case for G. 

SoLUTlON METBOD 

The solutions of Eqs. (3)-(6) are sought for a range of 
values of parameters H and G. 

Case (i) 
Let us consider Eqs. (3) and (4) and introduce a new 

variable 6 such that 

to obtain 

l#l=ItHe (7) 

&($)+2#=0 (8) 

r/=0, c$=ltH; q=m, cj=l. (9) 

To reduce Eqs. (8) and (9) to an initial value problem we 
introduce the linear transformation 

n = APljj, 4 = A=@ (10) 

where at, a2 are constants and A is taken as the missing 
initial derivative, i.e. 

(11) 

In Eq. (11) the minus and plus signs apply respectively 
for positive and negative values of H. Introducing (IO) 
into Eqs. (8) and (1 I) one obtains 

(12) 

and 

Imposing the restriction that Eqs. (12) and (13) must be 
independent of A, we have 

a2-2aI=0, a2-aI=1 

from which 

a, = 1, a2 = 2. (14) 

Equations (12) and (13) now become 

(15) 

(16) 

From Eq. (9) the boundary condition at n = 0 now ap- 
pears as 

;i=o, &=H*=(I+H)/A*. (17) 

To find the parameter A we invoke the boundary con- 
dition at n = JO from Eq. (9) to obtain 

A = [&m)]-“‘. (18) 

Thus, the solution procedure is as follows: 
(I) Choose a value of H*. 
(2) Integrate Eq. (15) as an initial value problem with 

the initial conditions given by Eqs. (16) and (17) until 4 
approaches a constant value which may be taken as 
@). 

(3) Calculate A from Eq. (18). 
(4) Using the value of A, in Eq. (17) obtain the cor- 

responding value of H. 
(5) With the aid of Eqs. (7) and (10) the solution can be 

transformed to the original variables 8 and n. 

Case (ii) 
Since the procedure is essentially the same as in case 

(i) we give only the details which are different. We 
introduce the linear transformations 

q = A”$ (J = A-26 (19) 

with A defined as 

A=r$l = (20) 
‘I 0 

where the plus and the minus signs correspond respec- 
tively to positive and negative values of G. The constants 
a, and a2 are obtained as 

a, = 0, a2 = 1. (21) 

The transformed equations become 

where 

G* = GA, A = [&J)]-‘. (24) 

NuMERICAL RESULTS 
To illustrate the solution procedure let us consider and 

select H* = 5. The result of step 2 (using a fourth-order 
Runge-Kutta scheme) appear in the first two columns of 
Table I. It is seen that 4 approaches a constant value of 
2.8392 which is taken as e%(m). Fro Eq. (18), A = 0.5935 
and the corresponding value of H from Eq. (17) follow 
as 0.761 I. The solution in terms of original variables e 
and n can now be obtained from Eqs. (7) and (IO). This 
result appears in the last two columns of Table 1. 

By assigning diierent values to H * a set of solutions can 
be generated. The question of chasing the range of H* to 
cover the desired range of H is easily resolved with a few 
trials. Since the result frequently needed is the wall 
temperature gradient, de/d&.., we present in Table 2 its 
values for a range of values of H. 

The corresponding results for case (ii) appear in Table 3. 
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Table 1. Samde solution for H* = 5 
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rl T n 0 

0.00 5.0000 0.0000 1.0000 

0.55 4.4316 0.3264 0.7371 

1.21 3.7539 0.7181 0.4234 

2.03 3.1557 1.2048 0.1466 

3.02 2.8831 1.7924 0.0204 

4.23 2.8407 2.5105 0.0008 

5.70 2.8392 3.3830 0.0000 

7.50 2.8392 4.4513 0.0000 

9.69 2.8392 5.7510 0.0000 

Table 2. Wall temperature gradient for case (i) 

H* H H* H 

0.01 -0.8345 -4.8752 10.00 0.4221 -0.8934 

0.05 -0.7292 -3.1916 5.00 0.7611 -0.7798 

0.10 -0.6786 -2.6419 4.00 0.9587 -0.7299 

0.20 -0.6130 -2.2692 3.00 1.3636 -0.6509 

0.40 -0.5404 -1.9835 2.00 2.7831 -0.4942 

0.60 -0.4959 -1.8483 J.75 4.0155 -0.4216 

0.80 -0.4639 -1.7646 1.50 7.8454 -0.3095 

Table 3. Wall temperature gradient for case (ii) 

G* G 

0.66 -0.9021 0.7316 

0.65 -0.8613 0.7547 

0.60 -0.7272 0.8251 

0.50 -0.5501 0.9089 

0.40 -0.4131 0.9684 

0.30 -0.2951 1.0168 

0.20 -0.1890 1.0583 

0.10 -0.0913 1.0951 

G* G %I IF0 

0.1 0.0863 1.1589 

1.0 0.7321 1.3659 

2.0 1.3096 1.5272 

4.0 2.2691 1.7628 

6.0 3.0901 1.9417 

8.0 3.8286 2.0896 

10.0 4.5100 2.2173 

DISCUSSION 

The results presented in Tables 2 and 3 cover a very 
wide range of property variation. It is unlikely that any 
practical application will fall beyond this range. The only 
drawback of the noniterative numerical results is the lack 
of systematic spacing of values of H and G. However, 
this does not pose any difficulty because a numerical or 
graphical interpolation can be readily carried out. 

The solutions of Eqs. (3)-(6) exist for all positive 
values of H and G but for negative values of H and G, 
physical considerations dictate H > - 1, G > - 1. In fact, 
numerical experiments indicated that solutions could be 
generated only down to H = -0.8345 and G = -0.9021. 
These constitute the lower limits in Tables 2 and 3. 
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